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Abstract

Determining the regulation of metabolic networks at genome scale is a hard task. It has been hypothesized that biochemical
pathways and metabolic networks might have undergone an evolutionary process of optimization with respect to several
criteria over time. In this contribution, a multi-criteria approach has been used to optimize parameters for the allosteric
regulation of enzymes in a model of a metabolic substrate-cycle. This has been carried out by calculating the Pareto set of
optimal solutions according to two objectives: the proper direction of flux in a metabolic cycle and the energetic cost of
applying the set of parameters. Different Pareto fronts have been calculated for eight different ‘‘environments’’ (specific time
courses of end product concentrations). For each resulting front the so-called knee point is identified, which can be
considered a preferred trade-off solution. Interestingly, the optimal control parameters corresponding to each of these points
also lead to optimal behaviour in all the other environments. By calculating the average of the different parameter sets for the
knee solutions more frequently found, a final and optimal consensus set of parameters can be obtained, which is an
indication on the existence of a universal regulation mechanism for this system.The implications from such a universal
regulatory switch are discussed in the framework of large metabolic networks.
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Introduction

For decades the regulation of metabolic networks at genome

scale and its mechanisms has been studied to further our

understanding of this process, especially after the massive increase

of sequencing data during the post-genomic era. Cell regulation

can be accomplished through two complementary strategies.

Genetic regulation (genetic circuits) occurs at genome level,

controlling the expression of certain genes. This regulation affects

the presence or absence of enzymes in the metabolic network. On

the other hand, post-transcriptional regulation operates in two

forms: RNA mediated regulation and the dynamic control of

enzyme activities. The latter is achieved by the activation or

inhibition of certain enzymes by means of controlling metabolites,

as is the case with allosteric regulation.

The idea that the metabolic pathways and regulation strategies

that take place in a cell are the result of an evolutionary

optimization process is widely accepted [1,2]. Optimality princi-

ples have also been used to explain the structure of genetic

networks [3,4]. However, when it comes to defining the objective

function that characterizes such evolutionary optimization, many

uncertainties remain [5,6,7,8]. Depending on the case in question,

different criteria must be satisfied. Generally, in studies concerning

metabolic networks the most frequently chosen objective is the

maximization of metabolic reaction rates, or steady-state-fluxes.

However, other criteria such as the maximization of the

concentration of metabolites [9,10], enzymes, or other metabolic

performances could be considered. A more realistic alternative is

to take more than one criterion into account, an approach that

may be closer to the way in which nature has acted in the

evolutionary process of optimization. In this way multi-criteria

optimization plays an important role since it considers the

simultaneous optimization of several objectives. Multi-objective

optimization has already been used in different biological contexts.

Handl et al published in 2007 an exhaustive review [11] about the

application of multi-objective optimization in fields such as

supervised and unsupervised classification of biological data, gene

regulatory networks inference, sequence and structure alignment,

protein structure prediction or optimization of biochemical

processes among others. Several authors have performed prelim-

inary research on the application of multi-objective optimization

methods to reverse-engineering gene networks [12,13,14]. More

specifically, this kind of optimization has also been used to search

patterns or unique optimal solutions. In [15] the authors find that

in different organisms the best-trade-off phenotypes were weighted

averages of phenotypes specialized for single tasks. Furthermore

Chubukov et al [16] found a pattern which relates the regulatory

architecture of several yeast metabolic pathways to the gene

expression response by searching a trade-off between two
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objectives: the cost of making a protein and the benefits of making

it (its cellular function). This kind of works reveal that multi-

objective optimization can, on the one hand contribute to find

such patterns, and on the other hand to provide a closer

approximation to natural evolutionary processes.

Unfortunately, finding a regulation design of a metabolic system

as a result of an optimization process is an NP-hard problem in the

majority of cases [7,10]. The complexity and non-linearity of

metabolic systems make the task of obtaining global optima in

reasonable times impossible in many cases. In these situations the

so-called stochastic global optimization methods, such as genetic

algorithms or simulating annealing among others, can at least

locate a near globally optimal solution, although they do not offer

a full guarantee that the global optimum has been achieved [7].

In their work in 1995 [17], Gilman and Ross proposed a genetic

algorithm (GA) to optimize the parameters governing a post-

transcriptional regulation model. Their model studied the dynamic

regulation of allosteric enzymes and idealized an animal cell that

metabolizes blood glucose for energy as long as the glucose

concentration in the blood is adequate, but synthesizes glucose for

export if the glucose concentration in the blood drops too low. The

end goal of Gilman and Ross was to find a regulation pattern

which could perform optimally in different time-varying courses of

concentrations of glucose inside and outside the cell. However,

after running the GA on different courses no global winner was

found. Their work showed the presence of ‘‘generalist solutions’’,

which performed well on one or several courses, and ‘‘specialist

solutions’’, which performed well on a single course but poorly on

the others [17].

In this paper we take up again the challenge of finding a

universal pattern of post-transcriptional dynamical regulation for

this kind of model, set out by Gilman and Ross. We accomplish

this goal through the study with different global optimization

techniques and within the context of multi-criteria optimization.

The latter has been carried out by calculating the Pareto-optimal

[18] set of solutions according to two objectives. This set of

solutions is considered to be a family of optimal solutions in the

sense that it is not possible to improve one of the objectives without

worsening the other; any choice of a unique solution would be a

trade-off between both objectives.

The aim of this kind of optimization is to find a potentially

universal mechanism of regulation of a specific metabolic network,

by simulating the natural evolutionary optimization process.

Materials and Methods

In this work we have used the model examined by Gilman and

Ross [17], depicted in Fig. 1A, which consists of a simple substrate-

cycle where two metabolic intermediates (A and B) are intercon-

verted by a pair of enzymes (a and b). These enzymes are

regulated by two external ‘‘reservoirs’’ of metabolic species, and

their concentrations are specified externally at any time (these

variations of concentrations in a certain period of time are named

‘‘courses’’ from now on).

Since a catalyzes the conversion of A into B with rate va and b
catalyzes the conversion of B into A with rate vb the kinetic

equations describing the temporal variation of these metabolic

intermediates are described by the following differential equations:

dA=dt~k1Fzvb{k{1A{va

dB=dt~k{2Tzva{k2B{vb

ð1Þ

The enzyme-catalyzed reaction for a and b, in the presence of

effectors, is of the form:

va~
Vmax ,aA

KM,azA
Ra ,F Ra,T

vb~
Vmax ,bB

KM,bzB
Rb,F Rb,T

ð2Þ

where KM is the Michaelis-Menten constant and Vmax the

maximum velocity of the corresponding enzyme. The factors

modifying the intrinsic Michaelis-Menten rate expression are:

Ra,F ~
Ka,F zra,F F

Ka,F zF
, Ra,T~

Ka,Tzra,T T

Ka,TzT

Rb,F ~
Kb,F zrb,F F

Kb,F zF
, Rb,T~

Kb,Tzrb,T T

Kb,TzT

ð3Þ

The parameters Ka,F and Ka,T are the dissociation constants for the

complex of enzyme a, and ra,F and ra,T are the ratios of the

catalytic rate constants for the enzyme for the effectors T and F

respectively. Similar notation is used for the enzyme b. Depending

on whether the resulting expression of R, Eq. 3, is greater or less

than 1 the corresponding enzyme, a or b, is activated or inhibited.

A regulation diagram can be drawn from these statements. For

example, if Ra,F is greater than 1 the enzyme a will be activated by

the effector F and the connection between F and a in the diagram

will have a ‘+’ symbol. However, if Ra,F is less than 1 the enzyme a
will be inhibited by F and the connection between F and a in the

diagram will have a ‘2’ symbol, while if Ra,F is 1 the connection

will not be shown since F has no effect on a. The same reasoning is

applied to enzyme b. An example of a regulation diagram can be

seen in Fig. 1B.

The regulation of the system, through the activation or

inhibition of the enzymes a and b, is determined by the values

of the set of these eight parameters (Ka,F, Ka,T, Kb,F, Kb,T, ra,F, ra,T,

rb,F, rb,T). In order to optimize the flux response of the system the

proper values of these parameters need to be selected. The main

criterion for such optimization is the proper direction of the flux

Figure 1. Diagram of the model. Substrate-cycle where enzymes a
and b interconvert A into B (Fig. 1A), both regulated by external
effectors F and T. Arrows indicate reactions, knobs indicate regulation.
The kinetic parameters are: k1 = 1022 s21; k-1 = 861023s21; k2 = 1022

s21; k - 2 = 461023 s21. For enzyme a , V m a x = 1.6 mM s21,
K m = 1 . 561 0 2 3 m M . F o r e n z y m e b , V m a x = 3 . 5 m M s 2 1 ,
Km = 261023 mM. Fig. 1B shows an example of a regulation scheme
of the model where symbol ‘+’ indicates activation and ‘2’ inhibition. In
this case is activated by F and T because Ra,F and Ra,T are greater than 1
for the set of parameters taken as an example, and b is inhibited by
effector F because Rb,F is lower than 1. T has no effect on enzyme b
because Rb,T is 1.
doi:10.1371/journal.pone.0041122.g001
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according to the system’s need. The response of the system should

be able to provide an appropriate flux of both F and T, in response

to a given external condition. For example, the system metabolizes

blood glucose for energy as long as the concentration in blood is

adequate but synthesizes glucose for export if the glucose

concentration in blood is too low. In order to evaluate the system

response Gilman and Ross, Eq. 4 in [17], formulated the following

equation:

f ~jT (k2B{k{2T)zjF (k{1A{k1F ) ð4Þ

Where the terms (k2B2k22T) and (k21A2k1F) represent the net

fluxes into the reservoirs T and F respectively, and jF and jT

represent their need state (expressions jF and jT are described in

figure 3 of [17]). If the concentration of F is below a specific target

concentration, considered optimal, due to external variations,

there will be a positive need state (jF = +1), and the flux should

flow from B to A in order to produce F. However, if the

concentration of F is above the target concentration a negative

need state will be induced (jF = 21) and the flux should flow in the

opposite direction (from A to B). The same applies to jT.

If the algebraic sign of both the net flux and the need state into a

reservoir is the same, the flux will be directed in the proper

direction, so in this equation a positive value of f is considered to

be a good response.

In order to know how the network would behave in the different

time-courses of F and T the integral of f over a period of time has

been calculated. Eq. 5 gives some indication of the fraction of the

period of time during which the flux was directed properly.

f1~

ðt

0

fdt ð5Þ

The energy ‘‘cost’’ for performing this operation during the

period of time t was calculated by Gilman and Ross [17] as a

function of the operation of enzyme a, defined as:

f2~

ðt

0

vadt ð6Þ

Mono-objective Global Optimization
The nonlinearity and frequent multimodality of this kind of

model make the optimization of its parameters a difficult task for

traditional optimization methods, which are very sensitive to the

initial values. Such problem models can contain several local

optima, hence if the initial values are far from the global optimum

it is difficult to assure a convergence towards it [8]. A robust

alternative for solving complex-process optimization problems is to

use global optimization methods [7,19]. These kinds of methods

can be roughly divided into two classes: deterministic and

stochastic. Deterministic methods guarantee finding the global

Figure 2. Time (sec) courses of external variations of concentrations (mM) of F (in blue) and T (in green). The first four courses a–d (A–D)
are taken from figure 4 of [17] labeled as I, II, III and IV. The other four courses e–h (E–H) are obtained through the following sinusoidal equations:
F~a1 sin ((2p=T)tzQz(a1zminF) and T~a2 sin ((2p=T)tz(a2zminT ), where a1 and a2 are the amplitudes, t is the time, T the period, Q the phase
and minF and minT are the minimum values of F and T. The first two (e and f) differ in their period but have the same phase (Q = 0); course e presents a
high period (T = 1000) while course f presents a lower one (T = 50). The two last sinusoidal courses (g and h) differ from each other in phase (for
course g, Q = 0 and for course h, Q = 10) and from the other two in period (T = 300). The concentrations of the reservoir species F and T vary within
two regimes. For F centred at 60 mM and 30 mM and for T at 30 mM and 20 mM.
doi:10.1371/journal.pone.0041122.g002

Multi-Criteria Optimization in Metabolic Networks

PLoS ONE | www.plosone.org 3 July 2012 | Volume 7 | Issue 7 | e41122



optimum under certain conditions. Their drawback is that the

computational effort they require increases very fast with the

problem size [20]. On the other hand, stochastic methods are

based on probabilistic algorithms and do not offer the guarantee of

finding the global optimum; however, it has been proved that they

provide excellent results in solving complex-process optimization

problems [19,20] in reasonable computation time.

In [17] a GA which belongs to the class of global stochastic

optimization methods was used. The authors combined the flux

response, Eq. 5, and a weighted cost, Eq. 6, by means of a single

objective function:

OF~f1{mf2 ð7Þ

A high value of OF is obtained not only when the network

responds properly to changes of external concentrations but also

when it does so at a low biological cost. Therefore a set of

parameters must be found that maximizes f1 and minimizes f2,

resulting in an optimal solution which would be a trade-off

between a proper performance of the network (f1) and the cost (f2),

merging these two concepts into one equation. As asserted in [17],

the GA procedure did not always find the global optimum, indeed

for each run of the method a different value of OF was found

making it difficult to assure the convergence towards an optimum.

In this paper we have performed a Mono-objective study of the

system using three different stochastic global optimization

methods: a variation of the GA used by Gilman; the enhanced

scatter search SSm method described in [19]; and the multistart

clustering method GLOBALm [20]. The scatter search method

uses a relatively small population size, partially chosen by a quality

criterion from an initial set of diverse solutions. It also performs

systematic combinations among the population members. It is

interesting to note the similarities and differences between scatter

search and the original genetic algorithm (GA) framework. Both

can be regarded as ‘‘population based’’ or ‘‘evolutionary’’

approaches, since both incorporate the idea that a key aspect of

producing new elements is to generate some form of combination

of existing elements. However, GA approaches are based on the

idea of choosing parents randomly to produce offspring, and on

using randomization to determine which components of the

parents should be combined. In contrast, the scatter search

approach does not place so much emphasis on randomization.

Instead, the approach is designed to incorporate strategic

responses, both deterministic and probabilistic, that take account

of evaluations and history of the search. These components result

into a more efficient search than GAs. On the other hand,

GLOBALm is an extension of the multistart clustering algorithm

for global optimization, incorporating new key features, including

an efficient mechanism for handling constraints and a robust

derivative-free local solver. The multistart clustering framework is

based on starting with the generation of a uniform sample in the

search space (the region containing the global minimum, defined

by lower and upper bounds). After transforming the sample (e.g.,

by selecting a user set percentage of the sample points with the best

function values), the clustering procedure is applied. The aim of

the clustering step is to identify points from which the local solver

will lead to already found local minima. Then, further local

searches are started from those points which have not been

assigned to a cluster, and the process is repeated until a stopping

criterion is satisfied. The three methods have been applied to eight

different time courses of external variations of concentrations of F

and T, which are pictured in Fig. 2. The first four courses a-d

(Fig. 2A, B, C, D) have been taken from [17] and the other four

courses e-h (Fig. 2E, F, G, H) are sinusoidal periodical variations of

F and T with different frequency, amplitude and phase.

Multi-objective Global Optimization
The performance of the network in terms of flux response and

energy cost can be analysed independently, so that a more

desirable and realistic approach would be to consider the

simultaneous optimization of these two criteria. In this case the

result would not be a unique solution, but a set of solutions

representing the trade-off between both objectives [21]. This

Figure 3. Regulation schemes obtained by the mono-objective
methods for all the courses. Each diagram presents the values of

Ra,F ,Ra,T ,Rb,F ,Rb,T calculated with the resulting optimized parameters
presented in Table 1.
doi:10.1371/journal.pone.0041122.g003
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approach is called multi-objective (or multi-criteria) optimization

(MO), and despite being better able to cope with complex models,

few applications are found in the systems biology literature in

comparison with other scientific and engineering fields [22].

The simultaneous optimization of multiple objectives differs

from traditional mono-objective optimization in that if the

objectives are in conflict with each other, the solution to the

optimization problem will not be unique; instead, there will be a

family of solutions known as a Pareto-optimal set [18]. For the case

in which there are two objectives, f1 and f2, the Pareto optimal set

is a set of solutions in which no improvement can be obtained for

f1 without making f2 worse, and vice versa. In this sense, no point

from this set can be said to be better than another; hence, in the

absence of any further information about the problem, all Pareto-

optimal solutions (which may be an infinite number for continuous

problems) are mathematically equivalent. If one is interested in

achieving only one final solution, there is a need for a decision-

making process that allows one of the solutions in the set to be

selected, using additional information. The choice of a particular

solution is often subjective or difficult to express in mathematical

terms, and it is therefore difficult to obtain systematically.

However, the Pareto front of some multi-objective optimization

problems shows a solution that can be considered to be the best

compromise, i.e. the optimum of the front. These solutions are

called ‘‘knee’’ points [23]. They are characterized by the fact that

even a small improvement in one of the objectives (say f1) would

come at the cost of a much worse value of the other objectives (in

this case f2).

One of the advantages of the Pareto front perspective is that it

allows the representation of the solutions within a diagram. Since

the present model has two objectives, the solutions can be

displayed in a 2D diagram dividing the graph in different regions.

For instance, a set of solutions which control the flux properly but

at a high cost will be situated together on one side of the diagram

while solutions which do not control the flux so well but minimize

the cost optimally will be placed on the opposite side, leaving the

solutions which represent a trade-off between the two objectives in

the middle. Since the solutions are laid out in regions along the

Pareto front, with this approach we were able to organize them in

a graphical and more visual way, thus obtaining a wider

perspective in the study of optimization applied to biochemical

systems.

Optimizations were carried out with the NBIWT weighted

Tchebycheff method presented in [9]. NBIWT is a multicriteria

optimization method that ensures an even spread of solutions in

the Pareto front without the need of user-specified weights. It is

based on the normal bounday intersection (NBI) method [24] with

extensions based on the weighted Tchebycheff method [25].

NBIWT also incorporates several stochastic local and global

optimization solvers so it is able to handle both convex and non-

convex Pareto fronts. Overall, it provides the user with a robust

and efficient method of computing Pareto fronts without the trying

of weights or other tuning parameters for the different objective

functions.

An optimal (Pareto) set was computed for each of the eight

courses for the cost, Eq. 6, and flux response, Eq. 5,

simultaneously. The NSGA-II [26,27] method was also used

initially but resulted in worse results than NBIWT.

Results

Mono-objective Global Optimization
Following [17], a value of m = 1023 has been used for the

objective function OF, Eq. 7. Ten optimization runs were repeated

using the three methods on each of the three courses. To allow a

fair comparison between the three methods, we ran them with

equivalent setting parameters: in the case of GA a population of

100 individuals and 100 generations was used which represents a

total of 10,000 evaluations. The same number of evaluations was

set for SSm and Globalm. The optimum was achieved in less than

1000 evaluations, a relatively small number. The remarkable result

was that the same OF optimal value was obtained by each method

for each course. No significant differences were found between the

three of them in terms of computation time or convergence

towards the optimum. As stated above, stochastic global optimi-

zation methods do not generally guarantee convergence to the

global optimum. However, the fact that the three different

methods reached the same objective function value in several

runs strongly suggests that in this case the global optimum has

been achieved.

In terms of regulation, due to the nature of the system, certain

degeneracy in the solutions could be expected since different

schemes of regulation could achieve the global optimum. However

it is worth mentioning that after running any of the algorithms ten

times in a particular course the regulation scheme corresponding

to the optimal solution obtained was in most of the cases the same.

Nevertheless, among the different courses the resulting regulation

scheme can be different, as shown in Fig. 3. In order to obtain

these schemes, since R, Eq. 3, depends on the values of F and T

which vary during time, we compute their averaged values

Ra,F ,Ra,T ,Rb,F ,Rb,T for maximum and minimum concentrations

of F and T, (60 mM and 30 mM, and 30 mM and 20 mM

Table 1. Resulting optimized parameters of the eight courses (a, b, c, d, e, f, g and h) after running the mono-objective
optimization.

Ka,F Ka,T Kb,F Kb,T ra,F ra,T rb,F rb,T

a 9.4?105 3.9?101 1.3?104 1.2?10210 4.3?107 4.2?109 6.9?1027 6.2?1029

b 2.4?102 4.5?104 2.7?1029 3.2?10210 6.7?106 9.99?109 1.8?10210 3.0?1023

c 1.4?1028 3.0?1026 3.2?1028 6.5?104 4.8?106 3.0?104 7.2?10210 1.6?107

d 2.4?104 1.4?105 1.8?10210 2.3?109 5.1?109 3.4?109 4.4?10210 4.4?107

e 1.8?1022 3.6?103 1.1?10210 1.5?1025 1.3?104 1.4?108 2.0?10210 3.9?1028

f 3.2?1027 5.4 5.3?1029 5.4?10210 3.2?1021 3.6?108 3.4?1027 8.0?1022

g 9.3?1023 2.0?106 1.0?10210 1.0?10210 1.0?105 1.0?1010 1.0?10210 2.5?1024

H 4.9?102 1.7?105 3.5?1028 4.3?1026 3.4?108 1.3?109 1.0?1027 5.2?1026

doi:10.1371/journal.pone.0041122.t001
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respectively) these values are also shown in Fig. 3. The optimized

parameters of the different courses are shown in Table 1.

Multi-objective Global Optimization
After applying the NBIWT weighted Tchebycheff method on

each of the eight different time courses we obtained eight fronts of

solutions. Strikingly, each of them exhibited the same kind of

Pareto front characterised by containing a clear knee point, which

represents the ideal trade-off between the two objectives: in this

case that solution combines a high flux response (f1) at a low cost

(f2). Fig. 4 shows the eight Pareto fronts and the corresponding

knee point.

Each of the solutions (points) of the Pareto fronts corresponds to

a set of parameters (four K’s and four r’s). The regulation diagrams

corresponding to the different solutions of the front are shown in

the small diagrams of Fig. 5 for courses c (Fig. 5A) and d (Fig. 5B).

A certain similarity in terms of regulation schemes between the

knee points of the different courses can be expected, since they are

optimal solutions. In this way it would be possible to find a scheme

(i.e., a set of parameters) which would be optimum for every

course, however, although it can be noticed that the regulatory

Figure 4. Pareto fronts obtained for the two objective functions. Flux response (f1) vs. cost (f2), for the eight courses. The insets are semi log
plots. Each point corresponds to a set of the eight parameters. Red points indicate the knee point of each front.
doi:10.1371/journal.pone.0041122.g004

Multi-Criteria Optimization in Metabolic Networks

PLoS ONE | www.plosone.org 6 July 2012 | Volume 7 | Issue 7 | e41122



schemes of the knee points maintain some basic similarities, they

are not identical.

There are some remarkable similarities among certain regions

of the Pareto fronts within different courses that can be observed in

Fig. 5A and 5B, for instance in the right-hand side of the fronts

many of the solutions presented a scheme where both enzymes a
and b were inhibited. This would explain the fact that these

solutions have a very low value of f2, since f2 (Eq. 6) is directly

related with va, and if this enzyme is inhibited the value of f2 will be

low. In contrast to this, on the top left-hand side the solutions of

the fronts presented a high value of f2 and the most frequently

found scheme was the one in which a was activated by the two

effectors.

Interestingly, it was found that if the different knee points were

interchanged within the different time courses the resulting

behavior was also optimal in each of them. For example, the

parameters set corresponding to the knee point of course a also

yielded optimal values of f1 and f2 for the other seven courses, and

that happened with every knee point. This result suggests the

existence of an underlying universal regulation pattern. In order to

find such pattern, several runs of the method NBIWT were carried

out for each course and the regulation scheme of the knee point of

each run was studied. It was observed that between different runs

of a course the regulation scheme corresponding to the knee was

slightly different, however it was noticeable that certain regulation

pattern was more frequent than others, we consider this a

consensus regulation scheme for this system, see Fig. 6. The

consensus set of parameters was calculated averaging the

parameters belonging to the knee points which presented this

scheme. To this end we calculated the average of each of the eight

control parameters individually (Ka,F, Ka,T, Kb,F, Kb,T, ra,F, ra,T, rb,F,

rb,T,).

Pn
i~1

KaFi

n
,

Pn
i~1

KaTi

n
,

Pn
i~1

KbFi

n
,

Pn
i~1

KbTi

n
,

Pn
i~1

raFi

n
,

Pn
i~1

raTi

n
,

Pn
i~1

rbFi

n
,

Pn
i~1

rbTi

n

2
66664

3
77775 ð7Þ

where n is the number of times that the consensus scheme has

been observed. The resulting consensus set of parameters resulted

to be as good as the optimal as well proving that a universal set of

parameters can be achieved.

Fig. 7 represents the value of flux response (f1) and cost (f2) for

course f, evaluated with the different knees of all the courses

(optimal solution obtained for each course) and also with the

consensus set of parameters. Similar results were obtained for the

other seven courses. Remarkably, these values are very similar to

each other, indeed the deviation of the different values of flux

response for a single course evaluated with its optimal set of

parameters, the other knee solutions, and the consensus set, is

always less than 0.006 (that corresponds to a maximum deviation

of 0.7%). In the case of the cost the deviation is always less than

0.019 (maximum deviation of 1.38%). Fig. 8 shows a comparison

of the flux response and cost obtained for each course run with its

Figure 5. Semi log plots of the Pareto fronts for courses c (A) and d (B). Each point in the front corresponds to an optimal solution for f1 and
f2 given by the estimated set of the eight control parameters. The small diagrams represent the corresponding regulation schemes deduced from
each set of parameters. The red point corresponds to the knee point.
doi:10.1371/journal.pone.0041122.g005

Figure 6. Resulting regulation scheme drawn from the
consensus set of parameters. Enzyme a is activated by both
effectors F and T (Ra,F w1 and Ra,Tw1 ) whereas enzyme b is inhibited

(Rb,F v1) by F and T has no effect on it (Rb,T~1). The corresponding
optimized parameters are: Ka,F = 1.5?1022, Ka,T = 5.5?103, Kb,F = 9.2?1028,
Kb,T = 3.7?107, ra,F = 1.9?107, ra,T = 2.3?109

, rb,F = 1.6?1027
, rb,T = 3.65.

doi:10.1371/journal.pone.0041122.g006
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optimal set of parameters and the values obtained with the

consensus set of parameters. It is noteworthy that there are

practically no differences.

The regulation scheme corresponding to the consensus set of

parameters is depicted in Fig. 6. Enzyme a is activated by both

effectors F and T, favoring the production of B, and enzyme b is

inhibited by F. These schemes, where the enzymes are regulated

by products and substrates of the reaction, are frequent in

metabolism [28,29]. Specifically, the universal pattern obtained in

this paper corresponds to several examples of substrate-cycles

found in literature. One relevant example is the conversion of

fructose 6-phosphate (F6p) into fructose 2,6-bisphosphate (F2,6BP)

described in textbooks, e.g. [28]. In this cycle of transformation

(F6P O F2,6BP) the kinase activity of the phosphofructokinase

(PFK2) is activated by its substrate (F6P) and the activity of the

phosphatase is inhibited by the product (F6P). Finally, the PFK2 is

activated by the product F2,6BP. A similar behaviour is also

observed in the regulation of gluconeogenesis and glycolysis in the

liver (figure 16.28 of [28]), where there is an activation by substrate

of the PFK mediated by AMP and F2,6BP and also an inhibition

of FBPase by the same metabolites. This result reinforces the

natural appearance of reciprocal feedback seen in multiple

instances of biochemical networks.

Discussion

The starting point of this work was the hypothesis that the

regulation mechanisms of metabolic networks are the result of an

evolutionary process of optimization. The idea that nature carries

out optimizations in terms of metabolic regulation led us to search

for existing universal regulatory patterns. In this paper we have

investigated the existence of a global optimal solution in a

substrate-cycle previously presented in [17] which was optimized

using a GA. Since GAs are stochastic global optimization methods,

they do not provide guarantees of convergence to the true global

solution. When Gilman and Ross [17] performed optimization

runs on different environments (i.e., time courses of end point

species concentrations), they were surprised that they did not find

a global winner. Instead, solutions found to be optimal for one of

the courses were not optimal for the other courses: they were

‘‘specialists’’ but not ‘‘generalists’’.

A first objective of the research reported here was to investigate

this aspect further by, on the one hand, reproducing the original

results of [17] using a modification of the GA and, additionally,

two state of the art global optimization methods: SSm [19] and

GLOBALm [20]. All these methods reached essentially the same

Figure 7. Evaluation with knee parameters and consensus parameters. Values of flux response (f1) and cost (f2) for course f evaluated with
the sets of parameters corresponding to the knees obtained for the different courses and with the consensus set of parameters, represented as x.
doi:10.1371/journal.pone.0041122.g007

Figure 8. Cross-course comparison. Flux response (f1) and cost (f2) for the different courses evaluated with their optimal parameters (in dark blue
and yellow) and with the consensus set of parameters (in light blue and brown).
doi:10.1371/journal.pone.0041122.g008
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solutions, strongly suggesting that the results presented here are

very likely global optima.

As a second objective, we wanted to find a unique regulatory

scheme by means of multi-criteria optimization. Here we have

been able to find a generalist solution by switching from mono- to

multi-criteria optimization. Instead of optimizing with respect to

an objective function consisting of a fixed combination of the

performance and cost terms (f1 and f2) we applied a multi-objective

strategy (NBI-based weighted Tchebycheff, NBIWT) as presented

in [9]. Essentially, this technique generates an even spread of

points on the Pareto front, which correspond to the different

relative weights of the two objective functions. As a result, instead

of a single solution we found, for each environment, the set of

Pareto-optimal solutions (set of optimal compromises for the two

costs considered). Then, realizing that the Pareto fronts of all the

environments exhibited a clearly defined knee point, we identified

those solutions as the ones providing the best trade-offs between

the two objectives. It should be noted that these solutions cannot

be found systematically using a classical mono-objective optimi-

zation scheme.

Interestingly, we found that although these solutions corre-

sponded to different regulation schemes, they performed optimally

not only in the environment for which they were optimized, but

also in the other environments. Repeating several times the multi-

criteria optimization for each course we found a frequent optimal

pattern of regulation, a regulation scheme that balances perfor-

mance and cost optimally in every environment for the system

considered. This can be seen as an indication on the existence of a

universal regulation mechanism for substrate-cycles which are very

frequent in metabolism. Several examples can be observed in the

literature [28,29]; of special relevance is the PFK2-FBPase2 cycle

[28], which has exactly the same regulation pattern that we have

obtained by means of multi-criteria optimization. It is worth

mentioning that resulting optimal trade-off solution (knee point)

presented multiple global solutions (different regulation schemes

with the same trade-off in the space of cost functions). This

multiplicity is typical of multicriteria problems where the cost

functions are of the integral type.

This approach can be easily scalable to larger networks

composed of more than one regulatory unit, such scalability poses

no major problems other than increased computational require-

ments. The scatter search method scales quite well with problem

size and has been successfully used in optimizations of several

hundreds of decision variables. The increased computational cost

can be handled by exploiting parallelization strategies. Versions of

the scatter search and NBIWT solvers exploiting high perfor-

mance computing hardware are being developed and therefore

will enable the application to larger networks which could allow a

more systemic optimization of metabolic systems. It should be

noted as well that the approach presented is general in the sense

that can be applied to other contexts (such as e.g. different

individual cost functions, additional constraints, etc.) and can

therefore be tailored to arbitrary multi-criteria optimization

problems. Besides, the implications of the work presented in this

paper go beyond the analysis of regulation based on optimality

principles. For example, we can use a similar multi-criteria

optimization scheme for the optimal design of biological circuits,

as considered in synthetic biology. Optimization methods have

recently been used for such designs, as discussed in e.g. the review

by Marchisio and Stelling [30]. We suggest increasing the

robustness and feasibility of these designs by adopting a multi-

criteria framework similar to the one presented here.
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