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Abstract: Spasticity is a motor disorder that causes stiffness or tightness of the muscles and can
interfere with normal movement, speech, and gait. Traditionally, the spasticity assessment is carried
out by clinicians using standardized procedures for objective evaluation. However, these procedures
are manually performed and, thereby, they could be influenced by the clinician’s subjectivity or
expertise. The automation of such traditional methods for spasticity evaluation is an interesting and
emerging field in neurorehabilitation. One of the most promising approaches is the use of robot-aided
systems. In this paper, a systematic review of systems focused on the assessment of upper limb (UL)
spasticity using robotic technology is presented. A systematic search and review of related articles
in the literature were conducted. The chosen works were analyzed according to the morphology of
devices, the data acquisition systems, the outcome generation method, and the focus of intervention
(assessment and/or training). Finally, a series of guidelines and challenges that must be considered
when designing and implementing fully-automated robot-aided systems for the assessment of UL
spasticity are summarized.
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1. Introduction

Over the past 40 years, the research in the upper motor neuron syndrome has focused on
spasticity [1]. Lance defined spasticity as a motor disorder characterized by an increase in tonic
stretch reflexes with exaggerated tendon jerks, resulting from hyper-excitability of the stretch reflex [2].
Most of the scenarios where we commonly find this type of syndrome are after a stroke, a spinal cord
injury, or another neurological disorder affecting the central nervous system (CNS). Consequently,
the phenomenon of spasticity is complex due to the heterogeneity of symptoms and the nature of
motor control. The management of spasticity primarily involves two perspectives: ameliorating and
assessing the degree of spasticity.

On one side, pharmacological and non-pharmacological approach therapies haven been employed
as a treatment for reducing the spasticity effects [3]. Regarding pharmacological treatment, Baclofen is
considered one of the first-line countermeasures, but Bont-A Toxin is the most common medication
used to mitigate the effects of spasticity [4]. An injection reduces muscle tone up to 3 months and
improves the upper limb capacities [5]. Non-pharmacological treatments mainly involve physical
interventions aiming to minimize changes in the viscoelastic properties of connective tissue, muscles
and joints, and changing patterns of spams [6]. Furthermore, recent studies have confirmed that the
combined use of Bont-A with physical rehabilitation shortens the patient recovery time [7]; however,
more clinical trials are needed to support the analysis considering previous studies and reviews [8,9].
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One the other side, the understanding and diagnosis of spasticity have evolved exponentially in
the last decades [10], and the assessment procedure has been attempted with a variety of methods.
At the very beginning, some scales were created to evaluate the level of the disorder [11], such as
the modified Ashworth scale (MAS), the Tardieu scale, the Spam severity scale, among others [10].
Currently, these scales are still the golden standard in clinical practice despite novel approaches having
been proposed [12]. However, the existing scales are based on the perception of the clinician that
evaluates the patient’s spasticity through their perception, experience, and training over the years.

This approach might not be appropriate because it establishes a subjective magnitude based
on human impression. Not all clinicians have the same background and finally, the evaluation
could depend on multiple imperceptible details [13]. Furthermore, this interpretation of the patient’s
spasticity could extend or reduce the rehabilitation process and modify the movements or the specified
therapy used in the sessions [14]. Consequently, an objective measurement of spasticity is required,
and for that purpose, the development of robot-based systems can help clinicians to objectify the
assessment of different components of the syndrome.

The aim of this article is to review and encompass the evolution of the robots used to measure
the spasticity in the upper limb, discussing the characteristics of the mechanism that supports and
assists the clinician diagnosis. The research incorporates and classifies studies focused on four main
criteria: measuring spasticity, targeting upper limb, use of an exoskeleton or an end-effector device and
inclusion of clinical trials. The remainder of this paper is as follows: Section 2 provides an overview
of spasticity management and its fundamentals. Section 3 summarizes the results of the systematic
literature review, presenting also the inclusion criteria and review limitations. Section 4 reviews
and discuss the table content according to relevant aspects for UL assessment. Section 5 propose a
perspective for future investigations. Finally, conclusions from this study are presented in Section 6.

2. Spasticity Management: Assessment and Treatments

A variety of sensorimotor and cognitive limitations can appear following an upper motor neuron
(UMN) lesion. In the case of sensorimotor problems, they can be sorted in ‘positive’ and ‘negative’
features [15,16]. The positive features involve abnormal reflex responses, spasticity, spasms, clonus,
and dis-synergic movement patterns. The negative features include muscle weakness, loss of dexterity,
and fatigue. The combination of these positive and negative features leads to the loss of functionality
and, consequently, the UMN syndrome must be understood as a complex picture where spasticity is
only one component [17]. However, a particular focus on spasticity is considered under the premise
that spasticity affects functional recovery and results in secondary complications like contractures,
weakness, and pain.

In this way, spasticity can be considered globally as a disorder or disruption on voluntary
control of muscles and stretch reflexes caused by damage in the central nervous system. The specific
pathophysiology of spasticity remains unclear, but several theories have been suggested to explain the
causes of this phenomenon [18,19]. On the one hand, spasticity can appear as a result of an imbalance
of neurotransmitters involved with the alpha motor neurons after damage to the nervous system
and related muscles. This imbalance affects the inhibitory and excitatory signals sent to the muscles,
causing them to lock in place.

On the other hand, an alternative theory points to the formation of lesions in the upper motor
neurons. Once again, the hypothesis is that the flow of muscle contraction signals can be impaired
and produce spasticity. The effects on muscles and joints depend on the type of neurological damage.
A further description of the causes of spasticity is out the scope of this paper; however, some published
papers on the specific topic may help to understand the pathophysiology and underlying mechanism
of spasticity [16,17,20].

On account of the above, the formal definition of spasticity has been redefined over the
years [10,21]. Originally, it was associated with “a soft yielding resistance that appeared only towards
the end of a passive stretch and increased amplitude stretch reflex” [22]. In 1980, Lance suggested
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defining spasticity as “a motor disorder characterized by a velocity-dependent increase in tonic stretch
reflexes (muscle tone) and increased tendon jerks resulting from disinhibition of the stretch reflex,
as one component of an upper motor neuron lesion” [2]. Later, other characteristics of upper motor
neuron syndrome were added to this definition [10]. More recently, according to the Spasticity Study
Group “SPASM” (Support Programme for Assembly of a database for Spasticity Measurement), a more
practical definition could be “a sensorimotor control disorder that emerges as a result of upper motor
neuron syndrome and in the form of muscles’ involuntary intermittent or permanent activation” [23].

The continuous updates in spasticity definition and the poorly understood of the underlying
mechanism highlight the fact that the impact of spasticity is extremely variable, making its management
difficult. Hence, the following section presents a brief overview of principal aspects that involve
spasticity management. This includes the most commonly used scales to quantify the degree of
spasticity and the existing treatments to reduce its aftermaths.

2.1. Assessment of Spasticity Degree

Clinical examination of spasticity can be performed in four stages [24]. First, one involves the
initial appraisal the clinician performs when the patient enters the examination room, noting the
relevant spasticity traits in posture and motion. Stage two involves a detailed examination of the range
of joint motion, reflexes, patient’s active motion, among others. Stage three implies an examination
of body motor skills. Finally, stage four evaluates the body balance and gait problems for short and
long-distance. Note that in all the stages there is a strong one-on-one interaction between the examiner
and the patient.

Moreover, complexity when evaluating spasticity lay on the co-occurrence of neural
(a velocity-dependent increase in the tonic stretch reflex) and non-neural (e.g., loss of sarcomeres,
sub-clinical contractures) causes of increased passive movement resistance [25]. Thus, instrumented
and non-instrumented clinical tools are available for measuring the degree of spasticity (see
Table 1) [25,26]. The non-instrumented category can be divided into observational and self-reported
measures [26], according to the method of reporting the disorder effects by the therapist or patient,
respectively.

In the observational category, spasticity can be measured through various scales [27], being the
most extended the Ashworth scale and its modified version. The original Ashworth scale contained
five grades of measurement and focused on the changes in the resistance to passive movement.
The evidence would suggest that the resistance to passive movement is not an exclusive measure of
spasticity and is not significantly influenced by reflex-mediated neural activity unless the velocity
of passive stretching is high. Ashworth scale is better for the distal muscle groups and poor for the
proximal muscle group. Moreover, therapists with greater experience graded spasticity as 1 and 2
more often than the less experienced therapists who used grades 0 and 3 instead. Anyway, the validity
of the scale has been tested and its functionality for the upper limb proven [28]. The Ashworth scale
was upgraded by Bohannon and Smith, adding a new grade of measure (1+) and rename it as the
Modified Asworth scale (MAS). The MAS increased the sensitivity, but incremented the probability of
error. Nevertheless, this improvement increased the resolution of the scale, allowing clinicians a better
and more precise analysis [29]. Nowadays, the MAS is the most used scale and supports the majority
of the studies attempting a more precise evaluation.

Another method of evaluation is using the self-reported scales, where the clinician asks a series
of questions about the severity of their symptom that are answered verbally by the patient. Namely,
these scales have been developed to capture the patient’s perspective of spasticity. However, these
scales are limited by subjectivity, particularly when evaluating interventions where blinding is difficult
or not possible [26].
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Table 1. Overview of procedures for measuring spasticity according to topology.

Category Scale Principle Outcome

Observational Ashworth Scale Rating the resistance to manually
limb mobilization

0–4 scale (1-point extra
in modified version)

Tardieu Scale Rating the resistance to manually
limb mobilization and the angle
where this resistance occurs

0–4 scale (1-point extra
in modified version) +
Two angles (R1, R2)

Pendulum test Observing a muscle’s response
and oscillations to sudden stretch
imposed by gravity

There is no accepted
scale (observation-based
rating)

Tone Assessment Scale (TAS) Evaluating the resting posture, the
response to passive movement
and the response to active efforts
(multi-item)

0–4 scale

Self-reported Penn Spasm Frequency Scale Counting the number of spasms
experienced in a specified time
frame

0–4 scale

Numeric Rating Scale (NRS) Self-appreciation of severity of
their symptoms

0–10 scale

Instrumented Ultrasound muscle elastography Examining the mechanical elastic
properties of tissues

5-point scale

Instrumented Hofmann’s reflex Measuring the threshold spinal
reflex reaction by electromyography
(EMG)

H-reflex

Instrumented Pendulum Scale Markers are adhered to limb and
the trial is videotaped to allow
computerized motion analysis

Angular displacement,
velocity, and acceleration
response

Instrumented Tardieu Scale Integrating biomechanical and
electrophysiological signals during
limb mobilization

Joint angle and torque +
surface electromyography

The above approaches, however, are based on perception and provide a subjective outcome,
complicated to measure and define [21]. One major drawback of this approach is that the clinician
experience is critical in the assessment and during the rehabilitation process. No support is given far
from the scales and such manual procedure highlighted a limitation. This evidence presented reveals
the need for an objective assessment in patients with spasticity [25].

In this way, a number of instrumented measures of spasticity have been developed in order to
increase the precision, validity, reproducibility and objectivity. For that purpose, different sensors
are included in the classical assessment procedure. As an example, the instrumented version of
the Pendulum scale uses some markers to track the limb motion and measure non-observational
parameters like angular displacement, velocity or acceleration. In the case of the instrumented
Tardiu scale, the electrophysiological signals and forces during the limb mobilization are captured by
Electromyography (EMG) and force/torque sensors, respectively.

On account of the above, the use of instrumented versions of the traditional clinical scales seems
promising in order to reduce the limitations of manually-performed procedures [30].

2.2. Treatments to Reduce the Spasticity Effects

There are several treatment options for reducing the spasticity impact, and patients usually
undergo more than one treatment at a time. As Table 2 depicts, treatments can be sorted in
interventional and non-interventional procedures, depending on surgery or not is needed.

Non-surgical treatments that have been shown effective in alleviating symptoms of spasticity
include physical therapy, occupational therapy, casting or bracing, oral medications and botulinum
toxin (botox) injections. On the contrary, surgery treatments are focused on compensating for imbalance
electric stimulus or supplying medication at spinal fluid, denoted as selective dorsal rhizotomy (SDR)
and intrathecal baclofen (ITB) therapy, respectively. In the case of the SDR, the goal is to balance
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the electrical signals (spasticity can be caused by an imbalance in electrical signals to antagonist’s
muscles) sent to the spinal cord by cutting selective nerve roots. In the case of the ITB pump, the
aim is to decrease spasticity by pump implantation that delivers baclofen to the spinal fluid, directly.
This permanent implant causes less severe side effects than oral medicine. Another procedure is the
removal of a peripheral nerve to interrupt nerve signal transduction, denoted as neurectomies.

Table 2. Overview of treatments for spasticity.

Category Procedure Aim

Non-interventional Physical therapy Improving movement
Occupational therapy Improving autonomy in ADL
Casting or bracing Reducing secondary damage
Pharmacological (oral medication Improving movement
and injections)

Interventional Selective dorsal rhizotomy (SDR) Balancing electrical stimulus
Intrathecal baclofen (ITB) pump Supplying medication at spinal fluid
Neurectomies Removal damaged nerves

Furthermore, another remarkable non-interventional strategy used to ameliorate the effects of
spasticity is robot-aided physical therapy. Currently, there exist numerous robotic systems focused
on sensory-motor rehabilitation of patients with motor problems from a neurological disorder; for
instance, MIME [31], InMotion [32], NeReBot [33], among others [34–36]. Since the use of robotic
devices specifically designed for neurorehabilitation has shown positive effects in motor function
recovery [37], some studies have included a robotic device for treating the spasticity phenomenon [38].
However, the development of robot-aided systems aiming to evaluate the degree of upper limb
spasticity is reduced.

3. Literature Review Summary

On account of the above, this paper focused on searching and reviewing studies that pursuit
the assessment of UL spasticity with robot-based approaches. The following section presents the
results of this systematic review focused on analyzing the characteristics of robot-aided systems
for spasticity management. This article does not intend to be a comprehensive analysis of the
utility of the robot-aided assessment systems; rather, it aims to compile the information published in
peer-reviewed articles.

3.1. Search Methods

The authors undertook a literature search until August 2020 about the use of robot-aided systems
for the assessment of upper limb spasticity. The keywords used in the search include upper limb,
robot, neurological, rehabilitation, assessment, spasticity, motor function, and various combinations of
them. The databases consulted were Science Direct, PubMed/Medline, PEDro, Google Scholar and
IEEE. Only those articles written in English were considered and duplicated papers were discarded.
The criteria for selecting the studies were: (1) systems for the assessment of upper limbs were addressed;
(2) systems aided by a robotic device such as exoskeletons or end-effector devices (3) the measure of
spasticity was undertaken, and (4) clinical trials with real patients were conducted.

Limitations:the generalisability of these results is subject to certain limitations. For instance,
the scope of the study is only the upper limb, but spasticity is presented also in lower limbs. The most
affected joint is the ankle [39,40] as it is the elbow on the arm. The scales used for assessment are
the same in both limbs, but the effectiveness is different. This systematic review does not lead to
meta-analysis. We have inclusion criteria but they have been chosen under the author’s perspective.
The table composition will change considerably and the investigation will not guide to the same results
varying the criteria. Furthermore, the punctuation estimated in the characteristics of the robotic device
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row is not rigorous. The authors grant scores based on the investigation impression, but either scope
and the points are subjective. However, we will accept these findings, taking into consideration the
overall limitations.

3.2. Robot-Based Assessment of Spasticity

The results of the systematic review of robot-aided systems for the assessment of UL spasticity
are summarized in Table 3. The chosen articles were assigned with different identification numbers
(ID) for better explanation throughout the text. The studies were classified according to the addressing
or not of relevant aspects of UL assessment such as characterization of arm behavior, reference scales
to contrast results, morphology of robotic devices, human–robot interaction, and whether or not
dichotomy assessment-training is considered. The above-identified aspects are described in detail
as follows.

3.2.1. User’S Arm Behavior Modeling

Proper modeling of the arm behavior is crucial to detect and measure the gap between healthy
and spastic muscles. There are a number of models available for representing arm behavior [41].
One of the most well-known models is Hill’s muscle model, which is illustrated in Figure 1. The
three-element Hill muscle model is a representation of the muscle mechanical response. The model is
constituted by a contractile element (CE) and two non-linear spring elements, one in series (SE) and
another in parallel (PE). There are other models, such as the one of Greene and McMahon, or the one
of Levin–Wyman modified by Verkhoshansky for spasticity, Hill’s muscle model is the most common
representation illustrating not only muscles but it also joints. Accordingly, muscle modeling entails a
considerable amount of work and not all studies undertake it.

Despite existing a lot of efforts in the characterization of arm behavior, it can be noted in this
review that not all the authors have considered this issue in their studies. Only 20% of studies (IDs:
2,4,6,10,13, and 14) include a model of the arm to related the joint torques and stiffness to the endpoint
robot forces and torques.

Figure 1. (A): Simple biomechanical (dynamic) model of the upper extremity in OpenSim software.
(B): Schematic drawing of the musculoskeletal model of the arm and Hill-type muscle unit, where
contractile element (CE) is a contractile element, parallel (PE) is a parallel elastic element, series (SE) is
a series elastic element, lCE is CE length, lSE is SE length.

In any case and despite the great effort of developing new models, the muscular configuration
helps us understand the upper limb behavior improving the assessment and subsequent rehabilitation.
Furthermore, estimating approaches based on a developed muscle models obtain better accuracy in
their final outcome.
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3.2.2. Control Strategy

The control strategy performed by the robot can be categorized into: active, passive, assistive,
passive-mirrored, active-assistive, corrective, path guidance and resistive [42]. For our literature review,
We will focus on the three used in the studies: active, passive and assistive. In active control, the robot
is used as a measurement device, without providing force to the subject’s limb. This control strategy is
the most used (ID’s: 2, 3, 4, 5, 6, 7, 9, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 25, 26, 27, 28, 29) measuring
only during the stretching or exercise. In passive control, the robot performs the movement without
any account of the subject’s activity. Frequently, this type of control is used to measure the resistance
to passive movement and we can find it in (ID’s: 1, 2, 8, 10, 13, 17, 22, 23, 24, 27, 28, 29). In assistive
control, the subject’s voluntary activity is required during the entire movement. Robots can assist
either providing weight support or providing forces aiming at task completion (ID’s: 1, 2, 9, 10, 11, 14,
15, 21, 22, 26). Generally, the application of this control is combined with others, the active-assistive
being the most used.



Sensors 2020, 20, 5251 8 of 23

Table 3. Summary of automatic systems for upper limb spasticity assessment.

ID Source
User’s Arm

Behavior
Modeling *

User’s Arm
Motion &
Response
Capturing

Control
strategy

Morphology
of Robotic
Device ??

Characteristics of
Robotic Device ?

User Interfaces
(Patient;
Therapist)

Approach of
Evaluation

Outcome
Provided

Correlation
Study
with

Sample
Size

Rehab
Mode

Target
Human

Joint

(1) Norton, B.
(1972) [43] 8

3 EMG
electrodes Passive-assisted Exoskeleton

(1 DOF)

Accuracy: JJ

Portability: JJ

Adaptability: JJ

P: None
T: None

Hysteresis loops
(40 s)

Position, force
and EMG
recordings

None

40
subjects

+ 3
patients

8
Elbow

(Hemiplegic)

(2) Reinkensmeyer, D.
(1999) [44] 4 None Active-assistive

+ passive

Exoskeleton
(ARM Guide)

(2 DOF)

Accuracy: JJ

Portability: JJ

Adaptability: JJ

P: None
T: A computer

FUGL motor
performance

exam
(Post-processed)

Force patterns None 4
patients 4

Shoulder +
Elbow

(Hemiplegic)

(3) Pandyan, A.
(2001) [45] 8 None Active Exoskeleton

Accuracy: JJ

Portability: JJJ

Adaptability: JJJ

P: None
T: None

Correlation
between observed

and measured
MAS and RTPM

(7 min)

RTPM MAS 16
subjects 8

Elbow
(Poststroke)

(4) Lee, H.M.
(2004) [46] 4

1 differential
pressure
sensor

1 angular rate
sensor

2 sensing air
bags

1 gyroscope

Active End-effector
Accuracy: JJJ

Portability: JJJ

Adaptability: J

P: None
T: None Real-time (Velocity-profile

graphics)
MAS,

UPDRS

15
subjects

+ 15
patients

8
Elbow

(Poststroke)

(5) Wu, Y.N.
(2004) [47] 8

2 EMG
electrodes Active Exoskeleton

Accuracy: JJ

Portability: JJJ

Adaptability: JJ

P: None
T: None

Estimation of
velocity-dependent

viscous
component

Biomechanical
and

neurophysiological
data

MAS 13
patients 8

Elbow
(Poststroke)

(6) Chen, J.J.J
(2005) [48] 4

1 differential
pressure
sensor

1 angular rate
sensor

2 sensing air
bags

1 gyroscope
2 EMG

electrodes

Active Endeffector
Accuracy: JJJ

Portability: JJJ

Adaptability: J

P: None
T: A computer

Estimation of
velocity-dependent

viscous
component

Biomechanic
parameters MAS 10

patients 8

Elbow
(Chronic
stroke)

(7) Kumar Raj.T.S
(2006) [49] 8 None Active Exoskeleton

Accuracy: JJ

Portability: JJJ

Adaptability: JJ

P: None
T: None

Linear regression
technique
(10 min)

RTPM MAS 111
patients 8

Elbow
(Poststroke)
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Table 3. Cont.

ID Source
User’s Arm

Behavior
Modeling *

User’s Arm
Motion &
Response
Capturing

Control
strategy

Morphology
of Robotic
Device ??

Characteristics of
Robotic Device ?

User Interfaces
(Patient;
Therapist)

Approach of
Evaluation

Outcome
Provided

Correlation
Study
with

Sample
Size

Rehab
Mode

Target
Human

Joint

(8) Fazekas, Gabor
(2006) [50] 8 None Passive

Endeffector
(REHAROB)
(6 DOF + 6

DOF)

Accuracy: JJJ

Portability: JJ

Adaptability: JJ

P: Outer shell
with handle
T: Hardware
Control Panel
with predefine
programming

Training sessions
(30 min)

MAS and FIM
score MAS

4 subjets
+ 8

patients
4

Shoulder +
Elbow

(Hemiparetic)

(9) Pandyan, A
(2006) [51] 8

2 EMG
electrodes Active-assistive Exoskeleton

Accuracy: JJ

Portability: JJ

Adaptability: JJ

P: None
T: None

Flexo-extensions
(16.7 s) MAS, RPE, FEMG MAS, RPE,

FEMG
14

patients 8
Elbow

(Poststroke)

(10) Nef and Riener
(2007) [52] 4 None Passive-assistive

Exoskeleton
(ARMin)
(4 DOF)

Accuracy: JJJ

Portability: JJ

Adaptability: JJ

P: 1 graphic
display for
patient
T: 1 graphic
display for
therapist

Mobilisation
therapy and ball

game therapy
(60 min)

Recorded
trajectories and
3D disturbance

simulations

None 11
patients 4

Shoulder +
Elbow

(Hemiplegic
and chronic

stroke)

(11)
Takahashi
Craig.D.
(2008) [53]

8 None Active-assistive
Endeffector
(HWARD)
(3 DOF)

Accuracy: JJJ

Portability: JJ

Adaptability: JJ

P: Computer
monitor and + 3
soft straps in
hand
T: Computer
monitor with
game difficulty
adjusting

Nine different
computer games

(1.5 h)

MAS, FUGL,
ROM, Stroke

impact, grasp and
pinch force

MAS,
FUGL,
ROM

13
patients 4

Hand-wrist
(Poststroke)

(12) Calota and
Levin (2008) [54] 8

2 EMG
electrodes Active

Exoskeleton
(Montreal
Spasticity
Measure)

Accuracy: JJ

Portability: JJ

Adaptability: JJ

P: Not specified
T: A Computer

Flexo extensions
(5 min) TSRT MAS,

Tardieu
20

patients 8
Elbow

(Poststroke)

(13) Bovolenta, F
(2009) [55] 4 None Active and

passive
Endeffector

(ReoGo)

Accuracy: JJJ

Portability: JJ

Adaptability: JJ

P: Computer
monitor
T: Computer
monitor

Nine different
computer games

(1.5 h)

MAS, FUGL,
ROM, Stroke

impact, grasp and
pinch force

MAS,
FUGL,

Tardieu

13
patients 8

Shoulder +
Elbow

(Poststroke)

(14) Posteraro, F
(2009) [56] 4 None Active-assistive

Endeffector
(MIT-MANUS)

(2 DOF)

Accuracy: JJJ

Portability: JJ

Adaptability: JJ

P: A display
T: Not specified

Robot-assisted
therapy
(60 min)

CM, MSS, MAS,
FUGL, ROM

CM, MSS,
MAS,
FUGL,
ROM

14
patients 4

Shoulder +
Elbow

(Hemiparetic)

(15) Posteraro, F
(2010) [57] 8 None Active-assistive

Endeffector
(MIT-MANUS)

(2 DOF)

Accuracy: JJ

Portability: JJ

Adaptability: JJ

P: A display
T: Not specified

Robot mediated
therapies
(45 min)

Motor status core,
MAS, ROM MAS, ROM 34

patients 4

Shoulder +
Elbow

(Chronic-
hemiparetic)
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Table 3. Cont.

ID Source
User’s Arm

Behavior
Modeling *

User’s Arm
Motion &
Response
Capturing

Control
strategy

Morphology
of Robotic
Device ??

Characteristics of
Robotic Device ?

User Interfaces
(Patient;
Therapist)

Approach of
Evaluation

Outcome
Provided

Correlation
Study
with

Sample
Size

Rehab
Mode

Target
Human

Joint

(16) Ferreira, J
(2011) [58] 8

1 goniometer
Unknown

EMG
electrodes

Active Exoskeleton
Accuracy: JJJ

Portability: JJ

Adaptability: JJ

P: None
T: A computer

Linear regression
technique
(Detection
algorithm)

TSRT None 25
patients 8

Elbow
(Post-stroke
+ cerebral

palsy)

(17) Fazekas, Gabor
(2011) [59] 8 None Passive

Endeffector
(REHAROB)
(6 DOF + 6

DOF)

Accuracy: JJJ

Portability: JJ

Adaptability: JJ

P: Outer shell
with handle
T: Hardware
Control Panel
with predefine
programming

Training sessions
(30 min)

RMA, MAS,
ROM, FUGL and

FIM score

RMA,
MAS,
ROM,

FUGL and
FIM score

30
patients 4

Shoulder +
Elbow

(Hemiparetic)

(18) Kim, E.H
(2011) [60] 8 None Active

Endeffector
(Hand-stretching

device)

Accuracy: JJ

Portability: JJJ

Adaptability: JJ

P: None
T: Not specified

Finger Stretching
(10 min) Mean MAS MAS 15

patients 8
Hand

(Hemiparetic)

(19) Hu, X(2013) [61] 8
4 EMG

electrodes Active Exoskeleton
(2 DOF)

Accuracy: JJJ

Portability: JJJ

Adaptability: JJ

P: A table and a
sponge
T: Only technician

Not developed
yet

Training sessions
(EMG-triggered

algorithm)
(30 min)

EMG samples
and FUGL, MAS,
ARAT and WMFT

FUGL,
MAS,

ARAT and
WMFT

10
patients 4

Hand-wrist
(Chronic-stroke)

(20) Ferreira, J
(2013) [62] 8

1
electrogoniometer

Unknown
EMG

electrodes

Active Exoskeleton
Accuracy: JJJ

Portability: JJ

Adaptability: JJ

P: None
T: A computer

Passive muscle
stretch at different

velocities
(Detection
algorithm)

TSRT None 11
patients 8

Elbow
(Post-stroke
+ cerebral

palsy)

(21)
Sale and
Posteraro
(2014) [63]

8 None Active-assistive
Endeffector

(MIT-MANUS)
(2 DOF)

Accuracy: JJ

Portability: JJ

Adaptability: JJ

P: A display
T: Not specified

Robot-assisted
therapy
(45 min)

MAS-S, MAS-E,
pROM

MAS-S,
MAS-E,
pROM

53
patients 4

Shoulder +
Elbow

(Subacute
stroke)

(22) Taveggia, G
(2016) [64] 8 None Active-assitive

and passive

Exoskeleton
(ARMEO
spring)

Accuracy: JJJ

Portability: JJ

Adaptability: JJ

P: A display
T: A computer

Training sessions
(SPSS software)

(60 min)

Motricity index,
MAS and NPRS MAS 54

patients 8

Shoulder +
Elbow +

Wrist
(Poststroke)

(23) Pennati, G.V
(2016) [65] 8 None Passive

Exoskeleton
(NeuroFlexor)

(1 DOF)

Accuracy: JJ

Portability: JJJ

Adaptability: JJ

P: A display
T: A digital

Estimation of
Neural and

Viscous
component

Cut-off values MAS,
FUGL

107
patients 8

Wrist
(Poststroke)

(24) Dehem, S
(2017) [66] 8 None Passive Endeffector

(REAplan)

Accuracy: JJ

Portability: JJJ

Adaptability: JJ

P: A display
T: Not specified

Correlation
between velocity

and RF

Velocity-force
graphics MAS 12

patients 8

Elbow
(Chronic
stroke)
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Table 3. Cont.

ID Source
User’s Arm

Behavior
Modeling *

User’s Arm
Motion &
Response
Capturing

Control
strategy

Morphology
of Robotic
Device ??

Characteristics of
Robotic Device ?

User Interfaces
(Patient;
Therapist)

Approach of
Evaluation

Outcome
Provided

Correlation
Study
with

Sample
Size

Rehab
Mode

Target
Human

Joint

(25) Lee, D.J.
(2017) [67] 8

1
dynamometer Active Exoskeleton

(1 DOF)

Accuracy: JJ

Portability: JJ

Adaptability: JJ

P: Not developed
yet
T: Computer
monitor and a
emergency
switches to stop

Stretching
sessions

(90 s)
Force patterns MAS 9

patients 4

Elbow +
Hand-wrist
(Poststroke)

(26) Calabro, R.S
(2017) [68] 8

3 EMG
electrodes Active-assistive

Exoskeleton
(Armeo
power)
(6 DOF)

Accuracy: JJJ

Portability: JJJ

Adaptability: JJ

P: A display
T: Not specified

Training sessions
(EMG Algorithm

Shapiro-Wilk
statistic)
(60 min)

MAS, FUGL MAS,
FUGL

20
patients 4

Shoulder +
Elbow

(Ischemic
stroke)

(27) Posteraro, F
(2018) [69] 8 None Active and

passive

Exoskeleton
(NEUROExos

Elbow
Module)
(4 DOF)

Accuracy: JJJ

Portability: JJ

Adaptability: JJ

P: Not specified
T: Not specified

Isokinetic passive
mobilization

(45 min)
MAS score MAS 5

patients 4
Elbow

(Poststroke)

(28) Wang, H.
(2019) [12] 8 None Active and

Passive

End-effector
(Humac
Norm)

(1 DOF)

Accuracy: JJ

Portability: JJ

Adaptability: JJ

P: A display
T: PC interface Online Peak torque; Keep

time; Rise time MAS
14

patients
(stroke)

8 Elbow

(29) Sin, M.
(2019) [70] 8 1 EMG Active and

Passive
End-effector

(1 DOF)

Accuracy: JJ

Portability: JJJ

Adaptability: JJ

P: Not specified
T: Not specified

Manual and
Isokinetic

mobilization
(37 min)

Intraclass
correlation
coefficient

MAS, MTS
17

patients
(stroke)

8 Elbow

∗ Considering the automatic administration of the test (4 = Yes; 4 = No); ? Given in levels (Low: J , Medium: JJ , High: JJJ); ?? Exoskeleton or Endeffector.
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3.2.3. Morphology of Robotic Devices

Robot-aided limb mobilization is an extended strategy towards reducing the inter-operator
variability in spasticity assessment. For that purpose, two main types of devices are employed:
end-effector or exoskeleton robots. We denoted as end-effector devices those in which the contact
point between human and robot is the robot’s tip (hand-held). This is an easily releasable setup that
increases the safeguarding levels. Moreover, this group of collaborative robots does not require a safety
space and therapist, patient and robot can share the same space (IDs: 4, 6, 8, 11, 13, 14, 15, 17, 18, 21, 24,
28, 29). Figure 2a illustrates an example of an end-effector system, the InMotion Arm.

(a) InmotionARM (Picture: Bionik) (b) Armeo system (Picture: Hocoma,
Switzerland)

Figure 2. Systems for upper limb rehabilitation, commercially available.

Exoskeletons are wearable devices that attach and adjust to the patient’s upper limb, passively
mobilizing the arm. We identify the use of exoskeletons in two main configurations: fixed or added.
On the one hand, the first configuration includes the robots which have a solid base, a structure from
the ground and finally the adjustable arm tool. Usually, they are fixed in a specific room but sometimes
the base has wheels to ease the movement. The exoskeleton provides a more precise measure but
the robot management is more difficult. On the other hand, the added robots only consist of an
adjustable arm tool. Easy interchange between patients gives a quick assessment and achieves a
complete rehabilitation (IDs: 1, 2, 5, 7, 9, 10, 12, 16, 19, 20, 23, 25, 26, 27). Still, a major disadvantage is
the robot fixation on the patient’s upper limb. A device malfunction could provoke physical damage
into the already injured arm with no possibility of release. Figure 2b illustrates an example of the
exoskeleton system, the Armeo Power.

The characteristics of the robotic device depends on its morphology. The principal advantage of
the exoskeleton is control. Because of the rigid structure, exoskeleton systems do not need an additional
measuring sensor. The range of motion is higher in comparison with the endeffector systems. For this
reason and generally, exoskeleton devices will have better accuracy and portability than endeffector
systems.

3.2.4. User Interfaces

In a robot-aided therapy, three participants of the process can be appreciated: the therapist,
patient, and robotic device. Therefore, the interplay between these actors can be analyzed from two
perspectives: between therapist and robot (T-R) and between patient and robot (P-R).

Initially, robot-assisted devices focused their efforts on developing a precise assessment or effective
rehabilitation (IDs: 1, 3, 4, 5, 7), while leaving by the wayside to include proper user interfaces. Basically,
the device was fully controlled by a technician specialized in this robot and he explained the basics to
the therapist. In isolated cases, the user had a computer screen but it was not an extended practice.
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Fortunately, this approach evolved with the technology and we can see a tendency where the
overall experience is a key factor. The interaction, not only with the patient, but also with the therapist,
remodeled the predefined designs adding new elements to develop. The usual and most common
tool to connect humans with robots is a display. A screen, touchable or not touchable, support visual
learning by imitation and creates a bond between human and machine. Furthermore, any kind
of graphic information could be shown on the screen such as rehabilitation videos, serious games,
real-time measures, or just entertainment. The patient pursues better a rehabilitation process based on
games or entertainment than usual flexo-extensions (IDs: 10, 11, 13).

Furthermore, the therapist can also personalize better the rehabilitation routine with visual
support. Usually, clinicians are not technical experts, and their knowledge of the device is limited.
Understanding the machine options and restrictions is fundamental for effectivley exploiting the
possibilities of the tool. Then, like the patient, the therapist is an important target to consider in the
value chain (IDs: 8,10,11,13,17,25,28).

3.2.5. Approach of Evaluation

Many researchers have developed a number of techniques to evaluate spasticity. We could
encompass all methods into three main categories: robot-assisted mobilization, predictive approaches
and more analytical procedures based on cutting-edge algorithms. In the first category, we identify
the systems with an evaluation using therapy and rehabilitation (ID’s: 8, 9, 10, 11, 12, 13, 14, 15, 17,
19, 21, 22, 25, 26, 27, 28, 29). This method proposes a primary evaluation, then a therapy process with
exoskeleton or endeffector and a final reevaluation. The main advantage of this approach is the use of
known scales as the MAS or FMA to achieve the primary evaluation. At the end of the therapy, an
improvement tendency can be noticed in most patients. However, the original outcome is subjective
and the final assessment too. In the second category, system evaluation is done through estimation
of the viscous components (ID’s: 5,6,23). The estimation of the viscous component is based on the
relation between the externally imposed joint displacements and the corresponding joint resistance,
which is generally modeled as a second-order system. The effectiveness of this approach depends on
the acquisition method and the final outcome deviance from each study. The third category encloses
the systems based on algorithms (ID’s: 1,3,7,16,20,24). A detection algorithm monitors the results
and return an outcome. The most common technique used is linear regression. Linear regression
attempts to model the relationship between two variables by fitting a linear equation to observed
data. In particular, velocity and time are measured in each mobilization and with this linear trend,
Resistance to Passive Movement (RPM) is quantified. Another type of algorithm used is the hysteresis
loops. During a movement cycle, an XY recorder plots force versus position and display the data in
the form of a hysteresis loop. A complete absence of muscular resistance produces identical traces in
both directions.

The role of the robots in all the approaches is capturing data. Afterwards, the objective data
collected is processed and supports the final clinician evaluation. All three techniques are effective,
but predictive approaches and more analytical procedures based on cutting-edge algorithms provide
an estimation from the capture data while robot-assisted rehabilitation-only measure the variation
between the original and the final status.

3.2.6. Outcome Provided

In order to assess spasticity, different outcomes can be obtained from robot-aided interventions.
We encountered from velocity-force graphics (ID: 24) to recorded trajectories (ID: 10). The outcome
provided by the robot is numerical or graphical, but is usually in mathematical form. These data
must be interpreted with caution because minimal variation can lead to a considerable decreasing or
increasing muscle tone.

There are currently two major approaches being adopted in spasticity evaluation. One is through
rehabilitation and the existing scales and the other one is estimating the tonic stretch reflex threshold
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(TSRT). In the first approach, the system of assessment consists of a early evaluation with known scales
such as MAS, Fugl–Meyer assessment, Functional independent Measure, Unified Parkinson’s disease
rating scale or Rivermead motor assessment scale (IDs: 8, 9, 11, 13, 14, 17, 19, 21, 26, 27). After passive
extremity mobilization or game therapy with training sessions, the scales are matched again.

In the second approach, the velocity-dependent increase is measured. Usually, The TSRT value is
estimated using a regressing analysis, interpolating a regression line between each dynamic stretch
reflex threshold (DSRT) (IDs: 12, 16, 20, 24). Furthermore, a third minor approach supports the
estimation of the velocity-dependent viscous component (IDs: 5, 6, 23). This system of evaluation is
more scientific since it is based on arm modeling. During the stretch and utilizing known reactive
torque value, angular frequency and derived phase lag, the viscous components are estimated.

Therefore, which is the correlation between, for example, a force pattern to the MAS clinical
values? How do we prove its validity? In this regard, the most extended tendency is to build a
comprehensive model of reference. As an example, some studies examined healthy patients and
determined cut-off values (ID:24) and other investigations estimated it indirectly (ID:26). This second
idea used multiple therapists and build the device on their experience. As we explained previously,
other studies estimated a known scale value and then matched with a first measure to prove their
effectiveness. In this sense, it can be appreciated a high predominance (72%) of small samples of
patients in feasibility studies. Only 14% of studies have recruited between 30 and 50 participants, and
also the 14% of reviewed studies considered samples of more than 50 participants. This fact may be
explained by the heterogeneity in the characteristics of patients with a neurological disorder, which
makes it difficult for the recruitment process.

3.2.7. Dual-Operation: Rehab- and Eval-Modes

Finally, we can identify a new approach for developing robotic systems with a dual goal, which
is to support not only the assessment stage but also rehabilitation. A high number of studies (41%)
have considered this dichotomy, existing an equal participation of exoskeleton (IDs: 2, 10, 19, 25,
26, 27) and end-effector (IDs: 8, 11, 14, 15, 17, 21) devices. Under this paradigm, a robotic device
can be used for measuring the degree of spasticity at the beginning of treatment, and subsequently,
the same robotic device can execute the treatment protocol in the rehabilitation phase. In this case,
the therapist uses only one device for both tasks, having some advantages in clinical practice (e.g.,
ease of use, cost reduction, optimization of the workspace). Additionally, as mentioned before, a
combined rehabilitation process between training exercises with pharmacological approaches (Baclofen
or BonT-A injections) shortens the expected rehabilitation time.

3.2.8. Target Human Joints

The human joint classification helps distinguish the different joint targets in each research. The
elbow is the most studied joint (ID’s: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16,17, 20, 21, 22, 23, 24, 25,
26, 28, 29), followed by the shoulder (ID’s: 2, 8, 10, 13, 14, 15, 17, 21, 22, 26) and finally the hand-wrist
(ID’s: 12, 19, 20, 23, 24, 26). This approach may be explained by the fact that the hand is the most
complicated system in the arm. On the contrary, the elbow is easy to move and a developed industrial
system could be used to mobilize it. There is no need for a specific tool and passive mobilization is less
dangerous in the elbow than in the hand or the wrist.

4. Current Status of Robot-Aided Spasticity Assessment Systems

The results of this literature review are quite revealing in several ways. First, we might have
identified a growing tendency in the use of techniques for data processing. Initially, researchers did
not include any data treatment, but from 2009, nearly all the new investigations are incorporating
statistical software or predictive algorithms [71]. This result may be explained by the fact that we are
accumulating a large amount of data, and during the last ten years, algorithms were created to manage
this considerable volume and to find patterns in the big data [72]. Another important finding was that
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most of the developed devices matched their outcomes with the MAS scale. A possible explanation
for this might be that the MAS is the most used scale among clinicians. The scale behaves better for
upper limbs than for lower limbs, but even so, it is widely applied for measuring spasticity in the
lower limb [38].

One interesting finding is that similar to data processing, therapist and patient interfaces have
been evolving. Originally, no element between the patient and the device was present. Only a small
computer with minor possibilities of customization was included for the therapist in some cases.
Luckily, this relationship has been improved, new adapting tools for each patient have been added
and new technologies as virtual reality (VR) have demonstrated their validity [73]. The device is not
alone and additional inputs have been captured from external sensors [74]. Despite these promising
advantages, further work is required to enhance the connection between machine, therapist, and
patient. Closer inspection of the table could show a tendency in the rehabilitation utility. The devices
do not only measure but also rehabilitate. This evidence is important because the patient will interact
with only one device and the therapist will only handle one machine [75].

Nevertheless, the steady decline of arm modeling can thus be suggested. None of the last
14 studies focused their efforts on improving the actual arm model. This result is somewhat
counterintuitive because a better understanding of arm behavior will guide to better research [76].
Additionally, the size of the patient samples in the studies is often small. This finding could be
explained because of the strong regulation in the personal privacy data and more specifically in the
clinical data.

In general, it seems that a high number of robots have been designed in the last 15 years for
supporting the clinician diagnosis, and the tendency seems to continue the following years with
the Healthcare 4.0 concept, which extends the basis of Industry 4.0 in a scenario where patients
and healthcare professionals are strictly correlated with the organization, the methodology and the
technology [77]. Besides, real-time data will upload from the robot to the patient electronic file, and
connectivity will enlarge the user experience, allowing the patients to follow their clinical status at any
time from multiple devices. Thus, the therapist could conduct the complete process from a different
place than the patient and the robot, adjusting the following sessions with the data acquired. A more
precise evaluation will guide to better therapist planning. In order to reach this ideal panorama of
smart rehabilitation, some concerns must be addressed.

5. Prospects for Improvement in Robot-Aided Upper Limb Spasticity Assessment

Rehabilitation technology and automation of manual processes have become an essential part
of rehabilitation development. In this way, the traditional rehabilitation cycle is being transformed
into a more autonomous process, denoted as the “automated rehabilitation cycle” [37]. Here, the
clinicians are supported by several automated systems in daily activities. This automated rehab cycle
is composed of automated assessment systems (AAS), decision support systems (DSS), and robotic
rehabilitation systems (RRS). In this new holistic paradigm of rehabilitation, the AAS plays an essential
role since they are used at the beginning of treatments to measure the level of functional impairment,
and at the end of treatment to determine the effectiveness of therapy. In this context, the robot-aided
systems for the assessment of upper limb spasticity fit into the AAS category.

Intending to obtain an objective evaluation, Figure 3 illustrates the principal components that
intervene in the robot-aided assessment process. The first component consists of capturing the relevant
data from sensors from the robot or patients. The second component is related to the limb mobilization
using the robotic device. Another relevant component is the modeling of arm behavior in order to
quantify the degree of impairment. This reference model is created from the robot input, taking into
consideration cut-off values from a healthy arm. The last component is related to provide the spasticity
descriptor, which ideally might be reliable, robust, and with high resolution.
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Figure 3. Essential components for robot-aided assessment of upper limb (UL) spasticity.

Although it is clear that stages which participate in the process of evaluation, from data acquisition
to outcome generation, new developments must consider some challenges and technical requirements
in order to increase the level of automation and better use of gathered data. On account of the above,
we encompass what we think future improvements are into three big fields: security, results’ analysis,
and a standard evaluation methodology.

5.1. Safety in Human-Robot Interactions

In clinical evaluations, security is one of the most important aspects for focus. A robotic device has
to increase the security levels to the maximum because a minor malfunction could lead to non-reversal
damage. The new collaborative robots remove the physical barriers and share the space between
therapist, patient and device with no additional countermeasure. Hence, the use of collaborative robots
in clinical settings could increase the safeguarding during physical human-robot interaction. The new
soft robotics devices [78] could reduce an occasional and unintentional accident. This technology has
been slightly explored in rehabilitation, even considering some types of exoskeletons (cable-driven) as
soft or compliance-based devices. Thus, more research is needed in exploiting the application of soft
robotics for rehabilitation and assessment of motor function.

On this basis, considering the great efforts of research in robots for healing applications, there is
a clear need for regulations [79]. Currently, there exist various standardization institutions dealing
with the safety of human interaction with rehabilitation robots. The most influential ones are the
International Organisation for Standardisation (ISO) and the American National Standards Institute
(ANSI). The goal of this work is to generate dedicated standards for rehabilitation robotics devices. As
an example, a relevant standard is the IEC 80601-2-78:2019. Giving a glance into the standard, it can be
noted that the most relevant functional requirements for safe robotic systems are related to limiting
the forces, speed, and power of the robot. That is, strategies not related to hardware, but software.
Consequently, we required the development of more intelligent strategies of control in order to cover
the demanded safety levels [80]. For that purpose, artificial intelligence (AI) could be a key component
in order to develop self-adaptive algorithms of control.

5.2. Intelligent Data Analysis Capabilities

A natural progression of this work is to analyze the new algorithms used in big data as machine
learning, artificial intelligence and neuronal networks. The standard model will adjust better to
the patient’s necessities and all the patient’s data would build a database, supporting a predictive
rehabilitation and an earlier syndrome detection. Furthermore, a precise Tonic stretch reflex threshold
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will not only be convenient for spasticity assessment but also for other neurodegenerative disorders
as Parkinson’s, Huntington’s or Alzheimer’s. Moreover, new equipment as EMG’s, Kinect camera
or infrared sensor supports the measurement of the robot adding accuracy to the evaluation. Still,
the sensorization demands a postprocessing and interpretation, matching the isolated data with the
robot’s.

In this sense, one source of weakness identified in this study is, for instance, the MAS scale
dependency [21]. Since 1987, the scale has been present in any new development device. The
technology has evolved exponentially the last 30 years and the challenge now is to create a machine
able to objectively measure spasticity. Without diminishing the contribution of the MAS scale, a
percentage outcome will better support the clinician’s perception and it will build a numeric solid base
for future improvements.

Various studies have pointed to the limitations of using five-point ordinal scales to detect minor
improvements in motor recovery [21,81]. In this regard, the development of robot-aided assessment
systems must consider including methods to increase the resolution of scores towards obtaining
high-resolution descriptors of spasticity.

5.3. Standardization of Robot-Aided Procedures

Different types of methods have been developed to perform a robot-assisted rehabilitation and
every new device introduce an additional method [82,83]. There are a number of similarities between
them and part of the aim of this literature review is to identify the relevant common requirements in
robot-assisted assessment towards proposing a standard model of evaluation. Thus, in the authors’
opinion, three principal research lines that require improvement in order to generalize the spasticity
assessment process exist: the procedure (stages), intensity, and provided metrics.

The first step in this process is the posture. The patient should be sitting on a chair with the
upper limbs resting along the body. Thus, the therapist will execute a complete elbow flexo-extension
without difficulty, from maximum extension to maximum contraction. If this posture is not physically
achievable, the patient will lie on a bed. allowing the therapist the same movement described before.
Posture is one of the most important aspects of the method. If the system does not have a compensation
procedure, data acquisition could mislead. In our review, only (ID’s: 2, 25) proposes a strap to fix
the patient’s trunk to the back of the chair to limit compensatory movements. In other studies, (ID’s:
5, 7) measure/limit the hand movement with two sensing airbags. The ideal system will include
equipment (cameras, infrared sensors placed on the arm) to detect compensation movements such as
trunk movements, shoulder movements or, on the contrary, the patient should be firmly tied to avoid
inaccurate measures.

A vast majority of studies have assessed the efficacy of robot-assisted rehabilitation [84–86] and
the conventional number of repetitions in the investigated articles is 3.2 min minimum between
repetitions is required to favor the muscle recovery and a maximum of 45 min sessions recommended.

Up to now, previous studies have used diverse metrics. As shown in Table 3, there is no common
outcome in the 28 studies, but still, some similarities have been found. The MAS scale is present in
most researches [87], moreover, TSRT [88] and the resistance to passive movement (RTPM) are also
proper indicators to classify the spasticity grade. Taken together, these suggested steps establish a
standard procedure for any future robot-assisted rehabilitation device.

6. Conclusions

Rehabilitation robotics comprises one of the fields that has grown steadily in recent decades.
However, the main focus of research has been the development of systems to assist or improve
intervention stages. Thus, a minor development of automatic assessment systems is identified,
especially for UL spasticity. In this paper, a total of 28 studies focused on the automatic assessment
of UL spasticity using a robotic device was reviewed. From the comprehensive analysis of the above



Sensors 2020, 20, 5251 18 of 23

studies, various limitations and challenges in the development of optimal assessment systems for UL
spasticity have been identified.

Firstly, a significant issue to continue improving is the development and standardization of
effective strategies to guarantee the patient’s safety during robot-aided limb mobilization. In this
way, the use of collaborative robots that are considered intrinsically safe systems could be a feasible
alternative to end-point devices. In the case of exoskeleton-based strategies, the integration of recent
advances in soft robotic technology can enhance the comfort and safeguarding of patients by default.

Secondly, the evaluation of the degree of spasticity throughout the entire range of joint motion is
needed. In some cases, the morphology of devices or the administration setup can reduce the complete
range of joint motion. Therefore, it is essential that the characteristics of the robotic device would not
restrict the whole range of motion of the target joint.

It is necessary that the collaboration between researchers and medical practitioners in order to
build appropriate biomechanical models of reference (dynamic and kinematic) to better identify the
gap between physical movement and theoretical patterns of motion. More comprehensive reference
models of spastic muscle behavior would allow understanding of the extent of the functional limitations
derived from spasticity.

In this sense, it is also important to stress better usage of gathered data from robotic and automatic
systems in order to increase the resolution of the spastic descriptors. Currently, five-point ordinal
scales for scoring the degree of spasticity are still the golden standard. However, the analysis of the
richer performance-based data measured by robotic systems can lead to more descriptive spasticity
outcomes, and consequently, to optimally tailored protocols of rehabilitation.

For concluding, it is our opinion that the benefits offered by robot-aided assessment systems
can complement the holistic rehabilitation cycle and that these kinds of systems will become a
complementary tool in daily clinical practice.
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Abbreviations

The following abbreviations are used in this manuscript:

MAS Modified Ashworth Scale
RTPM Resistance to passive movement
TSRT Tonic stretch reflex threshold
FMA Fugl-Meyer Assessment
MTS Modified Tardieu Scale
ROM Range of Motion
FIM Functional independent Measure
EMG Electromyography
RMA Rivermead motor assessment scale
UPDRS Unified Parkinson’s Disease Rating Scale
FEMG Free-running electromyography
MSS Multiple sclerosis-related spasticity
CM Chedoke–McMaster Stroke Assessment
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ARAT Action Research Arm Test
WMFT Wolf Motor Function Test
MAS-S Modified Ashworth Scale-Shoulder
MAS-E Modified Ashworth Scale-Elbow
pROM Total Passive Range of Motion-Shoulder/Elbow
NPRS Numeric pain rating scale
VR Virtual reality
DOF Degrees of freedom
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