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Background. Accumulating evidence supports the importance of noncoding RNAs and exosomes in coronary heart disease
(CHD). However, exosomal-associated competing endogenous RNA- (ceRNA-) mediated regulatory mechanisms in CHD are
largely unexplored. 'e present study aimed to explore exosomal-associated ceRNA networks in CHD. Methods. Data from 6
CHD patients and 32 normal controls were downloaded from the ExoRBase database. CHD and normal controls were compared
by screening differentially expressed mRNAs (DEMs), lncRNAs (DELs), and circRNAs (DECs) in serum exosomes. MicroRNAs
(miRNAs) targeting DEMs were predicted using the Targetscan andmiRanda databases, andmiRNAs targeted by DELs andDECs
were predicted using the miRcode and starBase databases, respectively. 'e biological functions and related signaling pathways of
DEMs were analyzed using the David and KOBAS databases. Subsequently, a protein-protein interaction (PPI) network was
established to screen out on which hub genes enrichment analyses should be performed, and a ceRNA network (lncRNA/
circRNA-miRNA-mRNA) was constructed to elucidate ceRNA axes in CHD. Results. A total of 312 DEMs, 43 DELs, and 85 DECs
were identified between CHD patients and normal controls. Functional enrichment analysis showed that DEMs were significantly
enriched in “chromatin silencing at rDNA,” “telomere organization,” and “negative regulation of gene expression, epigenetic.” PPI
network analysis showed that 25 hub DEMs were closely related to CHD, of which ubiquitin C (UBC) was the most important.
Hub genes were mainly enriched in “cellular protein metabolic process” functions. 'e exosomal-associated ceRNA regulatory
network incorporated 48 DEMs, 73 predicted miRNAs, 10 DELs, and 15 DECs. 'e LncRNA/circRNA-miRNA-mRNA in-
teraction axes (RPL7AP11/hsa-miR-17-5p/UBC and RPL7AP11/hsa-miR-20b-5p/UBC) were obtained from the network.
Conclusions. Our findings provide a novel perspective on the potential role of exosomal-associated ceRNA network regulation of
the pathogenesis of CHD.

1. Introduction

Coronary heart disease (CHD) is a complex biological
process accompanied by a wide range of transcriptional
changes, but the mechanism of CHD is still complex and
unclear [1].

Noncoding RNAs mainly consist of microRNAs
(miRNAs/miRs), long noncoding RNAs (lncRNAs), and

circular RNAs (circRNAs). MiRNAs are a class of small
noncoding RNAs that can block protein translation or in-
duce degradation by targeting specific regions of messenger
RNA (mRNA) [2]. LncRNAs have more diverse functions as
epigenetic regulators, molecular scaffolds, and decoys [3].
CircRNAs can function as templates for viroid and viral
replication, as intermediates in RNA processing, as regu-
lators of transcription, as small nucleolar RNAs, and as

Hindawi
Cardiology Research and Practice
Volume 2021, Article ID 6682183, 10 pages
https://doi.org/10.1155/2021/6682183

mailto:roubaobao09@163.com
https://orcid.org/0000-0002-0986-9525
https://orcid.org/0000-0002-2974-309X
https://orcid.org/0000-0001-8548-7644
https://orcid.org/0000-0001-6374-673X
https://orcid.org/0000-0003-2579-4268
https://orcid.org/0000-0002-6783-1090
https://orcid.org/0000-0003-2074-1028
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6682183


miRNA sponges [4]. With the development of sequencing
technology and bioinformatics, it has been found that
noncoding RNAs are involved in the pathophysiology of
cardiovascular diseases [5]. Ahmadi et al. [6] demonstrated
that miR-342-5p could be a biomarker for diagnosis of CHD
associated with inflammatory cytokines. Wang et al. [7]
revealed that BRAF-activated lncRNA is associated with
CHD. Moreover, circRNAs or lncRNAs have been found to
interact with miRNAs as competing endogenous RNAs
(ceRNAs) to regulate target mRNA activity in CHD. For
example, YOD1 deubiquitinase might be a novel target for
diagnosing CHD from the lncRNA/circRNA-miRNA-
mRNA ceRNA network [8].

However, serum RNAs can often be degraded by RNA
enzymes and, thus, may not accurately reflect pathological
differences; exosomes can protect serum RNAs from deg-
radation [9]. Exosomes are small vesicles with a diameter of
approximately 30–150 nm containing proteins, nucleic
acids, and lipids [10] and are related to diverse regulatory
processes in cardiovascular disorders, including myocardial
injury, repair, and regeneration [11].

To better understand the underlying molecular regula-
tory mechanisms of CHD, we aimed to identify differentially
expressed exosomal-related lncRNAs, circRNAs, and
miRNAs and used these to construct a ceRNA network to
discover accurate and reliable diagnostic biomarkers and
therapeutic targets for CHD.

2. Materials and Methods

2.1. Data Collection. A flowchart of the study is shown in
Figure 1. 'e exoRBase database (http://www.exorbase.org/)
is a repository of circRNAs, lncRNAs, and mRNAs derived
from RNA-seq data, including analysis of human blood
exosomes. 'ese samples come from different biological
conditions, including normal people (NP), CHD, colorectal
cancer, hepatocellular carcinoma, pancreatic adenocarci-
noma, and breast cancer [12]. In this study, data from NP
and CHD blood samples were downloaded, including 6
patients with CHD and 32 normal controls.

2.2. Identification of Differentially Expressed mRNAs,
lncRNAs, and circRNAs. 'e lists of differentially expressed
circRNAs (DECs), lncRNAs (DELs), and mRNAs (DEMs)
between controls and patients with CHD were generated
using the LIMMA package in R software. 'e values of |log2
(fold change (FC))|> 0 and P value< 0.05 were selected as
cutoff criteria.

2.3. Integration of a PPI Network and Module Analysis. A
protein-protein interaction (PPI) network of DEMs was
constructed by STRING (https://string-db.org) and visual-
ized with Cytoscape software [13]. Furthermore, the Mo-
lecular Complex Detection (MCODE) application in
Cytoscape was used to select the PPI network modules, with
cutoff� 2, node score cutoff� 0.2, k-core� 2, and maximum
depth� 100 as selection criteria. In addition, nodes with
degree ≥5 were identified as hub nodes in the PPI network.

2.4. Functional Enrichment Analyses. Gene ontology (GO)
analysis was used to annotate the DEMs and hub genes based
on biological processes (BP), cellular components (CC), and
molecular functions (MF) [14]. To investigate the biological
function of DEMs and hub genes, the database for anno-
tation, visualization, and integrated discovery (DAVID)
online tool (version 6.8; http://david.abcc.ncifcrf.gov) was
utilized to perform GO analysis [15]. In addition, the
KOBAS 3.0 online analysis database was used to perform
pathway enrichment analysis [16]. 'e significant enrich-
ment threshold for GO and KEGG (Kyoto Encyclopedia of
Genes and Genomes) analyses was a P value <0.05 and
count≥ 2.

2.5. Prediction of microRNAs Targeting mRNAs. 'e Tar-
getScan (http://www.targetscan.org/vert_72/) [17] and mi-
Randa (http://www.mirdb.org/) [18] databases were used to
predict miRNAs that target the DEMs. To increase the ac-
curacy of the predictions, the targetingmiRNAs predicted by
both databases were used. 'e miRcode (http://www.
mircode.org/) [19] and starBase (http://starbase.sysu.edu.
cn/) [20] databases were used to predict miRNAs targeted
by the DELs and DECs, respectively. Pairs of miRNAs-
mRNAs, lncRNA-miRNA, and circRNA-miRNA were
subsequently constructed.

2.6. Construction of the lncRNA/circRNA-miRNA-mRNA
ceRNA Network. CeRNA regulation has been reported to
serve important roles in human disease; the circRNA or
lncRNA-miRNA-mRNA interaction network was con-
structed to explore the associations among circRNAs,
lncRNAs, miRNAs, andmRNAs [21]. Finally, Cytoscape was
used to visualize the lncRNA/circRNA-miRNA-mRNA
network.

2.7. Statistical Analysis. All data were expressed as the
mean± standard error. Statistical analyses were performed
using GraphPad Prism 6 (GraphPad Software, Inc., La Jolla,
CA, USA). P< 0.05 was considered to indicate a statistically
significant difference.

3. Results

3.1.DifferentialExpressionAnalysis. A total of 312 DEMs (55
upregulated and 257 downregulated), 43 DELs (24 upre-
gulated and 19 downregulated), and 85 DECs (4 upregulated
and 81 downregulated) were identified between the CHD
patients and control individuals. 'e complete upregulated
and downregulated DEMs, DELs, and DECs are listed in
supplementary materials: Tables S1–S3. Finally, based on the
chosen criteria of P value <0.05 and | log2(FC) |> 0.5, we
plotted the heat maps for the DEMs, DELs, and DECs,
respectively, as shown in Figures 2(a)–2(c).

3.2. PPI Network and Module Analyses. To further study the
specific DEMs from an interactive perspective, a PPI network
was constructed using the STRING database. A statistically

2 Cardiology Research and Practice

http://www.exorbase.org/
https://string‐db.org/
http://david.abcc.ncifcrf.gov/
http://www.targetscan.org/vert_72/
http://www.mirdb.org/
http://www.mircode.org/
http://www.mircode.org/
http://starbase.sysu.edu.cn/
http://starbase.sysu.edu.cn/


significant PPI network consisted of 50 nodes and 189 edges.
Nodes with a degree of ≥5 were regarded as hub mRNAs in
the network. Two modules were formed in the PPI network
with an MCODE score ≥7: module 1 with an MCODE score
of 16.875 (nodes� 17) and module 2 with an MCODE score
of 7.429 (nodes� 8). Hub mRNAs, namely, ubiquitin C
(UBC) and 16 histone cluster family genes, were present in
module 1, and cathepsin G, myeloperoxidase, cathelicidin
antimicrobial peptide, defensin alpha 1, defensin alpha 3,
matrix metallopeptidase 8, azurocidin 1, and defensin alpha
1B were present in module 2 (Figure 3).

3.3. Functional Enrichment Analyses. Functional enrich-
ment analyses indicated that the DEMs were mainly
enriched in “chromatin silencing at rDNA,” “telomere or-
ganization,” and “negative regulation of gene expression,
epigenetic” for the BPs. CC analysis showed that the DEMs
were significantly enriched for the “nucleosome,” “nuclear
chromosome,” and “nuclear chromosome” components. For
the MF category, the DEMs were enriched in “histone
binding,” “protein heterodimerization activity,” and
“poly(A) RNA binding” (Figure 4 and supplementary ma-
terials: Table S4). 'e enrichment analyses for hub genes
showed that the biological function of UBC was enriched for
a “cellular protein metabolic process,” its location was
greatly enriched within the “extracellular exosome” com-
partment, and its molecular function was “poly(A) RNA
binding” (Figure 5 and supplementary materials: Table S5).

3.4. LncRNA/circRNA-miRNA-mRNA ceRNA Network.
Using the several construction tools described above, 175,
166, and 171 miRNAs were predicted to target DEMs, DELs,

and DECs, respectively. 'e Venn diagram of predicted
miRNAs is shown in supplementary materials: Figure S1.
Subsequently, ceRNA network analyses were performed to
unravel the functions of the identified differentially
expressed exosomal-associated ceRNA network in CHD
patients. 'is ceRNA network consisted of 48 DEMs, 73
predicted miRNAs, 10 DELs, and 15 DECs. From the ceRNA
network, we identified lncRNA RPL7AP11 as competing for
binding to hsa-miR-20a-5p and hsa-miR-17-5p, thereby
affecting UBC expression (Figure 6 and supplementary
materials: Table S6). 'ese results suggest that the ceRNA
networks we predict in this paper might be a key factor
underlying the pathogenesis of CHD.

4. Discussion

Atherosclerotic disease and its thrombotic complications
may lead to the development of CHD and, if untreated, can
progress to myocardial infarction. Exosomes are a type of
extracellular vesicle that contain molecular constituents
(protein, DNA, and RNA) of the cells that secrete them [22].

Recently, dysregulated expression of RNAs (lncRNAs,
circRNAs, miRNAs, and mRNAs) and regulation of their
networks have been confirmed to affect the pathogenesis and
progression of various tumors, such as endometrial carci-
noma [23], ovarian cancer [24], and ependymoma [25]. In
the cardiovascular system, several novel serum RNAs have
been found to be associated with CHD [8, 26]. Although
serum RNAs are often degraded by RNA enzymes andmight
not accurately reflect pathological differences, exosomes can
protect them from degradation [9]. We, therefore, identified
serum exosomal-associated RNAs and constructed a ceRNA
network associated with CHD, revealing a new targeting axis

exoRbase database
(32 normal controls and 6 CHD patient)

Constructing protein-protein interaction network

Analysing modules and selecting hub genes

Functional enrichment analyses

DEcircRNAs DElncRNAs DEmRNAs

miRcode

Starbase
TargetScan
miRanda

Predicted miRNAs

CircRNA-miRNA lncRNA-miRNA mRNA-miRNA

Constructing exosomal associated
lncRNA/circRNA-miRNA-mRNA ceRNA network

Figure 1: Study flowchart. Abbreviations: CHD, coronary artery disease; mRNAs, messenger RNAs; miRNAs, microRNAs; lncRNAs, long
noncoding RNAs; circRNAs, circular RNAs, DEMs, differentially expressed mRNAs; DELs, differentially expressed lncRNAs; DECs,
differentially expressed circRNAs; and ceRNA, competing endogenous RNA.
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Figure 2: Continued.
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Figure 2: Hierarchical clustering and heat map analysis of differentially expressed profiles of exosomal RNAs. Note: (a) mRNAs, (b)
lncRNAs, and (c) circRNAs.'e color scale indicates the expression of differentially expressed exosomal RNAs. Red and blue indicate upand
downregulation, respectively. Abbreviations are the same as in Figure 1.
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in its pathogenesis. To our knowledge, this is the first study
to explore exosomal-associated ceRNA networks in CHD.

In this study, we first identified 312 DEMs, 85 DECs, and
43 DELs involved in the pathogenesis of coronary heart
disease. Enrichment analysis and PPI network construction
were subsequently performed and revealed UBC to be one of
the most important hub genes. After predicting miRNAs
targeting mRNA, an exosomal-associated circRNA/
lncRNA-miRNA-mRNA ceRNA network was constructed.
Our results suggest specific ceRNA axes in the pathogenesis
of CHD that may be promising targets for diagnosis of CHD.

UBC belongs to the ubiquitin family and is associated
with protein degradation, DNA repair, kinase modification,
autophagy, regulation of inflammation, and cell signaling
pathways [27, 28]. Our enrichment analysis of both DEMs
and hub genes showed that UBC participates in cellular
protein metabolic processes. Ji et al. [29] showed that the
expression of ubiquitin was significantly higher in CHD
patients than in healthy individuals and the levels of
ubiquitin varied with the severity of different classes of CHD.
Our study further confirmed the function of UBC in the
pathogenesis of CHD, suggesting its potential value as a
noninvasive biomarker.

MiR-17-5p has been reported to regulate the cell cycle,
proliferation, and apoptosis, and broad support has been
provided for its role in regulation of cardiovascular diseases.
Deletion of miR17 in neonatal mice is lethal, and over-
expression of miR-17-5p can extend the life span of mice
[30]. Liu et al. [31] showed that upregulation of miR-17-5p
could contribute to hypoxia-induced proliferation of human
pulmonary artery smooth muscle cells, leading to pulmo-
nary hypertension. Yang et al. [32] found that miR-17-5p
silencing protects heart function after acute myocardial
infarction by decreasing the rate of apoptosis and repairing
vascular injury. Moreover, recent studies have shown that
circulating miR-17-5p could be a novel biomarker for di-
agnosis of acute myocardial infarction [33].

MiR-20b-5p has been shown to attenuate hypoxia-in-
duced apoptosis in cardiomyocytes [34]. Also, Zhen et al.
[35] found that overexpression of miR-20b-5p could in-
crease cell viability and repress autophagy and apoptosis in
human umbilical vein endothelial cells that had experienced
hypoxia-reoxygenation injury. Since both hypoxia and
hypoxia-reoxygenation models are similar to patients with
myocardial infarction and subsequent revascularization,
miR-20b-5p may play a role in regulating CHD. However,

Figure 3: Protein-protein interaction network and the significant modules. Note: the red nodes represent the upregulated mRNAs and the
green nodes represent the downregulatedmRNAs.'emost significant module identified byMCODE had a score� 16.875; the secondmost
significant module score� 7.429. Abbreviations: MCODE: molecular complex detection; other abbreviations are the same as in Figure 1.
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Figure 4: 'e functional terms and pathways enriched for the differentially expressed mRNAs. Note: the red lines represent biological
processes, the orange lines represent cellular components, the green lines represent molecular functions, the black lines represent KEGG
pathways, and the gray lines represent −log10 (P value). Abbreviation: KEGG, Kyoto Encyclopedia of Genes and Genomes.
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lines represent biological processes, the orange lines represent cellular components, the green lines represent molecular functions, the black
lines represent KEGG pathways, and the gray lines represent −log10 (P value). Abbreviations are the same as in Figure 4.
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there has been little research on the function of miR-20b-5p
in CHD patients, and confirmation of its role requires
further research.

'e lncRNA RPL7AP11 (ribosomal protein L7a pseu-
dogene 11) is a pseudogene of ribosomal protein L7a
(RPL7A). Zhang et al. [36] found that RPL7A was down-
regulated in a vascular endothelial cell line (ECV 304) in-
duced by high-density lipoprotein. Pseudogenes, abundant
in the human genome, were traditionally considered to be
nonfunctional “junk” genes [37], although recent studies
have demonstrated their role in various diseases. However,
there has been limited research on RPL7AP11, and more
evidence is needed.

Our study has shown that RPL7AP11 can sponge hsa-
miR-17-5p and hsa-miR-20b-5p to upregulate UBC, thus
regulating the pathogenesis of CHD through cellular protein
metabolism.

'ere are several limitations to the present study. Firstly,
the sample was not large. An additional validation cohort
should be included in future studies to analyze the ex-
pression of these identified lncRNAs, circRNAs, miRNAs,
and mRNAs. Secondly, how these novel exosomal-associ-
ated ceRNA axes participate in the development of CHD is
still unclear. Further cell and animal experiments are needed
to verify these findings. Moreover, further studies should
focus on exploring the ceRNA networks between lncRNA/

Figure 6: Competing endogenous RNA interaction network. Note: the red circle represents mRNAs, blue triangle represents miRNAs,
brown hexagon represents lncRNAs, and purple diamond represents circRNAs. Abbreviations are the same as in Figure 1.
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circRNA in serum exosomes and miRNA-mRNA in target
recipient cells.

5. Conclusions

In conclusion, our comprehensive study identified several
exosomal-associated lncRNA/circRNA-miRNA-mRNA in-
teraction axes (RPL7AP11/hsa-miR-17-5p/UBC and
RPL7AP11/hsa-miR-20b-5p/UBC) in the progression of
CHD, which may be crucial targets for disease treatment.
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