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Abstract

This paper studies the structure of the Japanese production network, which includes one

million firms and five million supplier-customer links. This study finds that this network forms

a tightly-knit structure with a core giant strongly connected component (GSCC) surrounded

by IN and OUT components constituting two half-shells of the GSCC, which we call awalnut

structure because of its shape. The hierarchical structure of the communities is studied by

the Infomap method, and most of the irreducible communities are found to be at the second

level. The composition of some of the major communities, including overexpressions

regarding their industrial or regional nature, and the connections that exist between the com-

munities are studied in detail. The findings obtained here cause us to question the validity

and accuracy of using the conventional input-output analysis, which is expected to be useful

when firms in the same sectors are highly connected to each other.

Introduction

A macro economy is the aggregation of the the dynamic behaviour of agents who interact with

each other under diverse external (non-economic) conditions. Economic agents are numerous

and include consumers, workers, firms, financial institutions, government agencies, and coun-

tries. The interactions of these agents result in the creation of economic networks, where

nodes are economic agents, and links (edges) connect agents that interact with each other.

Therefore, there are various kinds of economic networks depending on the nature of the inter-

actions, which form an overlapping multi-level network of networks. Thus, any evidence-

based scientific investigation of the macro economy must be based on an understanding of the

real nature of these interactions and the economic network of networks that they form. This

concept also applies to the micro-level perspective of economic agents: without knowing who

a firm trades with, how can anyone hope to determine the future of that firm? Therefore, it is

highly important to use actual network information when studying economic dynamics with

either agent-based modelling/simulations or other means of systematic studies such as deter-

mining the debt-rank of an economic agent [1–5]. Without this information, it is difficult to

apply the validity of the results to the actual economy.
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In this paper, we study the structure of one of the most important networks, the produc-

tion network, which is formed by firms (as nodes) and trade relationships (as links) [6–9]. In

the scientific study of both the macro and the micro economy, the production network of

the real economic world is a topic of high importance. Before one engages in agent-model

building and developing simulations, one needs to understand the structure of this network

to be able to understand the dynamics of this network and eventually reach into the realm of

economic fluctuations, business cycles, systemic crises, as well as firms’ growth and decline.

Therefore, in the next Section, we describe the overall statistics and visualization and refer to

the unique overall structure of the network as a “walnut” structure. This type of structure is

quite different from what is expected because of the existence of the IN-giant strongly con-

nected component (GSCC)-OUT components: In the trade network, the flow of materials

and goods begins with imported/mined/harvested raw materials such as oil, iron, other met-

als and food. Firms who engage in this business form the IN components. These compnoents

are then processed to become various products such as semiconductors or powdered food by

firms, which are considered to be GSCC components, before they are made into consumer

goods by firms, which are considered to be the OUT components. One might think that the

existence of IN-GSCC-OUT components is similar to a web network that has a bow-tie

structure [10]. However, the production network is different. Ties among the firms form a

much tighter network with an overall structure that does not resemble a bow-tie. Then, we

study the community structure and reveal its hierarchical nature using the Infomap method

[11, 12].

In previous studies [6, 8], the modularity maximization technique [13] is used to study the

community structure of the Japanese production network. However, modularity maximization

cannot capture the dynamic aspects of the network. This technique reveals a similar type of

community partition for both directed and undirected versions of the network. Moreover, it is

well known that the modularity maximization algorithm suffers from a resolution limit prob-

lem when trying to identify the communities in a large scale network. The map equation

method [11, 12] detects communities using the dynamic behaviour of the network. In a recent

study [9], the hierarchical map equation is applied to characterize the level 1 communities in

the Japanese production network, and a detailed investigation of the topological properties of

both the intra and inter communities is conducted. It also shows that the regions and sectors

are segregated within the communities. In another study [14], the business cycle correlations

of the communities detected by the map equation are studied for the network of firms listed

on the Tokyo Stock Exchange. The presence of strong correlations in intra and inter commu-

nities is explained by the attributes of both the network topology and the firms. The crucial dif-

ference between our paper and [9, 14] is that we not only study the top level communities but

also study the communities at the other levels as well as the hierarchical structure. Moreover,

we determine the compositions of the communities and subcommunities in terms of whether

they include upstream and downstream firms, which has not been investigated in previous

studies.

In our paper, we conduct a level-by-level analysis and identify both communities and “irre-

ducible” communities (communities that are not decomposed into subcommunities at the

lower level). We also study the overexpression of some of the major communities to identify

both the industrial sector and the regional decomposition. The complex nature of the links

that exist between the communities are also studied. A discussion and the conclusion as well as

suggestions for future research are provided at the end. Some of the supporting materials are

included as Appendices.
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Production network data and its basic structure

Our data for the production network are based on a survey conducted by Tokyo Shoko

Research (TSR), one of the leading credit research agencies in Tokyo, and was supplied to us

through the Research Institute of Economy, Trade and Industry (RIETI). The data were col-

lected by TSR by means of inquiry from firms who represent the top five suppliers and the top

five customers. Although the large firms that have many suppliers and customers submitted

replies that are incomplete, these data are supplemented with data on the other side of trade:

smaller firms submit replies that include data on large firms, who are important trade partners.

By combining all the submissions from both side of trade into one database, large firms are

connected to numerous smaller firms, which provides a good approximation of the real com-

plete picture. One might worry because some of the trades last for only a short time and some-

times they only occur once, such as when a firm seeks a good deal for just one particular

occasion, and thus cast doubt on the definition of the trade network. The form of data collec-

tion used for this study solves this problem: it is most implausible that replies containing data

on a one-time trade are included, instead, data on firms that maintain a certain trade fre-

quency are likely to be listed. In this study, we use two datasets: ‘TSR Kigyo Jouhou’ (firm

information), which contains basic financial information on more than a million firms, and

‘TSR Kigyo Soukan Jouhou’ (firm correlation information), which includes several million

supplier-customer and ownership links and a list of bankruptcies. Both of these datasets were

compiled in July 2016. (Some of the earlier studies on the production network include [6–9]).

In this study, i! j denotes a supplier-customer link, where firm i is a supplier for another

firm j, or equivalently, j is a customer of i. We extracted only the supplier-customer links for

pairs of “active” firms and excluded inactive and failed firms by using an indicator flag for

them when we retrieved the basic information. We eliminated self-loops and parallel edges

(duplicate links recorded in the data), to create a network of firms (as nodes) and supplier-

customer links (as edges). The network has the largest connected component when it is viewed

as an undirected graph, which is the giant weakly connected component (GWCC) that

includes 1,066,037 nodes (99.3% of all the active firms) and 4,974,802 edges.

This study not only analyzes the network but considers several attributes of each node: the

financial information in terms of firm size, which is measured as sales, profit, number of

employees and the firm’s growth; the major and minor classifications of industrial sectors,

details regarding the firm’s products, the firm’s main banks, the principal shareholders, and

miscellaneous other information including geographical location. For the purpose of our

study, we focus on two attributes of each firm, namely the industrial sector and the geographi-

cal location of the head office.

The industrial sectors are hierarchically categorized into 20 divisions, 99 major groups, 529

minor groups and 1,455 industries (Japan Standard Industrial Classification, November 2007,

Revision 12). See Table A in S1 Appendix for the number of firms in each division of each

industrial sector. Each firm is classified according to the sector it belongs to, and the primary,

secondary and tertiary, if any, is identified. The geographical location is converted into a level

of one of 47 prefectures or into one of 9 regions (Hokkaido, Tohoku, Kanto, Tokyo, Chubu,

Kansai, Chugoku, Shikoku, and Kyushu). See Table B in S1 Appendix for the number of firms

in each regional area of Japan. Fig 1 depicts a representative supply-chain network of the auto-

mobile industry in Japan. For example, Toyota Motor Corporation, the largest car manufac-

turer in the nation, obtains mechanical parts from suppliers such as Denso and Aisin Seiki. In

addition, Toyota is indirectly connected to Denso through Aisin Seiki. One can also go up

from Denso to Murata Manufacturing in the figure. For electronic parts, another important

components of cars, Toyota has direct transactions with general electrical manufacturers such
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as Toshiba and Panasonic, and Toshiba, in turn, obtains parts from Dai Nippon Printing. Gen-

eral trading companies such as Marubeni, Mitsui, and Toyota Tsusho play a key role in the for-

mation of the supply-chain network. In addition, we can observe a circular transaction

relation among Toyota Motor, Denso, and Toyota Industries. The existence of such a feedback

loop can complicate firms’ dynamics in the production network.

In terms of the flow of goods and services (and money in the reverse direction), the firms

are classified in three categories: the “IN” component, the “GSCC”, and the “OUT” compo-

nent. This structure is called “bow-tie” in a well-known study on the Internet [10]. The

GWCC can be decomposed into the parts defined as follows:

GWCC the giant weakly connected component: the largest connected component when the

network is viewed as an undirected graph. An undirected path exists for each arbitrary pair

of firms in the component.

GSCC the giant strongly connected component: the largest connected component when the

network is viewed as a directed graph. A directed path exists for each arbitrary pair of firms

in the component.

Fig 1. Representative network of the automobile industry in Japan. Major firms are selected under the following conditions: i) they are connected to

Toyota Motor within three degrees of separation, ii) they belong to either the manufacturing or wholesale sectors, iii) they are listed in the first section

of the Tokyo Stock Exchange, and iv) They are in the top 40 in terms of sales. The firms thus selected are displayed as nodes and the transactions

between them are displayed as arrows. All of the displayed nodes belong to the GSCC component. The size of the nodes is scaled to the sales of the

corresponding firm. The color of the nodes distinguishes their industry type; blue and green designate manufacturing and wholesale, respectively.

https://doi.org/10.1371/journal.pone.0202739.g001
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IN The firms through which the GSCC is reached via a direct path.

OUT The firms that are reachable from the GSCC via a direct path.

TE “Tendrils”; the remainder of the GWCC

It follows from the definitions that

GWCC ¼ GSCCþ INþOUTþ TE ð1Þ

We, however, find it far more appropriate to call this structure a “Walnut” structure, as

“IN” and “OUT” components are not as separated as in the two wings of a “bow-tie” but are

more like the two halves of a walnut shell, surrounding the central GSCC core. This can be

explained as follows. The number of firms in each component of the GSCC, IN, OUT and TE

is shown in Table 1. Half of the firms are inside the GSCC. 20% of the firms are in the

upstream side or IN, and 26% of them are in the downstream side or OUT.

In contrast with the well-known “bow-tie structure” in the study conducted by [10] (in

which the GSCC is less than one-third of the GWCC), the GSCC in the production network

occupies half of the system, meaning that most firms are interconnected by the small geodesic

distances or the shortest-path lengths in the economy. In fact, by using a standard graph layout

algorithm based on a spring-electrostatic model with three-dimensional space [15], we can

show in Fig 2 by visual inspection how closely most firms are interconnected with each other.

Moreover, by examining the shortest-path lengths from GSCC to IN and OUT as shown in

Table 2, one can observe that the firms in the upstream or downstream sides are mostly located

a single step away from the GSCC. This feature of the economic network is different from the

bow-tie structure of many other complex networks. For example, the hyperlinks between web

pages of a similar size, (GWCC: 855,802, GSCC: 434,818 (51%), IN: 180,902 (21%), OUT:

165,675 (19%), TE: 74,407 (9%)) which are studied in [16], have a bow-tie structure such that

the maximum distance from the GSCC to either IN or OUT is 17, while more than 10% of the

web pages in IN or OUT are located more than a single step away from the GSCC. This obser-

vation as well as Fig 2 leads us to say that the production network has a “walnut” structure,

rather than a bow-tie structure. We depict the schematic diagram in Fig 3.

Later, we shall show how each densely connected module or community is located in the

walnut structure.

Methods

Community detection

Community detection is widely used to elucidate the structural properties of large-scale net-

works. In general, real networks are highly non-uniform. Community detection singles out

Table 1. Walnut structure: The sizes of the different components.

Component #firms Ratio (%)

GSCC 530,174 49.7

IN 219,927 20.6

OUT 278,880 26.2

TE 37,056 3.5

Total 1,066,037 100

“Ratio” refers to the ratio of the number of firms to the total number of the firms in the GWCC.

https://doi.org/10.1371/journal.pone.0202739.t001
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groups of nodes densely connected to each other in a network to divide that network into

modules. This process enables us to have a coarse-grained view of the structure of such compli-

cated networks. One of the most popular methods used for community division is maximizing

the modularity index [13]. Modularity measures the strength of the partition of a network into

communities by comparing the fraction of links in given communities with the expected frac-

tion of links if links were randomized with the same degree of distribution as the original net-

work. However, it is well known that the modularity method suffers from a problem called

resolution limit [17] when applied to large networks. That is, optimizing modularity fails to

detect small communities even if they are well defined, such as cliques.

The map equation method [11] is another method used to detect communities in a net-

work. This method is found to be one of the best performing community detection techniques

compared to the others [18]. The map equation method is a flow-based and information-

theoretic method depending on the map equation, which is defined as

LðCÞ ¼ q↷HðCÞ þ
Xm

i¼1

pi
↻HðP

iÞ: ð2Þ

Here, L(C) measures the per step average description length of the dynamics of a random

walker migrating through the links between the nodes of a network with a given node partition

Fig 2. Visualization of the network in three-dimensional space. A surface view of the network is shown in panel (a), and a cross-sectional view that is cut

through its center is shown in panel (b). The red, green, and blue dots represent firms in the IN, GSCC, and OUT components, respectively.

https://doi.org/10.1371/journal.pone.0202739.g002

Table 2. Walnut structure: The shortest distance from GSCC to IN/OUT.

IN to GSCC OUT to GSCC

Distance #firms Ratio (%) Distance #firms Ratio (%)

1 212,958 96.831 1 266,925 95.713

2 6,793 3.089 2 11,650 4.177

3 170 0.077 3 296 0.106

4 6 0.003 4 9 0.003

Total 219,927 100 Total 278,880 100

The left half shows the number of firms in the IN component that connects to the GSCC firms with the shortest distance 1–4. The left side shows the OUT component.

https://doi.org/10.1371/journal.pone.0202739.t002
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C = {C1, � � �, Cℓ} that consists of two parts. The first term arises from the movements of the ran-

dom walker across communities, where q↷ is the probability that the random walker switches

communities, and H(C) is the average description length of the community index codewords

given by the Shannon entropy. The second term arises from the movements of the random

walker within the communities, where pi
↻ is the percentage of the movements within the com-

munity Ci, and HðP iÞ is the entropy of the codewords in the module codebook i.
If the network has densely connected parts in which a random walker stays a long time, one

can compress the description length of the random walk dynamics in a network by using a

Fig 3. The walnut structure. The production network as a walnut structure. The area of each component is approximately proportional to its size.

https://doi.org/10.1371/journal.pone.0202739.g003
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two-level codebook for nodes adapted to such a community structure; this is similar to geo-

graphical maps in which different cities recycle the same street names such as “main street’

[11]. Therefore, obtaining the best community decomposition in the map equation

framework amounts to searching for the node partition that minimizes the average description

length L(C).

In regard to the resolution limit problem, any two-level community detection algorithms

including the map equation are not able to eliminate the limitation. However, the map equa-

tion significantly mitigates the problem as has been shown by a recent theoretical analysis [19].

In practice, this is true for our network, as will be demonstrated later.

Recently, the original map equation method has been extended to networks with multi-

scale inhomogeneity. A network is decomposed into modules that include their submodules

and then their subsubmodules and so forth. The hierarchical map equation [12] recursively

searches for such a multilevel solution by minimizing the description length with possible

hierarchical partitions. The map equation framework for the community detection of net-

works is now more powerful. Therefore, we analyze the production network using this

method. The code of the hierarchical map equation algorithm is available at http://www.

mapequation.org.

Note that this study exclusively considers the community identification for nodes in our

network. That is, each node belongs to a unique community at every hierarchical level. How-

ever, such community assignment may be too restrictive for a small number of giant conglom-

erate firms such as Hitachi and Toshiba because of the diversity of their businesses. The map

equation is so flexible that it can detect the overlapping community structure of a network in

which any node can be a member of multiple communities [20]. However, we use the original

algorithm as an initial step toward obtaining a full account of the firm-to-firm transaction

data.

Overexpression within communities and subcommunities

Most real-world networks have a community structure [21]. Such communities are formed in

a network based on the principle of homophily [22]. This principle indicates that a node has a

tendency to connect with other similar nodes. For example, ethnic and racial segregation are

observed in our society [23], biological functions play a key role in the formation of communi-

ties in protein-protein interaction networks [24], and the community structure of stock mar-

kets is similar to that of their economic sectors [25]. We find that attributes play a crucial role

in the formation of the community structure of the production network using the following

method.

We follow the procedure used in [26] to determine the statistically significant overexpres-

sion of different locations and sectors within a community. This method was developed from

the statistical validation of the overexpression of genes in specific terms of the Gene Ontology

database [27]. In this procedure, a hypergeometric distribution H(X|N, NC, NQ) is used to mea-

sure the probability that X randomly selected nodes in community C of size NC will have attri-

bute Q. The hypergeometric distribution H(X|N, NC, NQ) can be written as

HðXjN;NC;NQÞ ¼

NC

X

� �
N � NC

NQ � X

� �

N
NQ

� � ; ð3Þ

where NQ is the total number of elements in the system with attribute Q. Further, one can
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associate a p value p(NC,Q) with NC,Q nodes, having attribute Q in community C with H(X|N,

NC, NQ) by the following relation:

pðNC;QÞ ¼ 1 �
XNC;Q � 1

X¼0

HðXjN;NC;NQÞ: ð4Þ

The attribute Q is overexpressed within community C if p(NC,Q) is found to be lower than

some threshold value pc. As we use a multiple-hypothesis test, we need to choose pc appropri-

ately to exclude false positives. We assume that pc = 0.01/NA, as specified in [26], which

includes a Bonferroni correction [28]. Here, NA represents the total number of different attri-

butes (In our study we have NA = 9 regional attributes) for all the nodes of the system.

Results

Hierarchy of communities

By using the Infomap method [11, 12], we find that the communities have a hierarchical struc-

ture, as summarized in Table 3, and determine the number of firms at each level. This hierar-

chical structure is illustrated in Fig 4, where 2nd level communities are lined up from left to

right in a descending order in terms of community size (number of firms), and the width of

the triangles reflects the number of subcommunities in each community. We find that most of

the subcommunites are on the 2nd level and that most of the firms (94%) belong to 2nd level

communities. Compared with 1st and 2nd level communities, the 3rd to the 5th levels are of

no significant importance. Therefore, we limit our discussion of the properties of the (sub)

communities to those of the 2nd level. Past studies on the application of the hierarchical map

equation to real world networks [12, 19] show that dense networks have large communities at

the finest level with shallow hierarchies, and sparse networks tend to have deep hierarchies. It

is also observed that the depth of the hierarchies increases with network size. In the case of the

California road network, the hierarchy has a deep level because the road network has geo-

graphical constraints that decrease the number of shortcuts between the different parts of the

network [12]. In our production network, we observe a relatively shallow hierarchy because it

does not have such strict constraints.

We visualize the hierarchical decomposition of the whole network into communities and

their subcommunities in Fig 5. The configuration of the nodes in three-dimensional space is

the same as that in Fig 2. We can see that the network is extremely complex with multi-scale

inhomogeneity. The results of an overexpression analysis indicate that the major communities

Table 3. Modular level statistics.

Level #com #irr.com #firms Ratio (%)

1 209 106 830 0.078

2 65, 303 60, 603 998,267 93.643

3 18, 271 17, 834 61,748 5.792

4 1, 544 1,539 5,168 0.485

5 10 10 24 0.002

Total 80,092 1,066,037 100.00

Results of community detection using the multi-coding Infomap method. “#com” is the number of all the

communities, “#irr.com” is the number of irreducible communities, which are communities that do not have any

subcommunities. “#firms” refers to the number of firms in irreducible communities

https://doi.org/10.1371/journal.pone.0202739.t003
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of the 1st and 2nd levels are characterized as industrial sectors and regions, as noted in the sub-

sequent subsections.

For the purpose of making the following discussion of communities transparent, let us

adopt the following indexing convention: At the top modular level of the hierarchical tree

structure, the communities are indexed by their rank in size (the number of firms in the com-

munity). Thus, the largest community at the top level is denoted as “C1”. At the lower levels,

the rank of the size is added after ‘:’. For example, community “C1:5” is the fifth largest 2nd

level community among all the 2nd-level communities that belong to the largest top-level com-

munity C1.

Level-1 communities

The complementary cumulative function D(s) indicates the fraction of communities at the top

level having a size of at least s, as shown in Fig 6. The bimodal nature of the distributions mani-

fests the resolution limit problem. A small number of communities predominates the whole

system. Among some 200 communities detected, for example, the largest communities contain

100,000-200,000 firms. However, such extremely large communities are decomposed into sub-

communities by the hierarchical map equation in a unified way. This process is quite different

from community detection based on modularity. One may address this problem by applying

the modularity maximization method recursively; communities are regarded as separated sub-

networks that can be further decomposed. However, this procedure lacks a sound basis

because it uses different null models to decompose the subnetworks [21]. A more detailed

comparison between these two methods is provided in S1 Appendix.

The map equation is a method that can be used to divide a directed network into communi-

ties in which nodes are tightly connected in both directions. Due to the nature of the network,

the flows across communities thus detected should be biased in an either direction. Fig 7 con-

firms this expectation. To quantify the polarizability of the links between a pair of

Fig 4. Hierarchical structure of the communities. Five levels of hierarchical community decomposition are illustrated.

The width of the triangle originating in each community at the n-th level is proportional to the number of its

subcomunities at the (n + 1)-th level.

https://doi.org/10.1371/journal.pone.0202739.g004
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Fig 5. Hierarchical decomposition of the whole network into communities and subcommunities. This panel (a) highlights the 6 largest communities

at the top modular level with different colors. Each of these communities is further decomposed into subcommunities as demonstrated in panels (b)

through (g), where the 6th largest subcommunities of the 1st through the 6th largest communities are highlighted.

https://doi.org/10.1371/journal.pone.0202739.g005
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communities, we introduce the polarization ratio defined by

Pij ¼
Aij � Aji

Aij þ Aji
; ð5Þ

where Aij is the total number of links spanning from communities i to j and Aji and that of the

opposite links. If the linkage between communities i and j is completely polarized, then Pij

becomes ±1 depending on its direction; if the linkage is evenly balanced, then Pij = 0. If we

assume that the links have no preference with respect to their direction as a null hypothesis,

then the null model predicts that the polarization ratio for the connections between communi-

ties i and j fluctuates around 0 with the standard deviation σ given by

s ¼
1
ffiffiffiffiffi
Lij

p ; ð6Þ

where Lij = Aij + Aji is the total number of links between the two communities. If we focus on

intercommunity linkages with Lij� 100, we see that the ones whose direction is polarized in a

statistically meaningful way occupy 86.7% of their total. The corresponding share of intercom-

munity linkages is 70.1% for Lij� 10. Most of the connections between communities with

more than 100 links are significantly polarized in reference to the random orientation model

for intercommunity links.

We find the overexpression of the attributes in 1st level communities to determine the fac-

tors that play a crucial role in the formation of such communities. Our study considers both

the location and the sector attributes. The location attributes are divided into 9 regions, and

the sector attributes are categorized in 20 divisions. The details about the sixth largest 1st level

Fig 6. The complementary cumulative distribution function D(s) of the community size s at the top modular level.

https://doi.org/10.1371/journal.pone.0202739.g006
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communities and the overexpressed attributes within it are tabulated in Table 4. We also use a

finer classification, i.e., 47 prefectures and 99 major sectors for which the results are provided

in S1 Appendix. We observe a strong connection between overexpressed sectors and overex-

pressed regions. In the largest community, mainly manufacturing sectors and heavily urban-

ized regions (Kanto, Tokyo, Chubu, and Kansai) are overexpressed. The 2nd largest

community shows that mainly the agriculture and food industries (see SI) and rural regions

(Hokkaido, Tohoku, Shikoku, and Kyusyu-Okinawa) are overexpressed. In terms of

Fig 7. Polarizability of the direction of links interconnecting communities at the top level. Here, 51 major

communities containing more than 1,000 firms are selected. The top figure plots the polarization ratio |Pij| of the

linkage between communities i and j versus the total number Lij of its constituting links. The dashed curve shows the

significance level corresponding to 2σ for the polarizability of intercommunity linkage for the given total number of its

constituents, where the random orientation of the individual links is adopted as a null model; see Eq (6) for the

standard deviation σ. The bottom figure is a histogram for the frequency of intercommunity linkages in each bin of Lij.
The grey (black) bars depict the number of intercommunity linkages with a |Pij| that is higher (lower) than the

threshold for the test of statistical significance.

https://doi.org/10.1371/journal.pone.0202739.g007
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overexpression in the 3rd largest community, the construction sector dominates and the corre-

sponding overexpressed region indicates these firms are mainly based in Kanto and Tokyo.

The transport and wholesale retail trade industries are the dominate attributes of the 4th larg-

est community, and Tohoku, Kanto, and Chubu are the overexpressed regions. The 5th largest

community mainly includes Tokyo, and the primary overexpressed sectors are information

and communications, scientific research, and professional and technical services. The 6th larg-

est community primarily primarily includes medicine and health care. To summarize, the fol-

lowing characterizes the six largest communities:

• The largest community: Manufacturing sectors

• The second largest community: Food sectors

• The third largest community: Construction sectors

• The fourth largest community: Wholesale and retail trade

• The fifth largest community: IT sector and scientific research, primarily based in Tokyo

• The sixth largest community: Medical and health care

Fig 8 is a coarse-grained diagram of the network shown in Fig 2, where the 50 largest com-

munities at the top level are represented by nodes, and the direct links connecting them, in

either direction, are bundled into arrows. We used the following steps to prepare the diagram.

We first calculated the center of mass for the IN, GSCC, and OUT components in three-

dimensional space. The three centers thus obtained determine the two-dimensional plane for

Table 4. Overexpressions of the 1st level communities.

Index Size #subcom Region Sector IN GSCC OUT

1 175,150 7135 Kanto (0.21);

Tokyo (0.14);

Chubu (0.22);

Kansai (0.21)

Manufacturing (0.33); 0.20 0.65 0.14

2 126,997 5455 Hokkaido (0.07);

Tohoku (0.11);

Shikoku (0.05);

Kyusyu-Okinawa

(0.13)

Agriculture (0.04); Manufacturing (0.18); Wholesale and retail (0.43); Accommodations (0.11);

Living-related (0.03); Compound services (0.02)

0.11 0.46 0.40

3 96,062 7339 Kanto (0.48);

Tokyo (0.25)

Construction (0.64); Real estate (0.09); Scientific research (0.06); 0.39 0.38 0.16

4 87,647 2660 Tohoku (0.11);

Kanto (0.22);

Chubu (0.20)

Transport (0.15); Retail (0.38); Finance (0.05); Services, N.E.C. (0.17) 0.11 0.43 0.44

5 63,611 3631 Tokyo (0.40) Information (0.25); Finance (0.01); Real estate (0.05); Scientific research (0.13); Living-related

(0.05); Education (0.01); Services, N.E.C. (0.07)

0.26 0.45 0.26

6 47, 759 6214 Hokkaido (0.06);

Tokyo (0.22);

Chugoku (0.08);

Shikoku (0.05);

Kyusyu-Okinawa

(0.13)

Wholesale and retail (0.28); Living-related (0.05); Medical (0.48) 0.24 0.21 0.52

“#subcom” is the total number of subcommunities included in each of the 1st level communities. The overexpression in terms of the regions and sector-divisions of the

6th largest communities at the 1st level. The percentage of nodes having a particular attribute is indicated in parentheses. Those with less than 0.01 are not listed. In

addition, the percentages of the IN, GSCC, and OUT components are listed for each community.

https://doi.org/10.1371/journal.pone.0202739.t004
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the drawing. Second, we fixed the horizontal axis to optimally represent the direction of flow

from the IN (left-hand side) components to the OUT (right-hand side) components through

the GSCC; in fact, the three centers are almost aligned horizontally. Then, we calculated the

center of mass of the major communities and projected them onto the two-dimensional plane

to layout the major communities onto it. Finally, we connected these communities by arrows

using information on the links between them.

The positions of the communities on the horizontal line clearly reflect their characteristics

in terms of the walnut structure, as shown in Table 4. Among the 6 largest communities, the

3rd community contains twice as many IN components as the averaged concentration on the

leftmost side. On the other hand, the 6th community with the largest OUT concentration is on

the rightmost side. The 2nd and 4th communities, which are dominated by OUT components,

are also on the right-hand side. The 1st community with excess GSCC components is between

the 3rd community and the OUT-excess communities. The 5th community, whose composi-

tion is very close to the average one, is rather in middle of the walnut structure. Most of the

remaining relatively small communities are localized on the left-hand side. This configuration

is understandable, because the IN and GSCC components tend to form integrated communi-

ties, as will be shown later.

Level-2 communities

At the 2nd level, some of the top level communities are decomposed to several subcommuni-

ties as shown in Tables D and E in S1 Appendix.

The cumulative distribution of the community size at this level is plotted in Fig 9. We use

maximum likelihood estimation (MLE) [29] to quantitatively fit a statistically significant

power-law decay for the tail of the CCDF, which has the functional form D(s)� s−γ+1 with

Fig 8. Network of the 50 largest communities at the top level. The major communities are depicted as nodes, and

their size is scaled to the size of their corresponding communities. A bundle of directed links connecting a pair of

nodes in either direction is represented by an arrow, the width of which is proportional to the total number of their

links.

https://doi.org/10.1371/journal.pone.0202739.g008
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γ = 2.50 ± 0.02. The results indicate that the size of the communities is highly heterogeneous

and spans over several orders of magnitude.

We also analyzed the overexpressions of selected subcommunities. In terms of subcommu-

nities, we observe wholesale and retail trade is the dominate overexpress attribute of the five

largest subcommunities of the largest community. The Kansai region is the only overexpressed

region in the 2nd largest subcommunity of the largest community. In C2:1, transport and postal

activities, accommodations, eating and drinking services, living related and personal services,

Fig 9. (color online) The complementary cumulative distribution function D(s) of a community with size s at the second modular level. A power-

law fit to the data (red line) using the maximum likelihood estimation technique yields D(s) � s−γ+1 with γ = 2.50 ± 0.02, smin = 28.2 ± 7.6, and

p value = 0.976.

https://doi.org/10.1371/journal.pone.0202739.g009
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and amusement services dominate the overexpressed sectors, which are mainly based in urban

regions (Tokyo and Chubu). The manufacturing, wholesale and retail trades in Tokyo and the

Kansai region are overexpressed in C2:2. Wholesale and retail trade dominate the overex-

pressed attribute in C2:3, C2:4 and C2:5. A detailed account of the results is provided in S1

Appendix.

The network diagram in Fig 10 shows the overlapping nature of the industrial sectors in the

communities. We construct a weighted undirected network of 97 major sectors from sector

over expression data for the 2nd modular level. Here, a weighted link of value 1 is formed

Fig 10. Overexpression network of sectors. The node size represents the percentage of firms belong to that particular sector.

https://doi.org/10.1371/journal.pone.0202739.g010
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between a pair of sectors if they are overexpressed in the same community. The link-weight of

the network is found to be highly heterogeneous with a horizontal distribution as shown in

Fig 11. The top five heaviest weighted links between the sectors are listed in Table 5.

Fig 12 is the same plot as Fig 7, but this new plot includes communities at the 2nd modular

level. We can confirm that the links between the subcommunities are well polarized. Once

again, this result is consistent with the nature of the map equation, which extracts communi-

ties of tightly connected nodes in a bidirectional way in a directed network.

Fig 13 shows how mixed the IN, OUT, and GSCC components of the walnut structure are

in each of the large communities with more than 50 firms at the 2nd level, adopting a triangu-

lar diagram representation. We exclude firms belonging to TE; however, these are minor com-

ponents of the walnut structure. Here, 3,011 communities containing more than 50 firms are

selected, for a total of 421,779 firms. Suppose that a community contains firms belonging to

the IN, OUT, and GSCC components for which the percentages are given by x1, x2, and x3,

respectively. The walnut composition of the community is described by point (x1, x2, x3) on

the plane of x1 + x2 + x3 = 1 in three-dimensional space. One can thereby establish one-to-one

correspondence between a point inside an equilateral triangle and a composition of the three

Fig 11. The complementary cumulative distribution of link-weight in the overexpression network.

https://doi.org/10.1371/journal.pone.0202739.g011

Table 5. Top five heaviest weighted links between sectors.

Rank Node 1 Node 2 Weight

1 Retail trade (machinery and equipment) Automobile maintenance services 48

2 Miscellaneous wholesale trade Miscellaneous retail trade 28

3 Road passenger transport Automobile maintenance services 21

4 Miscellaneous manufacturing industries Miscellaneous wholesale trade 19

5 Road passenger transport Retail trade (machinery and equipment) 19

https://doi.org/10.1371/journal.pone.0202739.t005
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walnut components. The averaged composition of all the firms in the selected communities

(i.e., the total number of firms in the IN/OUT/GSCC components divided by the total number

of firms in the selected communities) is given by �x1 ¼ 0:174, �x2 ¼ 0:333, and �x3 ¼ 0:493. The

triangular region in Fig 13 is then decomposed into six domains in reference to �x1, �x2, and �x3:

the communities in domain G (x1 < �x1, x2 < �x2, x3 > �x3) are GSCC-dominant; those in IG

(x1 > �x1, x2 < �x2, x3 > �x3) are GSCC-IN hybrid; those in I (x1 > �x1, x2 < �x2, x3 < �x3) are IN-

dominant; those in IO (x1 > �x1, x2 > �x2, x3 < �x3) are IN-OUT hybrids; those in O (x1 < �x1,

x2 > �x2, x3 < �x3) are OUT-dominant; and those in GO (x1 < �x1, x2 > �x2, x3 > �x3) are

GSCC-OUT hybrids. The total number of communities and firms in each domain are listed in

Table 6. We observe that there are relatively fewer communities in the I domain and more

communities in the IG domain. The IN components thus tend to combine with the GSCC

components to form a single community. On the other hand, there are an appreciable number

of communities dominated by the OUT components, leading to relatively few communities of

IN-OUT and GSCC-OUT hybrids. This tendency, in terms of the characteristics of the com-

munities, may reflect the industrial structure of Japan, which imports raw materials and pro-

duces a wide variety of goods out of these for both export and domestic consumption. We are

also interested in what occurs in other countries. Once data on the production networks of

other countries is available, we hope to compare their community characteristics with those of

Japan.

Although the IN components tend to to merge with the GSCC, we can see the large circle at

the vertex of Fig 13. On the other hand, Table 2 shows that most nodes in the IN component

have a distance of 1 from the GSCC. Therefore, one may think that there is a large community

almost purely composed of nodes in the IN components of the Walnut shape (Fig 3). Actually,

this configuration indicates an interesting structure where the nodes are mutually connected

and simultaneously connected to nodes in the GSCC. It can be precisely said that the commu-

nity is in the shape of a walnut shell.

Fig 12. Polarizability of the direction of the links interconnecting communities at the second level. Here, 1086

communities containing over 100 firms are selected. The dashed curve represents the same significance level as in

Fig 7.

https://doi.org/10.1371/journal.pone.0202739.g012
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Fig 13. Triangular diagram classifying communities at the second level by their relationship with the walnut structure. Each community is

depicted by a circle located at point (x, y) inside the equilateral triangle, which corresponds to the composition (x1, x2, and x3) of firms belonging to the

IN, OUT, and GSCC components that are represented in three-dimensional space; the one-to-one correspondence between (x, y) and (x1, x2, x3) is

illustrated in the associated figure (a). The size of the communities is reflected by the area of their associated circles. The triangular region is

decomposed into six domains with the average composition (�x1, �x2, �x3) of the IN, OUT, and GSCC components for all firms, as designated in the

associated figure (b); see the text for more detailed information on the domain decomposition.

https://doi.org/10.1371/journal.pone.0202739.g013

Table 6. Classification of communities at the second level based on the walnut structure.

Domain #com #firms

G 1,010 114,399

IG 841 92,163

I 294 44,563

IO 80 14,362

O 640 139,986

GO 146 16,306

Total 3,011 421,779

“#com” and “#firms” refer to the total number of communities and firms, respectively, in each of the six domains

defined in Fig 13(b).

https://doi.org/10.1371/journal.pone.0202739.t006
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Comparison of industrial sectors

As is mentioned in the Introduction Section, detecting communities in the supply-chain net-

work is crucial for understanding the agglomerative behavior of firms. This type of research is

important because the detected communities are densely connected, and it is plausible that

these firms affect each other through the links.

On the other hand, industrial sectors commonly label firms, and these labels are widely

used in the economics literature. If there is no difference between the detected communities

and the industrial sectors, then there is no reason to make an effort to detect these communi-

ties. Therefore, in this section, we show how the detected communities are different from

industrial sectors in terms of the interconnections between the groups.

Although different classifications are used for industrial sectors, we discuss the one used in

the input-output table [30]. We use this classification because the input-output table is a major

Fig 14. Density of links over intergroups. These figures show how many links the intergroups have. The top figure (a)

shows the 3D plots of the industrial sectors. The bottom figure (b) shows the 3D plots of the communities.

https://doi.org/10.1371/journal.pone.0202739.g014
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research domain in economics, and, more importantly, the purpose of the input-output table

is to discuss money flows, which corresponds to the purpose of this paper.

As previously mentioned, there are 209 communities in the 1st level and 66,133 communi-

ties in the 2nd level. On the other hand, the input-output tables have 13, 37, 108, 190, and 397

sectoral classifications, which are nested. We choose to compare 209 communities and 190

industrial sectors because these numbers are comparable.

First, we counted the number of links between the communities and the industrial sectors.

Fig 14 shows the difference between these two groups. These figures correspond to matrices

that show the number of links in row groups and column groups. Each element is divided by

the sum of its row.

If the intra-links within the groups are dominant, then the diagonal elements of these matri-

ces should have high density. As is shown in Fig 14, we can find the diagonal elements because

the communities are denser than the other elements. However, the diagonal elements of the

sectors do not have dense links. We see a vertical line in the matrix instead. The suppliers in

the line include 5111: Wholesale and 5112: Retailing, and this result is natural because firms

sell their products to industrial sectors. The overall ratio of intra-links, i.e., (the number of

intra-group links)/(the number of all links) is 20.9% for industrial sectors and 63.3% for

communities.

We can conclude that the detected communities in this paper explicitly illustrate the

agglomeration of firms based on supply-chain networks rather than industrial sectors, which

is more commonly used to categorize firms. This result also tells us that communities with

densely connected firms consist of various industrial sectors, and they have their own econo-

mies, i.e., small universes.

In this paper, we do not weight the links of the network. However, obviously, each transac-

tion has a value, and there is a diversity of transactions. We can estimate the weights by using

the sales of the firms. If we have totally different results with the results we have obtained here,

a further analysis might be necessary. However, the additional analyses based on weighting the

links in the networks do not show any significant difference. The details of these results are

shown in S1 Appendix: Intra-link density of the weighted links.

Conclusion and discussion

We analyze the overall structure and hierarchical communities embedded in the production

network of one million firms and five million links that represent trade relationships in Japan

in 2016, with the aim of simulating the macro/micro level dynamics of the economy.

For the former, we find that the IN and OUT components (20% and 26% of the firms) form

tight shells (semi-spheres) around the GSCC component, which we call a “walnut” structure

rather than a “bow-tie” structure, which is well-known for representing web networks and

other type of networks that have loose wings made of IN and OUT components.

For the latter, we use the Infomap method to detect a hierarchy that includes 5 layers of

communities, of which most of the irreducible (those that do not have any lower level subcom-

munities) belong to the 2nd level. Furthermore, the size distribution of the 2nd level commu-

nities show clear power-law behavior at the large end. In addition to the large number of

irreducible communities made primarily of GSCC components and those that exist in IN

shells or Out shells, there is a fair number of communities made of IN and GSCC components,

GSCC and OUT components, and even IN and OUT components. These communities are

expected due to the walnut shape of the overall structure: IN and OUT components are not far

from each other as they are in the bow-tie structure, but they form tight shells, whose ends are

closely woven with each other. Furthermore, we examine the overexpression of the major
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communities in terms of industrial sectors and prefectures and find that they are not formed

within a sector but span several sectors and prefectures. These communities have various

shapes: in some cases, they are formed around goods and services related to a particular item,

such as food. Sometimes these communities are made of small firms connected with a major

hub such as a large construction company in a particular prefecture or a medical insurance

agency.

These findings have major implications for the study of the macro economy: Consider an

economic crisis. Once this crisis starts, whether it is due to a natural disaster in a particular

region of a country or a major failure of a large company, it is expected that it initially affects

the community in which this region or company is located. Then the effects of this crisis will

spread to other neighboring communities. This analysis is very different from input-output

analysis and is expected to be useful because an input-output analysis is based on the assump-

tion that firms in the same sectors are well-connected with each other. In contrast, what we

find is that the effects of a crisis will spread throughout communities rather than industries.

The hierarchical community structure studied in this paper can be immediately applied to the

analysis of large-scale modelling and simulation: the macro economy of a country or countries

is an aggregation of products that economically affect the trade network as well as a multitude

of networks of networks. Constructing models that span all the networks would be an interest-

ing but exhaustive elaboration of this work. Instead, we may study one community at a time

and then connect the results to obtain an overall picture. Research in this direction has already

begun and will appear in the near future ([14, 31, 32]).
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