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Abstract

The Pop-Gen Pipeline Platform (PPP) is a software platform for population genomic analyses. The PPP was designed as a
collection of scripts that facilitate common population genomic workflows in a consistent and standardized Python
environment. Functions were developed to encompass entire workflows, including input preparation, file format con-
version, various population genomic analyses, and output generation. The platform has also been developed with
reproducibility and extensibility of analyses in mind. The PPP is an open-source package that is available for download
and use at https://ppp.readthedocs.io/en/latest/PPP_pages/install.html.
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Since the advent of genomics, population genetics has be-
come dominated by complex statistical and computational
methodologies (Charlesworth and Charlesworth 2016;
Casillas and Barbadilla 2017). An unfortunate consequence
of this fact is that many investigators lack the necessary
resources or time to independently implement many of these
methodologies. Investigators must often select from a variety
of applications for making particular transformations to data
or for conducting particular analyses; and frequently they face
unfamiliar input and output formats that may not be intui-
tive or accessible. These challenges are amplified when anal-
yses require a multi-step pipeline that incorporates a series of
transformations and analyses in a specific order.

For investigators working with multiple aligned genomes,
these challenges have been partially met by the development
of software packages or “tool-kits” that provide for a variety of
basic operations and analyses, including vcftools (Danecek
et al. 2011), bcftools (Li et al. 2009), and PLINK (Chang
et al. 2015). However the functionality of these packages
does not extend to more complex transformations and anal-
yses, and their placement in pipelines does not overcome the
frequent challenges around reproducibility that arise when
implementing complex protocols for population genomic
analysis (Mesirov 2010; Baker 2016; Lithgow et al. 2017).

The Pop-Gen Pipeline Platform (PPP) was designed to be
an easy-to-use bridge between lower level utilities for manip-
ulating data files and higher level genomic applications. This is
achieved through a set of basic Python classes and wrapper
scripts that operate on standard data file types, as well as
scripts that carry out basic population genomic analyses,

and scripts that generate files in formats required by widely
used population genomic applications. To demonstrate both
the simplicity and the comprehensive nature of the PPP, we
designed and implemented a population genomic analysis of
publicly available data from chimpanzees (Prado-Martinez
et al. 2013) using only the PPP.

New Approach

Design
The PPP was written in the Python programming language
and designed to operate using Python 3. The PPP was
designed as a collection of modular functions (fig. 1) that
may be combined to offer a wide variety of analyses and
pipelines required by population geneticists. The core func-
tions of the PPP—that is, functions commonly used among
analyses—were designed to operate using VCF-based file for-
mats (Danecek et al. 2011). Most runs in the PPP will begin
with these core functions, and then branch off into the de-
sired combination of analysis-specific functions. In this way
the PPP is intended to help investigators move from general
population genomic file formats by providing easy ways to
filter and manipulate data and to generate application spe-
cific file formats. This design was chosen to avoid superfluous
conversions, many of which are computationally intensive.
Also, where possible, the PPP integrates frequently used tools,
software packages, and statistics, such as the inclusion of both
BEAGLE (Browning and Browning 2007) and SHAPEIT
(O’Connell et al. 2014) in our phasing function.
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To simplify pipeline development for prospective users, we
have designed each function to operate within Jupyter note-
books (Kluyver et al. 2016). Jupyter notebooks provide an in-
tuitive and well-documented programming environment that
allows code to be written and executed alongside relevant
visualizations and text. This enables prospective users of the
PPP to easily share entire pipelines, as a notebook may also
contain all necessary information for correctly operating the
pipeline in addition to displaying plots and figures to examine
the output of specific analyses. Another critical feature of
Jupyter notebooks, is the ability to separate code—for exam-
ple, a single function or procedure—into a cell, which allows
the separated code to be independently executed. This allows
for prospective users to easily examine intermediate results
and test code without harming downstream procedures.

A key feature of the PPP is the Model class, which specifies
the populations and individuals, assigned to populations, to
be used in an analysis. Model information is stored with a
JSON-based Model file format, and a Model file can be used to
store multiple population models, including the relevant
details of each model (i.e., populations, individuals, and other
relevant meta-data). A primary benefit of the Model file is the
ability to automatically assign information from the specified
model to functions, such as the populations and their asso-
ciated individuals. This file also simplifies record keeping as it
becomes the repository for model-related information.

Example
As shown in table 1, the PPP exists as a set of scripts grouped
under “Core Functions,” “Utilities,” “Analyses,” and “Input File
Generators” (see also fig. 1). The Utilities scripts provide low
level operations on VCF files (sometimes in tandem with a BED
file that specifies one or more genomic regions). The CORE
Functions scripts provide higher level operations on VCF files,
including the generation of data summaries, and four-gamete
tests (Hudson and Kaplan 1985). The Analyses scripts will carry
out advanced analyses, including linkage disequilibrium calcu-
lations, the generation of multi-dimensional site frequency spec-
tra (e.g., as used by ARLEQUIN [Excoffier and Lischer 2010] and
fastsimcoal2 [Excoffier and Foll 2011]), conducting Isolation-
with-Migration (IM) analyses using IMa3 (Hey et al. 2018), com-
puting f-statistics using EIGENSTRAT (Price et al. 2006), and
estimating population structure using ADMIXTURE
(Alexander et al. 2009). The Input File Generator scripts can
carry out format conversions (e.g., VCF to PED), as well as pre-
pare input files for IMa3 (Hey et al. 2018), G-Pho-CS (Gronau
et al. 2011), dadi (Gutenkunst et al. 2009), EIGENSTRAT (Price
et al. 2006), ADMIXTURE (Alexander et al. 2009), fastsimcoal2
(Excoffier and Foll 2011), and treemix (Pickrell and Pritchard
2012). Finally, the PPP includes a Model creation script which
allows for easy creation of JSON formatted Model files, to be
used in conjunction with all the methods described above.

Here, we provide an example of end-to-end pipeline that
demonstrates many of the features of the PPP. The starting
point is a VCF file (Danecek et al. 2011) that contains multiple
aligned genomes from four subspecies of chimpanzees
(Prado-Martinez et al. 2013). The endpoint is an IM analysis
which includes estimates of population sizes, migration rates,

and divergence time. This type of analyses employs a number
of assumptions that require careful filtering of the data (Hey
and Nielsen 2004). We selected two closely related popula-
tions—Central chimpanzees (Pan troglodytes troglodytes) and
Western chimpanzees (Pan t. verus), as the demographic his-
tory of the two subspecies has been extensively studied using
IM analyses (Won and Hey 2005; Sethuraman and Hey 2016;
Chung and Hey 2017; Hey et al. 2018). In particular, we fo-
cused on the original IM analyses which used a set of 48 hand-
curated loci (Won and Hey 2005) and compared those results
with those found using a new data set generated using PPP.
Details of the PPP commands are provided in supplementary
methods, Supplementary Material online.

The first procedure in our pipeline used the VCF-filter
function to select a subset of seven individuals specified in
a Model file, and to remove sites unsuitable for our analysis
(fig. 2A and B). VCF-filter is a comprehensive VCF filtering
system, with capabilities similar to vcftools (Danecek et al.
2011) and bcftools (Li et al. 2009) (see table 1 for available
filters). VCF-filter is especially versatile in being able to simul-
taneously invoke inclusion and exclusion filters. Using VCF-
filter we were able to easily generate a VCF that included only
the relevant individuals, excluded the sex chromosomes and
sites with missing data, and included only biallelic sites.

We next used the PPP to generate a coordinates file (a BED
file) of genomic regions that were at least 10 kb pairs from
chimpanzee genes and not-overlapping repetitive and low
complexity sequences (see supplementary methods,
Supplementary Material online). Following this we used the
PPP’s informative-filter to identify regions with sufficient var-
iants for an IM analysis from our coordinates file (fig. 2C–F).
Informative-filter is a loci-filtering function and will remove
loci from a BED or PPP-created statistic file if they lack suffi-
cient variants for subsequent analyses. The function may also
be configured to define what is counted as variants (e.g.,
indels, variants within CpG sites) or may be used to remove
loci with too much missing data or of insufficient length (see
table 1 for details). We then sampled 300 of these regions
and generated a VCF file for each one using vcf_split.py (see
supplementary methods, Supplementary Material online).

Finally, processing of individual loci required haplotype
phasing and identification of regions consistent with a lack
of recombination following the four-gamete criterion
(Hudson and Kaplan 1985). We used VCF-phaser, which in-
voked the BEAGLE program to generate phased data for each
of the sampled loci, as required of IM analyses (fig. 2J and K).
VCF-phaser may be configured to use either SHAPEIT
(O’Connell et al. 2014) or BEAGLE (Browning and Browning
2007), and is capable of phasing VCFs, whether they include a
single locus or multiple chromosomes. To maintain the ver-
satility of different phasing algorithms, all algorithm-specific
options are configurable within VCF-phaser including the
ability to specify reference panels.

Like many genealogy samplers, an IM analysis using IMa3
assumes that recombination has happened only between sam-
pled loci (Won and Hey 2005). To help meet this assumption, it
is common to sample loci that do not show evidence of re-
combination (Woerner, Cox, and Hammer 2007; Hey and
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Table 1. Comprehensive List of Functions Developed into PPP, Including Filters, File-converters, Data Analyses, and Other Utilities.

Function Type Script Name Capabilities

Core (VCF-based) vcf_filter Include/exclude variants sites by: allele count (i.e., biallelic,
multiallelic, invariant), genomic position, missing data
count and percentage, MAF, MAC, presence of indels,
SNP IDs, and association with a specific flag (i.e., PASS).

Core (VCF-based) informative_loci_filter Include/exclude loci by: variant site count, missing data
count, and locus length. Control variant count by: ig-
noring indels, ignoring multiallelic variants, and ignoring
variants within CpG sites.

Core (VCF-based) vcf_calc Compute summary statistics from a variant file, including
Tajima’s D, and Weir and Cockerham’s FST.

Core (VCF-based) vcf_split Uses a BED file of coordinates, or summary statistics to
generate separate variant files for each locus or
individual.

Core (VCF-based) vcf_phase Allows for phasing of variant files by invoking either
BEAGLE, or SHAPEIT.

Core (VCF-based) vcf_four_gamete Outputs regions of no recombination upon conducting a
four-gamete test between pairs of variants. Given phased
input with individual variants over a region of the ge-
nome, this function generates an interval within those
variants that passes the four-gamete filtering criteria,
then returns either that interval or an output file with
variants in that interval.

PPP utilities stat_sampler Computes summary statistics distributions, and pseudor-
andomly generates subsampled variants/loci either us-
ing a uniform sampling scheme, or randomly sampling
within bins of statistics.

PPP utilities bed_utilities Automates various utilities for BED-formatted files. This
currently includes: 1) sample a BED file; 2) subtract from
a BED that overlap with a second BED file; 3) extend a
BED upstream, downstream, or both upstream and
downstream; 4) sort a single BED; 5) merge features
within one or more BED files; 6) create a BED of com-
plementary features.

PPP utilities vcf_utilities Implements various utilities for manipulation of VCF files,
including obtaining a list of the chromosomes within a
VCF-based file, obtaining a list of the samples within a
VCF-based file, concatenating multiple VCF-based files,
merging multiple VCF-based files, and soring a VCF-
based file.

PPP utilities vcf_bed_to_seq Obtains sequences given a BED coordinates file, and a VCF
file.

PPP input file generators vcf_to_ima, vcf_to_gphocs, vcf_format_con-
versions, vcf_to_fastsimcoal, vcf_to_tree-
mix, vcf_to_dadi

Conversion scripts that take a variant call format (VCF) file
as input, and convert to formats used by IMa3, G-PhoCS,
dadi, TREEMIX, and fastsimcoal2.

PPP analyses eigenstrat_fstats Contains functions that automate the calculation of mul-
tiple admixture statistics, including: Patterson’s D, F4
statistic, F4-ratio statistic, and F3 statistic.

PPP analyses admixture Automates the estimation of individual ancestries using
Admixture. The functions allows for input as: 1) Binary-
PED files or 2) PED 12-formatted files. The function is
also capable of configuring the optional arguments of
ADMIXTURE.

PPP analyses ima3_wrapper Automates the estimation of evolutionary history using
IMa3.

PPP analyses plink_linkage_disequilibrium Automates the calculation of multiple LD statistics using
PLINK.

PPP analyses vcf_to_sfs Automates generating the site frequency spectrum (SFS)
for a population model from a VCF file.

Model creation model_creator Used to produce Model files by either: 1) manually entering
the necessary information or 2) by using files with the
relevant information. It is also all possible to create
multiple models simultaneously and assign populations
to more than a single model.
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FIG. 1.. Structure of the PPP. PPP functions are grouped into four categories: 1) the Core PPP functions that operate on VCF files; 2) the optional
BED and STAT functions which may be used to sample, filter, and/or edit BED or STAT files; 3) the conversion functions which are required to
convert from VCF to analysis-specific file formats; and 4) the analysis functions which are used to automate their respective analyses.
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Wang 2019). We used the PPP’s Four-gamete Test function to
generate VCF files of these subsequences (fig. 2G–I). Four-
gamete Test implements the four-gamete test (Hudson and
Kaplan 1985) and will identify (where possible) a haplotype
block that does not contain variants in intervals that show
evidence of genealogy with recombination—that is, a pair of
biallelic segregating sites displaying all four possible gametes.
The function is highly configurable, including options to require
subsequences to include a minimum number of variants, ignore
missing data or multiallelic sites, and return either a single or all
compatible subsequences. Using Four-gamete Test we were

able to limit our locus VCFs to a single subsequence capable
with the model assumption of no recombination.

Finally, before proceeding to the IM analysis, we used the
PPP’s vcf-to-ima function to convert the individual locus
VCFs into a single IM-formatted file compatible with IMa3.
vcf-to-ima is a specialized conversion program and is capable
of generating an IM-formatted file from collection of VCF files,
a Model file, and other configurable model parameters. Once
the conversion process was finished, we used the PPP’s ima3-
wrapper function to perform an IM analysis. ima3-wrapper is
an IMa3 wrapper that is capable of passing all necessary

FIG. 2.. Examples of operations within the PPP. (A) Given a VCF, the filtering function identifies two variant sites to remove: 197557 (highlighted in
orange) due to not passing all filters—that is, PASS—and 198510 (red) due to being triallelic. (B) Once all filters have been applied, a filtered VCF
will be produced. (C) Many operations require loci (as coordinates) within a VCF to be defined using a BED file. (D) Given a VCF and a BED file, the
loci-filtering function will confirm that each locus contains at least four variant sites. (E) Once all loci-filters have been applied, a filtered BED file will
be produced. (F) Given a BED file, the bed sample utility may be used to pseudorandomly sample a BED file to reduce the number of loci to specific
number. (G) The four-gamete test requires each locus to be within a separate VCF, which may be produced using the splitting function. (H) Given a
locus-VCF, the four-gamete test function is capable of identifying compatible haplotypes. In this example, the haplotypes from 196944 to 197337
and from 199256 to 199492 (highlighted in red) both fail as all possible haplotypes are observed. (I) Once the four-gamete test has been applied,
compatible locus-VCFs will be produced. (J) VCFs may also contain unphased samples, the phasing function using either SHAPEIT or BEAGLE. (K)
Once the haplotype estimation is complete, a phased VCF will be produced.

Webb et al. . doi:10.1093/molbev/msab113 MBE

3482



parameters to IMa3, including the number of cores to be used
for a parallel run. Using ima3-wrapper we generated an out-
put file with estimates of our desired population model
parameters (migration rates, population sizes, and divergence
times), with confidence intervals around these estimates.

Results
To demonstrate the capabilities of the PPP, we generated and
analyzed an IMa3 input file with 200 loci from a starting point
of a chimpanzee genome VCF file from the Great Ape
Genome project (Prado-Martinez et al. 2013). We compared
the results for two chimpanzee populations with a previous
study that used a set of 48 hand-curated loci that were on
average �1/4 the length, relative to those generated using
PPP (649 base pairs, compared with 2,436) (Won and Hey
2005). We found our estimates of the divergence time, the
ancestral chimpanzee population size, migration rates, and
the populations sizes of the extant chimpanzee popula-
tions—Central chimpanzees (P. t. troglodytes) and Western
chimpanzees (P. t. verus) to be very close to the previous

study, including the finding of significant gene flow from P.
t. verus to P. t. troglodytes (table 2).

Discussion
The primary goal behind the development of the PPP was to
create an accessible platform for population genomic analy-
ses; one that investigators could use to easily get from sets of
aligned sequences (as VCF files) to the carrying out of com-
plex downstream applications applied to one or more user-
defined sampling models. To demonstrate, we examined the
demographic history of two chimpanzee subspecies and com-
pared the results to previous findings (Won and Hey 2005;
Chung and Hey 2017; Hey et al. 2018). We found that the PPP
greatly simplified the generation of IMa3 input files.
Assembling the pipeline was a straightforward process as
the majority of functions could be invoked in tandem with-
out requiring intermediate processing steps. We were also
able to quickly process the VCF input for our IM analysis as
the majority of PPP functions required <5 min to operate,
with the exception being the initial filtering procedure which

Table 2. Evolutionary History of Central and Western Chimpanzees, Estimated Using PPP and IMa3.

Subspecies Analysis Parametera Estimateb 95% Confidence Interval

Pan troglodytes troglodytes IM N 33,640 24,260
54,601

PPP, IMa3 N 59,911 51,743
71,509

Pan troglodytes verus IM N 9,187 6,333
14,196

PPP, IMa3 N 9,270 8,372
10,414

Ancestor IM N 6,303 614
17,092

PPP, IMa3 N 7,474 5,922-9,107

IM t 758,504 495,003-1,390,904

PPP, IMa3 t 740,662 668,662-829,212

P. t. t. fi P t. v. IM m 6.83E–08 1.07E–07
1.25E–05

PPP, IMa3 m 1.89E–06 3.79E–06
3.01E–07

IM 2Nm 0.00126 —
PPP, IMa3 2Nm 0.03314 —

P. t. v. fi P. t. t. IM m 7.79E–06 2.40E–06
1.93E–05

PPP, IMa3 m 2.63E–06 4.47E–06
9.56E–07

IM 2Nm 0.5243 —
PPP, IMa3 2Nm 0.2995 —

aEstimates for intervals for population size (N), splitting time (t in years), migration rate (m per gene copy per generation), and population migration rates (2Nm) scaled by the
geometric mean of mutation rates. IM (Hey and Nielsen 2004) results were obtained from the first IM analysis of P. t. troglodytes and P. t. verus (Won and Hey 2005), which used
48 hand curated loci and the original IM program (Hey and Nielsen 2004).
bMaximum likelihood estimates. To convert primary parameter estimates, which are scaled by the geometric means of mutation rates, we used the geometric mean of locus-
wide mutation rates per year, assuming a per year rate of 1.2e-8 per base (Scally and Durbin 2012) and 24.5 years per generation (Langergraber et al. 2012). For the 48 loci in the
original IM study, the value was 2.65654E–07 per year, whereas the corresponding rate was 9.97486e–07 for the longer loci sampled using PPP.
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took roughly 50 min. The IMa3 run on 200 loci required
�40 h on 20 CPUs. We also found that repeating our analy-
sis—either to explore the results of different parameters, re-
produce our findings, or remedy errors—was a simple
process.

Although our overview of the PPP focused on performing
an IM analysis, the PPP was designed to easily allow the
implementation of many other analyses. For example, we
could easily modify our example IMa3 pipeline to generate
input files for studying population structure using
ADMIXTURE (Alexander et al. 2009), or test for introgres-
sion using AdmixTools (Patterson et al. 2012), or linkage
disequilibrium using PLINK (Chang et al. 2015).
Additionally, PPP includes functions for running a variety
of commonly used population genomics tools, including
EIGENSTRAT (Price et al. 2006) and generate site frequency
spectrum (SFS) data that can be extended to tools, such as
fastsimcoal2 (Excoffier and Foll 2011) and ARLEQUIN
(Excoffier and Lischer 2010).

It is also possible to operate analyses external to the PPP by
directly calling an executable or creating a script, both of
which could ideally be shared using a Jupyter notebook.
Examples of Jupyter notebooks to run PPP analyses have
been described in the online documentation and GitHub
pages for the project. To promote extensibility of the pipeline,
we invite the population genetics community to contribute
toward developing additional tools into PPP. Details on con-
tributing to the project are described at https://ppp.readthe-
docs.io/en/latest/index.html.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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