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As part of the Comprehensive in vitro Proarrhythmia Assay initiative, methodologies for
predicting the occurrence of drug-induced torsade de pointes via computer simulations
have been developed and verified recently. However, their predictive performance still
requires improvement. Herein, we propose an artificial neural networks (ANN) model that
uses nine multiple input features, considering the action potential morphology, calcium
transient morphology, and charge features to further improve the performance of drug
toxicity evaluation. The voltage clamp experimental data for 28 drugs were augmented
to 2,000 data entries using an uncertainty quantification technique. By applying these
data to the modified O’Hara Rudy in silico model, nine features (dVm/dtmax, APresting,
APD90, APD50, Caresting, CaD90, CaD50, qNet, and qInward) were calculated. These
nine features were used as inputs to an ANN model to classify drug toxicity into high-
risk, intermediate-risk, and low-risk groups. The model was trained with data from 12
drugs and tested using the data of the remaining 16 drugs. The proposed ANN model
demonstrated an AUC of 0.92 in the high-risk group, 0.83 in the intermediate-risk group,
and 0.98 in the low-risk group. This was higher than the classification performance of
the method proposed in previous studies.

Keywords: proarrhythmicity, toxicology classification, comprehensive in vitro proarrhythmic assay (CiPA),
artificial neural network (ANN), in silico

INTRODUCTION

In 1999, the gastroprokinetic agent cisapride was recalled from the European pharmaceutical
market because it was associated with torsades de pointes (TdP) (World health Organizations,
2001; Roden, 2008). In 2005, the International Council for Harmonization (ICH) established
guidelines for the proarrhythmic assessment of drugs (Cavero and Crumb, 2005). This guideline
suggests that the cardiotoxicity assessment for drugs should be conducted according to the S7B
non-clinical evaluation and the E14 clinical evaluation guidelines. This conventional guideline
requires extensive trials and has high sensitivity but low specificity for the risk classification of
drugs. This means that even drugs that do not cause TdP are strictly regulated, negatively affecting
drug development (Colatsky et al., 2016).
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The Comprehensive in vitro Proarrhythmia Assay (CiPA)
project was then established, with 13 advanced medical
institutions attending the think-tank conference hosted by
the FDA headquarters in 2013 to revise the existing drug
development guidelines. The main change in the S7B non-
clinical evaluation guideline through the CiPA project was the
evaluation of the drug response of multiple ion channels using
the in silico method from the hERG channel single analysis
evaluation method through in vitro experiments (Crumb et al.,
2016; Oh et al., 2018).

Dutta et al. (2017) proposed an in silico model that
modified the human ventricular myocyte of Ohara’ Rudy (ORD)
model (O’Hara et al., 2011). This optimized the maximum
conductivities constant of the IKs, ICaL, IKr, INaL, and
IK1 ion channels to 1.870, 1.007, 1.013, 2.661, and 1.698,
respectively. This model corrected the maximum conductance of
the underestimated or overestimated channels, allowing the drug
response in the in silico model to be simulated similarly to that
obtained in vitro. By deriving the qNet (the sum of the charge
moving through six ion channels–INaL, ICaL, IKr, Ito, IK1, and
IKs) using an in silico model, a feature for classifying the risk of
TdP occurrence of drugs into high-, intermediate-, and low-risk
levels was established (Dutta et al., 2017).

Parikh et al. (2017) performed simulations by applying
drug effects to the ORD model to evaluate the drug response
of multiple ion channels in a complex method (O’Hara et al.,
2011). They extracted a group of TdP-inducing drugs from
the derived results using a logistic regression technique.
The 13 electrophysiological features (upstroke velocity, peak
voltage, APD50, APD at −60 mV, APD90, resting voltage, AP
triangulation, diastolic [Ca2+]i, the amplitude of CaT, peak
[Ca2+]i, CaTD50, CaTD90, CaT triangulation) used as inputs
to the logistic regression model were derived from in silico
simulations under the condition of effective free therapeutic
plasma concentration (EFTPC) and drug concentration when
blocking the IKr channel by 50%. Classification scores under
various basic cycle length (BCL) and ventricular tissue cell
conditions (Epicardium, myocardium, Endocardium) were
presented through a logistic regression-based classification
model that classifies drugs that are TdP-induced or non-
induced. In the EFTPC concentration condition, the
classification performance was at least 76 points and up to
85 points, and in the hERG IC50 concentration condition,
the performance was at least 77 points and up to 100 points
(Parikh et al., 2017).

Li et al. (2019) classified the risk of drugs using qNet
as an input to odds logistic regression model (Dutta et al.,
2017). qNet was calculated using the model that added the
hERG dynamic model to the modified ORD model (Dutta
et al., 2017). The risk groups of drugs were classified into
two qNet thresholds; the threshold for dividing the high-risk
and intermediate-risk groups was 0.0579 µC/µF while the
threshold for dividing the intermediate-risk and low-risk groups
0.0689 µC/µF. The classification accuracy was improved by
incorporating the hERG-dynamic model into the analyses (Li
et al., 2019). However, the disadvantages of this model include the
large amount of data processing and mathematical complexity,

such as in vitro experiments for parameter evaluation and
quantification of uncertainty.

Llopis-Lorente et al. (2020) proposed a new method for
classifying drug risk groups using nine decision trees. Three
features were used as inputs. The first is Tx (Romero et al.,
2018), which is the ratio of the drug concentration when
action potential duration 90% (APD90)increased by 10% and
the EFTPC concentration of each drug was calculated using the
model proposed by Dutta et al. The second feature, TqNet, is
the ratio of the calculated qNet value at 10 times the EFTPC
concentration and the qNet value at steady state (Dutta et al.,
2017; Llopis-Lorente et al., 2020). The third feature, Ttriang , is
the ratio of the difference between APD90 and APD30 calculated
at 10 times the concentration of EFTPC and calculated at steady
state. The classification accuracy of the drug risk groups was 0.899
when Tx was used as an input, 0.908 when Ttriang was used, and
0.917 for TqNet (Llopis-Lorente et al., 2020).

In summary, previous studies typically derived a single feature
such as APD90, qNet, or qInward which is considered to be
highly correlated with TdP risk and used them as biomarkers
to predict proarrhythmic drug by using binary classification
methods. However, the traditional binary classification methods
such as logistic regression and decision trees are simple linear
classification algorithm and not suitable to classify categorical
labels (Ismail et al., 2020).

Therefore, in this study, to increase the accuracy of drug
toxicity assessments, we propose a drug TdP induced risk
level classification model based on an artificial neural network
(ANN). This model has nine multiple input features that all
consider the action potential (AP) morphology, calcium transient
morphology, and charge features.

METHODS

Software and Data: Hill Fitting and
Bootstrap
For this study, the same data fitting method and in silico model
used by Li et al. (2019) were implemented based on the C++
language. We used the patch-clamp experiment data uploaded
to the GitHub website1 from the CiPA project group (Crumb
et al., 2016; Chang et al., 2017). Hill fitting was performed using
the experiment data of the six ion channel patch clamps of
the drug presented by Crumb et al. (2016). To quantify the
uncertainty of the experimental data, we extracted 2,000 Hill
coefficients and IC50 values for six ion channels by bootstrapping
within 95% of the confidence interval using the Markov chain
Monte Carlo (MCMC) model proposed by Chang et al. (2017).
The MCMC model derives the optimal Hill curve using the
least square method by inputting the experimental data such
as drug concentration, ion channel block percentage, and pace.
Based on the optimal Hill curve, 2,000 Hill curves within 95%
of the confidence interval are derived (bootstrapped) to extract
IC50 and Hill coefficients. Hill coefficients and IC50 values
modified the conductivity of the six ion channels, and the

1https://github.com/FDA/CiPA/
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resulting conductivity of these modified ion channels was applied
to the in silico simulations. Information on the IC50 and Hill
coefficients used can be found in the Supplementary Material.

In silico Simulation Protocol
The ORD model, modified by Dutta et al. (2017), was used as an
electrophysiological in silico model for cardiomyocytes (O’Hara
et al., 2011). We selected 28 drugs to devise a classification model
for the risk groups of drugs according to the CiPA project group
(Li et al., 2019). These drugs consist of eight high-risk, eleven
intermediate-risk, and nine low-risk groups, depending on the
risk of drug-induced cardiac arrhythmias (Table 1). The ion
conductance of the in silico model was modified through the
inhibition factor (Equation 1), and 2,000 samples of IC50 values
and Hill coefficients obtained from each drug via Hill fitting and
bootstrap were applied as inputs to the inhibition factor equation
(Li et al., 2019). The concentrations of the drugs were set at
1, 2, 3, and 4 times the maximum serum concentration (free
Cmax), which are the characteristic values of each drug. In total,
1,000 stimuli were applied with a stimulation period of 2 s, and
stimuli duration of 0.1 ms for 2,000 possible drug-affected in silico
models under four different concentrations of each drug.

Inhibition factor = [
1

1+
(
IC50
[D]

)h ]−1
(1)

Where IC50 is drug concentration for the 50% inhibition of ion
current, D is the drug concentration, and h is the Hill coefficient.

Feature Evaluation
Nine features related to TdP were derived through single-
cell electrophysiology simulations. These features include AP
features, calcium features, and ion charge features. Among the
AP features, the AP duration 90 (APD90) is the duration between
the depolarization point and the repolarization point 90% below
the maximum amplitude in the curve of the AP. APD50 is
the duration between the depolarization and repolarization
points 50% below the maximum amplitude in the AP shape.

TABLE 1 | Twenty- eight drugs selected by the CiPA research group into high,
intermediate, and low risk levels according to the possibility of causing Tdp (Li
et al., 2019). Twelve drugs were used during the machine learning training and
sixteen drugs were used during testing.

Used \risk level High Intermediate Low

TRAINING Quinidine Cisapride Verapamil

Sotalol Terfenadine Ranolazine

Dofetilide Chlorpromazine Diltiazem

Bepridil Ondansetrom Mexiletine

TESTING Disopyramide Clarithromycin Metoprolol

Ibutilide Clozapine Nifedipine

Vandetanib Domperidone Nitrendipine

Azimilide Droperidol Tamoxifen

Pimozide Loratadine

Risperidone

Astemizole

dVm/dtmax is the maximum slope when the membrane potential
is depolarized in the shape of the AP, and APresting is the resting
membrane potential. Calcium features include calcium transient
duration 90 (CaD90), which is the duration between 90% or
less of the maximum amplitude during the transient period of
influx calcium. CaD50 is the duration between 50% or less of
the maximum amplitude during the influx calcium transient.
Caresting is defined as the diastolic concentration of intracellular
calcium. The qNet of the ion charge features is the total amount
of ion charges that pass through the six ion channels (INaL, ICaL,
IKr, IKs, IK1, Ito) until the end of the BCL, and is calculated as
the sum of the integral of the current graph over time (Equation
1). qNet was described by Li et al. (2019) and was used as an
input feature to classify the risk of TdP-induced drugs using a
logistic regression model performed by Li et al., where qInward
is the amount of charge change through the ICaL and INaL ion
channels during the AP beat induced by the drug (Equation 3;
Chang et al., 2017).

qNet =
∫ BCL

0
( INaL+ ICaL IKr + IKs+ Ik1+ Ito )dt (2)

qInward = (ICaL_drug_AUC/ICaL_control_AUC

+INaL_drug_AUC/INaL_control_AUC)/2 (3)

Where _drug_AUC is the area under the current change
graph over time of each ion channel upon drug administration
conditions and _control_AUC is the area under the current
change graph over time of each ion channel in drug-
free conditions. The criteria for selecting APs for feature
calculation is that they should be the one AP with the
highest dVm/dtmax_repol value during repolarization, except if
depolarization or repolarization failed for the last 250 APs out
of 1,000 APs (Chang et al., 2017). That is, one AP shape having
the largest value is selected by comparing the slope value of
the repolarization period of 250 AP shapes. Nine features were
calculated from the selected AP. An in silico simulation was
performed for each drug concentration (Cmax, Cmax

∗2, Cmax
∗3,

Cmax
∗4), and the average value of the calculated nine features was

assigned as the input of the ANN model.

Artificial Neural Network Model
As proposed by CiPA, 12 drugs were used for model training,
and 16 drugs were used for testing (Colatsky et al., 2016; Li
et al., 2019; Figure 1). The proposed ANN model is composed
of an input layer with nine nodes that considered nine features
(dVm/dtmax, APresting, APD90, APD50, Caresting, CaD90, CaD50,
qNet, and qInward) as inputs, a hidden layer with five nodes,
and an output layer with three nodes (Figure 1). The physical
quantity and unit of the nine inputs are different. Their range is
significantly different; While APD ranges from 360 to 800 ms, the
qNet ranges from 0.03 to 0.08. nine input values were normalized
using the “MinMaxscaler” function. “ReLu” was used as the
activation function of the hidden layer, and the output layer is a
categorical output layer having three nodes, and the probability
at each node is calculated by the SoftMax activation function.
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We performed leave-one-out cross-validation to optimize the
model during training. This is a validation method that excludes
12 training drugs one by one in order. One excluded drug was
used as validation data and while the remaining 11 drug data
were used as training data. Leave-one-out cross validation allows
us to derive the most optimized model that is less affected by
the extreme tendency of drugs to elicit the effect of interest.
“Categorical_crossentropy” was used to calculate the difference
between the true class and the predicted class when learning an
ANN with an output layer having multiple labels. “Adam” is a
method of calibrating weights and biases during backpropagation
to minimize errors in the predicted class calculated through
training. The learning rate was set at 0.01, the batch size was set
to 32, and the Epoch was set to 100. The ANN code is available
along with this publication at https://github.com/Yedam-Y/
ANN_CiPA/. The data for ANN learning were acquired through
in silico simulations. Since 2,000 samples were obtained for each
drug and 12 drugs were obtained, a total of 24,000 samples were
used. Data for the ANN test were obtained from the 16 drugs.
There are 16 test drugs each with 2,000 samples. One dataset is
made by randomly extracting one sample from each of the 16
drug groups, and 10,000 datasets were created in this study. With
these 10,000 datasets, 10,000 ANN classifications were performed
to obtain 10,000 AUC values. The visual data explaining this is
shown in Supplementary Figure 2 (Li et al., 2019). As a test
result, the performance of the model was evaluated using the
area under the curve (AUC) corresponding to the area of the
receiver operating characteristic (ROC curve). Here, 95% of the
AUC and likelihood rate confidence intervals and the median
of the frequency distribution of 10,000 AUC results were set
as representative values to compare the results. Sensitivity and
specificity are solved as in Equations 4, 5. Based on the sensitivity
and specificity, the likelihood ratio is calculated (Equations 6,
7; Simundic, 2009). To prevent the denominator becoming 0, a
value of 10−3 was subtracted from the result of the specificity.

Sensitivity = True positive /(True positive+ False negative)
(4)

Specificity = True negative / (True negative+ False positive)
(5)

LR+ = sensitivity/(1−specificity) (6)

LR− = (1−sensitivity)/specificity (7)

For example, True positive means the number of drugs correctly
classified among high-risk drugs. False positive refers to the
number of drugs that are not in the high-risk group and
are incorrectly classified as high-risk drugs. True negative
refers to the number of drugs classified as non-high-risk
drugs as non-high-risk. False negative refers to the number
of drugs in a high-risk group that are incorrectly classified.
Sensitivity is the ratio of classifiers to positive among the
actual positives, and specificity is the ratio of classifiers to
negative among the actual negatives. The positive likelihood

rate is denoted as LR+ and the negative likelihood rate is
denoted as LR−.

RESULTS

The representative values of the AUCs obtained after 10,000 tests
using the learned ANN classifier developed in this study were 0.92
for the high-risk level, 0.83 for the intermediate-risk level, and
0.98 for the low-risk level. The median value in the histogram in
Figure 2 is the representative value of AUC, and the 95% range
of the confidence interval of the dataset is the verification range.
As for the classification accuracy of the logistic regression model
presented by Li et al. (2019), the representative AUC of the high-
risk level was 0.856 and the representative AUC of the low-risk
level was 0.86. Methodologically, the AUC of the intermediate
level could not be predicted. Therefore, the accuracy of the ANN
classifier developed in this study was 6.4% higher for the high-
risk level and 12% higher for the low-risk level than the accuracy
suggested in a previous study (Li et al., 2019). The minimum
value of the confidence interval for the ANN classifier was 4%
higher for the high-risk level and 9% higher for the low-risk level
while the maximum value in the confidence interval for the ANN
classifier was 10% higher at the high-risk level and 10.5% at the
low risk level (Table 2).

The positive likelihood ratio, which classifies the high-risk
groups, has a median value of 5 for the positive likelihood ratio
degree in the regression model and 5,000 for the ANN model.
The regression model was five times more likely to classify high-
risk groups as high-risk groups than the other risk groups. The
ANN model is 5,000 times more likely to classify high-risk
groups as high-risk groups than other risk groups. The negative
likelihood ratio was 0.556 in the regression model while it was
0.5 in the ANN model. The regression model was 1.8 times less
likely to classify high-risk groups into other risk groups than
it did classify high-risk groups. The ANN models was twice as
likely to classify high-risk groups as intermediate-risk or low-
risk groups. The positive likelihood ratio in the intermediate-risk
group was 2.249 and the negative likelihood ratio was 1.8× 10−4

in the ANN model. This was not presented in the regression
model. In the ANN models, the likelihood of classifying an
intermediate-risk group as an intermediate-risk group was 2.249
times higher than that of other risk groups, and 5.6 × 103

times less likely to classify the intermediate-risk group as a
different risk group.

The positive likelihood ratio in the low-risk classification is
2.01 in the regression model and 6,000 in the ANN model. In
regression models, the likelihood of classifying low-risk groups
as low-risk groups was twice as likely as that of other risk groups.
In ANN models, the likelihood of classifying low-risk groups as
low-risk groups was 6,000 times more likely than that of other
risk groups. The regression model has a negative likelihood ratio
of 0.118 and a ANN model has negative likelihood ratio of 0.4.
In the regression model, it was 8.5 times (1/LR-) less likely to
classify low-risk groups into other risk groups. ANN models were
2.5 times less likely to classify low-risk groups into other risk
groups (Table 2).
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FIGURE 1 | Schematic diagram of an artificial neural network model consisting of an input layer with 9 nodes, a hidden layer with 5 nodes, and an output layer with
3 nodes. dVm/dtmax is the maximum slope when the membrane potential is depolarized in the shape of the action potential; APD90 is the duration between the
depolarization point and the repolarization point 90% below the maximum amplitude in the shape of the action potential; APD50 is the duration between the
depolarization and repolarization points 50% below the maximum amplitude in action potential shape; APresting is the resting membrane potential; CaD90 is the
duration between 90% or less of the maximum amplitude during the transient period of intracellular calcium; CaD50 is the duration between 50% or less of the
maximum amplitude during the intracellular calcium transient; Caresting is the diastolic concentration of intracellular calcium; qNet is the total amount of ion charges
that have moved through the six ion channels (INaL, ICaL, IKr, IKs, IK1, Ito) during the action potential duration; qInward is the average of the ratio between the drug
reaction and the steady state of charges directed to the cell through the ICaL and INaL ion channels during the action potential period.

FIGURE 2 | Histogram representing the frequency of AUCs obtained after 10,000 tests. (A), high risk group; (B), medium risk group; (C), low risk group.

DISCUSSION

In this study, a ANN model was developed to evaluate
drug cardiotoxicity by inputting nine multiple features values,
including AP morphology (APD90, APD50, dVm/dtmax, and
APresting), calcium transient morphology (CaD90, CaD50, and

Caresting), and charge features (qNet and qInward). An in silico
simulation using the Dutta model was performed to derive nine
features values. As for the performance of the classification
algorithm, when comparing the results through the same in silico
model and validation method as performed by Li et al., our
performance was 10.2% higher at the high-risk level and 6.7%
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TABLE 2 | In this study, a comparison of the accuracy of prediction of
Tdp-induced risk levels when using an artificial neural network (ANN) model and a
logistic regression model proposed by the Li group was performed (Li et al., 2019).

Model Logistic regression ANN

AUC of High risk group 0.86 (0.81–0.9) 0.92 (0.85–0.96)

AUC of Intermediate
risk group

— 0.83 (0.73–0.91)

AUC of Low risk group 0.86 (0.82–0.90) 0.98 (0.91–1)

Likelihood + of High
risk group

5 (3.33–12.5) 5,000 (4,000–6,000)

Likelihood − of High
risk group

0.556 (0.278–0.588) 0.5 (0.40–0.59)

Likelihood + of
Intermediate risk group

— 2.249 (1.80–2.25)

Likelihood − of
Intermediate risk group

— 0.18e-3 (0.18e-3–0.26)

Likelihood + of Low
risk group

2.01 (1.61–2.84) 6,000 (4.39–6,000)

Likelihood − of Low
risk group

0.118 (1.8e-06–0.284) 0.4 (0.4–0.66)

higher in the low-risk level compared to the classification
performance presented by Li et al. In addition, by using an ANN
instead of the logistic regression classification method used by
Li et al., it was possible to explicitly classify not only high-and
low-risk levels, but also intermediate-risk levels.

We selected 9 TdP prediction biomarkers as input indicators
of the ANN model. The 9 indicators were selected from
13 indicators (dVm/dtmax, Vmpeak, APresting, APD90, APD50,
APDtriangulation, Capeak, CaD90, CaD50, CaDtriangulation, qNet,
and qInward) from previous studies. The four excluded
indicators are Vmpeak, the peak value of the AP, and Capeak,
the peak value of the Calcium transient shape, and APD
triangulation, the difference between APD90 and APD50, and Ca
triangulation, the difference between CaD90 and CaD50. Vmpeak
and Capeak were excluded because it relied on time steps in silico
simulation. Since APDtriangulation is dependent on APD90 and
APD50, and Catriangulation is dependent on CaD90 and CaD50,
they were excluded because of their high correlation (May et al.,
2011). So, 9 indicators were finally selected, and as a result of
the test by setting input indicators in various combinations (19
cases) between nine indicators, the performance of using all nine
indicators was the best (Supplementary Table 5). The index that
most influences the classification performance of high-risk and
low-risk groups is dVm/dtmax, and the performance of eight
indicators excluding this indicator was 7% lower in the high-
risk group and 27% lower in the low-risk group than in the
results of using nine indicators. The index that most affects the
classification performance of the intermediate-risk group was
qInward, and when this indicator was excluded, the performance
of the intermediate-risk group decreased by 37%. Through this
analysis, nine input indicators were finally selected as input
features of the artificial intelligence classifier.

When performance was evaluated on the basis of diagnostic
accuracy as proposed by Li and Šimundić (Simundic, 2009; Li
et al., 2019), the AUC value was in the “excellent” accuracy

range of 0.9 or higher for high-risk and low-risk groups. The
intermediate-risk AUC performance was more than 0.8. in the
Li group evaluation criteria range is “good,” and in the evaluation
criteria of Šimundić, the range is of “very good” accuracy. The
accuracy of LR+ was higher than 10 for the high-risk and low-
risk groups, which are classified as “excellent” in the Li group and
were also good indicators in the criteria proposed by Šimundić.
The LR+ in the intermediate-risk group is 2, which was the
minimum acceptable performance on the basis of the Li group.
The LR- was the least acceptable performance on the basis of
the Li group in the high-risk and low-risk groups, while that
of the intermediate risk group was considered “excellent.” The
results show that the ANN model addresses the problem of low
specificity, which was the problem faced by the hERG assay as
evaluated using the existing ICH S7B guidelines (Colatsky et al.,
2016; Lancaster and Sobie, 2016).

Disopyramide and azimilide in the high-risk group were
classified as intermediate-risk groups. Loratadine and tamoxifen
in the low-risk group were classified as intermediate, and
our model predicted all four incorrectly classified drugs as
intermediate. The results for each drug classified risk group
are attached in Supplementary Table 6. The classification
performance of qNet calculated through the model using hERG
dynamic drug binding in the Li group predicted disopyramide
of high-risk drugs as an intermediate-risk group (Li et al.,
2019). Clozapine and risperidone of intermediate-risk drugs were
indicated as low-risk groups, and domperidone was predicted as
high-risk groups. Low-risk drugs metoprolol were classified as
intermediate-risk groups. Li group has 11 accurately classified,
and our model has 12 accurately classified. Disopyramide was
a drug that was difficult for the Li group and our model
to predict in common. One of the reasons why drugs are
misclassified is that the influence of drugs implemented in
the in silico model based on the IC50 and Hill coefficients
does not fully implement complex pharmacokinetic reactions.
In addition, since the label of TdP risk group was determined
by clinical trials, it is difficult to say that the cell model fully
represents the drug response at the organ-level. Misclassification
was also observed in previous studies. For example, CaD90
measured through human stem cells was changed (prolonged;
nitrendipine, nifedipine, or shortened; metoprolol) in three
properly classified drugs among the five drugs, but no significant
changes were observed in two misclassified drugs (loratadine
and tamoxifen). As such, it has already been reported that
drugs misclassified by the in silico stage are already inconsistent
in the in vitro assay stage. In addition, disopyramide and
azimilide in high-risk groups were classified as intermediate-
risk groups in both regression models using Bnet (Han et al.,
2019). Bnet, a TdP predictor calculated by IC50 and Hill
coefficients, shows the highest performance among indicators
using experimental parameters to date, but failed to correctly
classify disopyramide and azimilide.

A limitation of this study is that the nine parameters should
be provided as input values for the toxicity assessment classifier.
The values obtained in this study were significantly more than
the only one input value required in previous studies. To
obtain nine reliable parameters, the sufficient reliability of the
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physiological/pharmacological in silico model of cardiomyocytes
should be supported. A second limitation of this study is
that, in previous studies, risk groups were classified based
on the threshold values of physiologically/pharmacologically
meaningful parameters, such as qNet, qInward, and TqNet.
However, the ANN model proposed in this study does not
provide an explicit threshold for such classification. This means
that when the researcher uses this artificial neural network
classifier for cardiac toxicity evaluation, it is difficult to evaluate
the results classified through ANN based on clinical validity.
The above two limitations will be inevitably encountered if an
ANN-based machine learning method is used. Nevertheless, it
would be highly meaningful in the field of new drug development
research to develop an algorithm with higher toxicity assessment
and classification performance than what has been proposed in
previous studies.
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