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Abstract: Irritable bowel syndrome (IBS) is diagnosed by subjective clinical symptoms. We aimed to
establish an objective IBS prediction model based on gut microbiome analyses employing machine
learning. We collected fecal samples and clinical data from 85 adult patients who met the Rome III
criteria for IBS, as well as from 26 healthy controls. The fecal gut microbiome profiles were analyzed
by 16S ribosomal RNA sequencing, and the determination of short-chain fatty acids was performed
by gas chromatography–mass spectrometry. The IBS prediction model based on gut microbiome data
after machine learning was validated for its consistency for clinical diagnosis. The fecal microbiome
alpha-diversity indices were significantly smaller in the IBS group than in the healthy controls.
The amount of propionic acid and the difference between butyric acid and valerate were significantly
higher in the IBS group than in the healthy controls (p < 0.05). Using LASSO logistic regression,
we extracted a featured group of bacteria to distinguish IBS patients from healthy controls. Using
the data for these featured bacteria, we established a prediction model for identifying IBS patients
by machine learning (sensitivity >80%; specificity >90%). Gut microbiome analysis using machine
learning is useful for identifying patients with IBS.
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1. Introduction

Irritable bowel syndrome (IBS) is currently accepted to be a functional gastrointestinal disorder
characterized by symptoms such as abdominal pain or discomfort, bloating, and stool irregularities
without any structural or organic lesions [1]. Many factors (visceral sensitivity, bowel motility, mucosal
immunity, psychological stress, etc.) are involved in the pathophysiology of IBS [2], making it difficult to
clarify the pathophysiological mechanism, diagnosis, and treatments for IBS. With regard to diagnosis,
although some objective molecular markers based on blood, stool, and intestinal tissue sampling have
been proposed, no valid biomarkers of IBS have yet been established [3]. In this context, the Rome
Foundation have developed symptom-based criteria for diagnosing and distinguishing the clinical
types of IBS, and the Rome Criteria are now used as a global standard.

The Rome III criteria, revised into Rome IV in 2016 [4], have been used for the diagnosis of IBS
since 2006, and numerous data based on the Rome III criteria have been accumulated over the last
decade. Ford et al. reported that the sensitivity and specificity of the Rome III criteria for the diagnosis
of IBS are 68.8% and 79.5%, respectively [5,6]. This suggests that the Rome III criteria have room for
further improvement, and, in fact, it is possible to categorize inflammatory bowel disease (IBD) or
celiac disease into IBS on the basis of the Rome III criteria [7,8]. Thus, there is still a need for objective
biomarkers with improved diagnostic accuracy for IBS, which can help identify individuals who will
develop IBS in the future. Recent studies have strongly suggested that the gut microbiome may play
a pivotal role in the pathophysiology of IBS [9,10]. In this context, the possibility that the intestinal
microbiota signature might be a candidate biomarker for evaluating the severity of IBS symptoms has
been suggested by a European group [11]. However, further detailed studies are needed to clarify
whether the microbiota signature could be useful for diagnosis, group typing, and evaluation of both
clinical severity and response to therapy. On the other hand, it is well known that the gut microbiota
profile differs among human racial groups [12]. Therefore, in the present study, we investigated the gut
microbiota profile and associated short-chain fatty acids in Japanese IBS patients and healthy controls,
its relationship to clinical data and molecular samples, and its possible usefulness as a biomarker in
clinical subsets of IBS.

2. Materials and Methods

2.1. Study Design and Participants

Eighty-five adult patients, aged 20–65 years who fulfilled the Rome III criteria for IBS were
recruited prospectively at secondary/tertiary care outpatient clinics (Matsuda Hospital, JCHO Tokyo
Shinjuku Medical Center, and Hyogo College of Medicine in Japan) between February 2017 and
February 2018. A healthy control group of 26 individuals was also recruited by advertisement and
checked by interview and a questionnaire to exclude any chronic diseases and or current gastrointestinal
symptoms. All subjects provided written informed consent to participate after receiving verbal and
written information about the study. All of the procedures complied with the principles of the
Declaration of Helsinki and were approved by the Ethical Review Board at Matsuda Hospital (IRB
No. H29-2), JCHO Tokyo Shinjuku Medical Center (IRB No. 2016-04) and Hyogo College of Medicine
(IRB No. 2700).

Demographic information and body mass index were collected from all subjects. They were
also asked to complete a questionnaire designed to obtain information about medical and medication
history. For IBS patients, the Bristol stool form scale score and the characteristics and frequency of
gastrointestinal symptoms were recorded [13]. Classification into IBS subtypes according to the Rome
III criteria was performed based on the Bristol Stool Form scale characteristics: IBS with constipation
(IBS-C), IBS with diarrhea (IBS-D), mixed IBS (IBS-M), or unsubtyped IBS (IBS-U) [1]. Exclusion criteria
for all subjects included (i) use of antibiotics or antacids within one month before inclusion, (ii) having
a major psychiatric disorder or use of psychotropic medication within one month before inclusion, and
(iii) habitual use of tobacco or alcohol.
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2.2. Fecal Sampling, DNA Extraction, and Sequencing

Fecal samples were collected using a brush-type collection kit containing a guanidine thiocyanate
solution (Techno Suruga Laboratory, Shizuoka, Japan) and stored at 4 ◦C. DNA was extracted from fecal
samples using an automated DNA extraction machine (GENE PREP STAR PI-480, Kurabo Industries
Ltd., Osaka, Japan) according to the manufacturer’s standard protocol. The 16S ribosomal RNA (rRNA)
regions (V1–V2) were amplified using a forward primer (16S_27Fmod: TCG TCG GCA GCG TCA
GAT GTG TAT AAG AGA CAG AGR GTT TGA TYM TGG CTC AG) and reverse primer (16S_338R:
GTC TCG TGG GCT CGG AGA TGT GTA TAA GAG ACA GTG CTG CCT CCC GTA GGA GT)
with KAPA HiFi Hot Start Ready Mix (Kapa Biosystems, Wilmington, MA, USA). To sequence 16S
amplicons by the Illumina MiSeq platform, dual index adapters were attached using the Nextera XT
Index kit (Illumina, San Diego, CA, USA). Each library was diluted to 5 ng/µL, and equal volumes were
mixed to 4 nM. The DNA concentration of the mixed libraries was quantified by qPCR with KAPA
SYBR FAST qPCR Master mix (KK4601, KAPA Biosystems, Wilmington, MA, USA) using primer 1
(AAT GAT ACG GCG ACC ACC) and primer 2 (CAA GCA GAA GAC GGC ATA CGA). The library
preparations were carried out according to the 16S library preparation protocol of Illumina (Illumina,
San Diego, CA, USA). Libraries were sequenced using the MiSeq Reagent Kit v2 (500 Cycles) for 250-bp
pair-ends (Illumina, San Diego, CA, USA). Sequence files are available from the NCBI Sequence Read
Archive [14].

2.3. Taxonomy Assignment Based on the 16S rRNA Gene Sequence

The paired-end reads of partial 16S rRNA gene sequences were clustered by 97% nucleotide
identity, and then assigned taxonomic information using the Greengenes database (v13.8) [15] through
the QIIME pipeline (v1.8.0) [16]. The steps for data processing and assignment based on the QIIME
pipeline were as follows: (i) joining paired-end reads; (ii) quality filtering with an accuracy of Q30
(>99.9%) and a read length of >300 bp (the number of reads per sample before and after quality
filtering is listed in Supplementary Data S1); (iii) random extracting of 10,000 reads per sample for
subsequent analysis; (iv) clustering of operational taxonomic units (OTUs) with 97% identity by
UCLUST (v1.2.22q) [17] (all the relative abundance values for each OTU and sample are listed in
Supplementary Data S2); (v) assigning of taxonomic information to each OTU using the Ribosomal
Database Project (RDP) classifier [18] with the full-length 16S gene data of Greengenes (v13.8) to
determine the identity and composition of the bacterial genera.

2.4. Analysis of Bacterial Diversity

Microbiota diversity was assessed by Shannon index, PD (phylogenetic diversity) whole tree, and
observed OTUs based on 97% nucleotide sequence identity. These values were calculated by QIIME [16]
with a depth of 10,000. Then, p-values were calculated by Welch’s test for testing group differences in
diversity between the IBS patients and healthy controls. All distances among IBS patients and healthy
controls were assessed by unweighted UniFrac distance by QIIME. Principal coordinate analysis
(PCoA) was used to show the unweighted UniFrac distance between IBS patients and healthy controls
in a low-dimensional space by cmdscale in the R statistical platform, version 3.4.3 [19]. Hierarchical
clustering of unweighted UniFrac distance using Ward’s method was performed to visualize the
relationship between IBS patients and healthy controls using the Python clustering package (Scipy
v1.2.1) [20]. All links connecting nodes closer than 2 Euclidean distances were assigned the same color.

2.5. Measurement of Fecal Short-Chain Fatty Acids

Fecal samples were collected from all participants. The fecal samples obtained for measurement
of short-chain fatty acids (SCFAs) were immediately frozen at −30 ◦C and stored at −80 ◦C until
measurement. Fecal SCFAs were measured using a modified protocol described previously [21]. In brief,
the SCFA-containing ether layers were collected and pooled for gas chromatography–mass spectrometry
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(GC/MS) analysis using GCMS-QP2010 Ultra (Shimadzu, Kyoto, Japan). The concentration of each
SCFA was determined as µmol/g using external standard calibration over an appropriate concentration
range. A p-value by Welch’s test of <5% was considered to be significant.

2.6. Group Differences in Taxonomic Abundance

To reveal associations between taxonomic abundance and IBS status, we tested group differences
of genus-level relative abundances using Welch’s test. The centered log-ratio transformed values were
used as inputs for these univariate analyses to manage 0 count values. Analysis was confined to taxa
with a prevalence greater than 10% and a maximum proportion (relative abundance) greater than 0.005.
A p value of less than 5% was considered to be significant.

2.7. Prediction Model for IBS and Statistical Analyses of IBS Biomarkers

To establish a methodology for identifying IBS patients based on fecal bacteria data, we tried
a machine learning approach. Before machine learning, bacterial abundances were logarithmically
transformed. As bacterial data included 689 taxa at the genus level, such a large data volume would
have tended to induce dimensionality for machine learning. Therefore, we first extracted feature-taxa
by L1 regularized logistic regression (LASSO; least absolute shrinkage and selection operator) [22] as
used previously for feature-taxa extraction [11]. We next identified IBS by random-forest analysis [23]
using the extracted taxa. The random forest was packaged in a pipeline of Python scikit-learn to
prevent data leakage [24] and subjected to repeated cross-validation (10-fold, one hundred repeats).
A parameter of inverse of regularization strength for logistic regression was optimized by inner 5-fold
cross-validation. The performance of the classifier was quantified by area under the receiver-operating
characteristic (ROC) curves with an average of a thousand models. The source code for the prediction
model is available from GitHub [25].

2.8. Statistical Analyses of the Fecal Microbiome to Determine the Featured Taxa in IBS Patients

To determine the featured taxa in IBS patients, we used the LASSO logistic regression algorithm as
developed by Tap et al. [11]. This algorithm extracts features (bacterial OTUs) as non-zero coefficients
from 100 LASSO models (trained in 10-fold cross-validation and ten repeats). As train and test data,
our OTU-based data were filtered to remove OTUs that were detected in only one sample or less
than 10 reads as a total amount for all samples. The labels for classification were IBS and healthy
control. For comparison with the features of Swedish IBS patients, we extracted OTUs whose assigned
taxonomy at the genus level had been commonly observed in the Swedish data [11] and our data. Each
of the featured taxa (OTUs) was assessed by BLAST [26].

3. Results

3.1. Patient Characteristics and Clinical Status

Clinic and demographic characteristics for all of the subjects (85 IBS patients and 26 healthy
controls) enrolled in this study are summarized in Table 1. Among the 85 IBS patients, 27 were
diagnosed as IBS-C, 33 as IBS-D, 22 as IBS-M, and 3 as IBS-U according to the Rome III criteria.
The various parameters including age, gender, and body mass index (BMI) did not differ significantly
between the healthy controls and the IBS patients as a whole (Table 1).

The characteristics of the various IBS subtypes are also shown in Table 1. Age, gender, and BMI
did not differ between IBS-D and IBS-M, but age was higher in IBS-C than in the healthy controls.
Stool frequency was significantly lower in IBS-C than in controls, whereas it was significantly higher in
IBS-D. Bristol Stool Scale score was significantly higher in IBS-D than in controls.
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Table 1. Clinical and demographic characteristics for healthy subjects and irritable bowel syndrome
(IBS) patients.

Factors Healthy
(n = 26)

IBS
(n = 85)

P
(t)

IBS-C
(n = 27)

P
(t)

IBS-D
(n = 33)

P
(t)

IBS-M
(n = 22)

P
(t)

IBS-U
(n = 3)

Age 46.2 ± 10.6 51.3 ± 15.3 0.058
(1.93) 56.3 ± 15.2 0.007

(2.82) 49.7 ± 14.0 0.274
(1.10) 46.8 ± 16.7 0.873

(0.16) 56.7 ± 5.8

Sex (M/F) 9/17 37/48 0.562 8/19 0.925 17/16 0.301 11/11 0.433 1/2

BMI 22.2 ± 3.6 22.2 ± 4.2
(4 NA)

0.987
(0.02)

20.9 ± 3.5
(4 NA)

0.182
(1.35) 21.9 ± 3.2 0.742

(0.33) 24.6 ± 5.3 0.079
(1.81) 18.1 ± 1.1

IBS-symptom
frequency (1/2/3) NA 34/17/33

(1 NA) NA 13/3/11 NA 12/7/13
(1 NA) NA 9/7/6 NA 0/0/3

Stool frequency
(stool per day) 1.48 ± 0.56 1.40 ± 0.91

(4 NA)
0.614
(0.51)

0.88 ± 0.72
(1 NA)

0.003
(3.19)

2.03 ± 0.82
(2 NA)

0.005
(2.92)

1.15 ± 0.80
(1 NA)

0.124
(1.58) 1.23 ± 0.46

Stool consistency
(Bristol Stool

Form)
4.15 ± 0.46 4.41 ± 1.61

(6 NA)
0.223
(1.23)

3.67 ± 1.88
(3 NA)

0.259
(1.16)

5.31 ± 0.71
(1 NA)

<0.001
(7.20)

3.95 ± 1.82
(2 NA)

0.630
(0.489) 4.00 ± 0.00

Data are shown as mean± SD. The frequency of IBS symptoms was graded as 1, 3–9 days/month; 2, 10–19 days/month;
3, 20–every day/month. NA, not available. t, t value. BMI, body mass index. p-values for IBS-U were not indicated
because of low numbers. IBS with constipation (IBS-C), IBS with diarrhea (IBS-D), mixed IBS (IBS-M), or unsubtyped
IBS (IBS-U).

3.2. Biodiversity of IBS Subgroups and Healthy Controls

The data for microbiota diversity in fecal samples are shown in Figure 1. The Shannon index score
was significantly lower in the IBS group (5.86 ± 0.65; 95% confidence interval (CI), 5.72–6.00) than in
the healthy controls (6.15 ± 0.43; 95% CI, 5.97–6.32) (p < 0.05, t ~2.62; Figure 1A). The PD whole tree
was also lower in the IBS group (31.3 ± 7.9; 95% CI, 29.6–33.0) than in the healthy controls (33.4 ± 4.2;
95% CI, 31.8–35.1), although not to a significant degree (p ~0.07, t ~1.82).
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Figure 1. Microbiota α-diversity (Shannon index, observed operational taxonomic units (OTUs) and 
phylogenetic diversity (PD) whole tree) of (A) IBS (Welch’s test, * p < 0.05) and (B) IBS types (Welch’s 
test, * p < 0.05). HC, D, C, and M/U indicate healthy control, IBS-D, IBS-C, and mixture of IBS-M and 
IBS-U, respectively. 

Figure 1. Microbiota α-diversity (Shannon index, observed operational taxonomic units (OTUs) and
phylogenetic diversity (PD) whole tree) of (A) IBS (Welch’s test, * p < 0.05) and (B) IBS types (Welch’s
test, * p < 0.05). HC, D, C, and M/U indicate healthy control, IBS-D, IBS-C, and mixture of IBS-M and
IBS-U, respectively.

Comparison among the healthy controls and IBS subgroups showed that the microbial community
in IBS-D patients was different from that in the controls (Figure 1B). Thus, the Shannon index and
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PD whole tree in the IBS-D group (Shannon, 5.62 ± 0.61; 95% CI, 5.49–5.83; PD whole tree, 29.5 ± 9.5;
95% CI, 26.1–32.9) were significantly lower than those in the controls (Shannon, 6.15 ± 0.43; 95% CI,
5.97–6.32; PD whole tree, 33.4 ± 4.2; 95% CI, 31.8–35.1) (p < 0.05, t ~3.97 and 2.15).

3.3. Short-Chain Fatty Acids in Feces Samples from IBS Patients

To identify potential biomarkers for IBS, short-chain fatty acids (SCFA) were analyzed in feces
samples from healthy controls and IBS patients (Table 2). In the IBS group as a whole, the amount of
propionic acid (C3) (11.6 ± 6.4; 95% CI, 6.8–15.1) and the difference between butyric acid and valerate
(C4−C5) (5.1 ± 5.8; 95% CI, 1.3–7.2) were significantly increased compared to those in healthy controls
(C3, 8.3 ± 4.4; 95% CI, 5.8–8.6; C4–C5, 1.4 ± 2.6; 95% CI, 0.1–1.9) (p < 0.05, t ~2.96 and 4.52), whereas
acetic acid (C2) (36.9 ± 12.9; 95% CI, 26.3–43.9) was significantly reduced relative to that of the controls
(42.0 ± 8.7; 95% CI, 36.7–45.7) (p < 0.05, t ~2.30).

Table 2. Short-chain fatty acids in feces of healthy subjects and IBS patients.

Factors Healthy
(n = 26)

IBS
(n = 81) †

P
(t)

IBS-C
(n = 25) †

P
(t)

IBS-D
(n = 33)

P
(t)

IBS-M
(n = 20) †

P
(t)

IBS-U
(n = 3)

acetic acid 42.0 ± 8.7 36.9 ± 12.9 0.025
(2.30) 37.5 ± 11.2 0.114

(1.60) 34.5 ± 13.0 0.011
(2.64) 40.0 ± 14.2 0.516

(0.66) 39.8 ± 17.5

propionic acid 8.3 ± 4.4 11.6 ± 6.4 0.004
(2.96) 11.0 ± 6.6 0.096

(1.70) 10.8 ± 6.7 0.095
(1.70) 12.9 ± 5.5 0.004

(3.07) 17.1 ± 4.0

butyric acid 7.0 ± 3.4 6.5 ± 3.2 0.574
(0.57) 6.6 ± 3.1 0.668

(0.43) 5.6 ± 2.8 0.109
(1.63) 7.9 ± 3.9 0.402

(0.85) 7.3 ± 1.5

valerate 1.0 ± 0.9 1.1 ± 1.0 0.593
(0.54) 0.9 ± 0.8 0.797

(0.26) 1.1 ± 1.2 0.628
(0.49) 1.1 ± 0.9 0.726

(0.35) 2.4 ± 0.7

iso-butyric
acid 0.7 ± 0.6 0.8 ± 0.5 0.302

(1.05) 0.9 ± 0.5 0.123
(1.57) 0.7 ± 0.5 0.970

(0.04) 0.8 ± 0.4 0.300
(1.05) 1.1 ± 0.8

iso-valerate 0.7 ± 0.5 0.7 ± 0.5 0.821
(0.23) 0.8 ± 0.6 0.456

(0.75) 0.6 ± 0.5 0.639
(0.47) 0.7 ± 0.4 0.873

(0.16) 0.9 ± 0.8

butyric acid-
valerate 1.4 ± 2.6 5.1 ± 5.8 <0.001

(4.52) 4.4 ± 6.9 0.044
(2.10) 5.2 ± 5.7 0.001

(3.43) 5.0 ± 4.8 0.004
(3.10) 9.9 ± 4.3

Data are shown as mean ± SD. The p value for IBS-U was not indicated because of low numbers. t, t value.
† Short-chain fatty acid data lacks 4 samples of IBS including 2 IBS-C and 2 IBS-M.

When analyzed according to IBS subtype, the difference between butyric acid and valerate (C4−C5)
was significantly increased in all IBS subtypes relative to that of the controls (p < 0.05). In addition,
acetic acid in IBS-D patients (34.5 ± 13.0; 95% CI, 24.4–42.4) was significantly reduced relative to that
of the controls (42.0 ± 8.7; 95% CI, 36.7–45.7) (p < 0.05, t ~2.64). In the IBS-M group, propionic acid
was significantly increased (IBS-M, 12.9 ± 5.5; 95% CI, 8.5–17.3; Controls, 8.3 ± 4.4; 95% CI, 5.8–8.6)
(p < 0.05, t ~3.07).

3.4. Distance of Microbial Composition between IBS and Healthy Controls

PCoA of unweighted UniFrac distances of microbial composition is shown in Figure 2A.
The properties of healthy controls were positioned in the area where the level of PC1 and PC2
was less than 0.1 and 0.2, respectively. The properties of some IBS patients belonged to the same area,
but those of others showed higher PC1 and/or PC2 levels, indicating that some IBS patients had healthy
control-like properties whereas others were clearly distinguishable. Overall, IBS-C patients did not
show high PC2 levels, but some showed high PC1 levels (>0.1).
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Figure 2. Distance of microbial composition between IBS patients and healthy controls. (A) Principal
coordinate analysis (PCoA) of the unweighted UniFrac distance matrix from taxa-assigned data.
Blue marks indicate healthy controls and orange marks indicate IBS types. Each orange letter indicates
IBS subtype: D, IBS-D; C, IBS-C; M, IBS-M; and U, IBS-U. Green rectangles indicate the samples that
belong to a green cluster coming from IBS samples alone in panel B. (B) Hierarchical clustering of
unweighted UniFrac distance using Ward’s method for visualizing the relationship between IBS patients
and healthy controls. A green cluster consisting of only IBS samples is shown as green rectangles in (A).
(C) Unweighted UniFrac distance among healthy controls and IBS samples (Welch’s test, * p < 0.05).
(D) Unweighted UniFrac distance of each IBS subtype from healthy controls (Welch’s test, * p < 0.05).

Hierarchical clustering of unweighted UniFrac distance was also performed to visualize purely
IBS clusters and IBS-healthy control mixed clusters (Figure 2B). The green clusters furthest apart from
the IBS-healthy control mixed clusters were purely IBS clusters comprising 16 samples (8 D-type,
2 C-type, 5 M-type and 1 U-type) (Figure 2B).

The unweighted UniFrac distance between the healthy control group and the IBS group (0.74 ± 0.04;
95% CI, 0.740–0.743) differed significantly from the inner-distance of the healthy control (0.72± 0.03; 95%
CI, 0.715–0.720) or IBS group (0.75 ± 0.04; 95% CI, 0.751–0.754) (p < 0.05, t ~14.5 and 10.7) (Figure 2C);
thus, the distance within the IBS group was the longest and that within the healthy control group was
the shortest. The distance of the IBS C-type from the healthy controls (0.73 ± 0.03; 95% CI, 0.732–0.736)
was shorter than that of the other IBS types from the healthy controls (IBS-D, 0.75 ± 0.04; 95% CI,
0.748–0.753; IBS-M/U, 0.74 ± 0.04; 95% CI, 0.735–0.740) (p < 0.05, t ~9.18 and 1.99; Figure 2D).
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3.5. Comparisons of Relative Abundance of Each Taxon between Healthy Controls and IBS Patients

With the univariate analysis, we found significant taxon at the genus level. The Welch’s test
indicated statistical significance of relative abundances of several taxon existed between healthy
controls and IBS patients (Table 3 and Figure 3).

Table 3. Differences in abundance of single taxa between healthy controls and IBS patients.

Taxon genus level
Healthy
Group
(n = 26)

IBS
Group
(n = 85)

P
(t)

IBS-C
(n = 27)

P
(t)

IBS-D
(n = 33)

P
(t)

IBS-M
(n = 22)

P
(t)

IBS-U
(n = 3)

f_Halomonadaceae;
g_Halomonas 0.00 ± 0.00 0.12 ± 0.18 <0.001

(15.38) 0.07 ± 0.10 <0.001
(5.53) 0.18 ± 0.24 <0.001

(12.86) 0.12 ± 0.13 <0.001
(9.33) 0.04 ± 0.04

f_Lachnospiraceae;
g_Anaerostipes 0.41 ± 0.39 0.23 ± 0.45 <0.001

(5.67) 0.42 ± 0.70 0.008
(2.82) 0.08 ± 0.12 <0.001

(5.94) 0.21 ± 0.28 0.005
(3.07) 0.24 ± 0.17

f_Ruminococcaceae;
g_Ruminococcus 4.41 ± 3.26 2.64 ± 2.93 <0.001

(3.99) 3.37 ± 2.99 0.120
(1.59) 1.72 ± 2.56 <0.001

(4.54) 2.94 ± 2.89 0.045
(2.08) 4.00 ± 5.05

f_Enterobacteriaceae;
Other 0.02 ± 0.04 0.16 ± 0.57 0.001

(2.61) 0.12 ± 0.32 0.206
(1.28) 0.13 ± 0.18 0.002

(3.32) 0.28 ± 1.04 0.223
(1.23) 0.06 ± 0.07

f_Coriobacteriaceae;
g_Collinsella 1.76 ± 1.36 1.23 ± 1.59 0.05

(2.95) 1.16 ± 1.50 0.022
(2.37) 1.01 ± 1.45 0.004

(3.00) 1.67 ± 1.95 0.304
(1.04) 0.98 ± 0.95

Data are shown as mean ± SD. The p value for IBS-U was not indicated because of low numbers. t, t value.

J. Clin. Med. 2020, 9, 2403 8 of 14 

 

With the univariate analysis, we found significant taxon at the genus level. The Welch’s test 
indicated statistical significance of relative abundances of several taxon existed between healthy 
controls and IBS patients (Table 3 and Figure 3). 

Table 3. Differences in abundance of single taxa between healthy controls and IBS patients. 

Taxon genus level 
Healthy group 

 (n = 26) 
IBS group 

(n = 85) 
P 
(t) 

IBS-C 
(n = 27) 

P 
(t) 

IBS-D 
(n = 33) 

P 
(t) 

IBS-M 
(n = 22) 

P 
(t) 

IBS-U 
(n = 3) 

f_Halomonadaceae; 
g_Halomonas 

0.00 ± 0.00 0.12 ± 0.18 
<0.001 
(15.38) 

0.07 ± 0.10 <0.001 
(5.53) 

0.18 ± 0.24 
<0.001 
(12.86) 

0.12 ± 0.13 
<0.001 
(9.33) 

0.04 ± 0.04 

f_Lachnospiraceae; 
g_Anaerostipes 

0.41 ± 0.39 0.23 ± 0.45 
<0.001 
(5.67) 

0.42 ± 0.70 
0.008 
(2.82) 

0.08 ± 0.12 
<0.001 
(5.94) 

0.21 ± 0.28 
0.005 
(3.07) 

0.24 ± 0.17 

f_Ruminococcaceae; 
g_Ruminococcus 

4.41 ± 3.26 2.64 ± 2.93 
<0.001 
(3.99) 

3.37 ± 2.99 
0.120 
(1.59) 

1.72 ± 2.56 
<0.001 
(4.54) 

2.94 ± 2.89 
0.045 
(2.08) 

4.00 ± 5.05 

f_Enterobacteriaceae; 
Other 

0.02 ± 0.04 0.16 ± 0.57 
0.001 
(2.61) 

0.12 ± 0.32 
0.206 
(1.28) 

0.13 ± 0.18 
0.002 
(3.32) 

0.28 ± 1.04 
0.223 
(1.23) 

0.06 ± 0.07 

f_Coriobacteriaceae; 
g_Collinsella 

1.76 ± 1.36 1.23 ± 1.59 
0.05 

(2.95) 
1.16 ± 1.50 

0.022 
(2.37) 

1.01 ± 1.45 
0.004 
(3.00) 

1.67 ± 1.95 
0.304 
(1.04) 

0.98 ± 0.95 

Data are shown as mean ± SD. The p value for IBS-U was not indicated because of low numbers. t, t value. 

 
Figure 3. Effect plot examining univariate differences between IBS and healthy control groups. (A) 
The plot shows effect size versus the expected p-value of the Welch’s test. (B) The volcano plot shows 
the difference between groups versus the expected p-value of the Welch’s test. 

3.6. Classification of IBS and Healthy Controls by Machine Learning with Featured Taxa and Short-Chain 
Fatty Acids 

We attempted to establish a model for distinguishing IBS patients from healthy control groups 
using taxa-assigned and/or SCFA data (Figure 4). We first tested whether a combination of logistic 
regression and random forest would be better than either approach alone. We found that the 
combination of logistic regression and random forest for taxa-assigned data yielded an area under 
the curve (AUC) of 0.911 ± 0.088 (95% CI, 0.905–0.916), whereas the AUC obtained by logistic 
regression was 0.887 ± 0.112 (95% CI, 0.880–0.894) and that obtained by random forest was 0.846 ± 
0.130 (95% CI, 0.837–0.854) (Supplementary Figure S1). This confirmed that a combination of logistic 
regression and random forest was significantly better than either approach alone (p < 0.05, t ~5.20 for 
logistic regression and 12.9 for random forest); therefore, we decided to use this combination to 
establish a model for distinguishing IBS patients from control subjects. 

Figure 3. Effect plot examining univariate differences between IBS and healthy control groups. (A) The
plot shows effect size versus the expected p-value of the Welch’s test. (B) The volcano plot shows the
difference between groups versus the expected p-value of the Welch’s test.

3.6. Classification of IBS and Healthy Controls by Machine Learning with Featured Taxa and Short-Chain
Fatty Acids

We attempted to establish a model for distinguishing IBS patients from healthy control groups using
taxa-assigned and/or SCFA data (Figure 4). We first tested whether a combination of logistic regression
and random forest would be better than either approach alone. We found that the combination of
logistic regression and random forest for taxa-assigned data yielded an area under the curve (AUC) of
0.911 ± 0.088 (95% CI, 0.905–0.916), whereas the AUC obtained by logistic regression was 0.887 ± 0.112
(95% CI, 0.880–0.894) and that obtained by random forest was 0.846 ± 0.130 (95% CI, 0.837–0.854)
(Supplementary Figure S1). This confirmed that a combination of logistic regression and random forest
was significantly better than either approach alone (p < 0.05, t ~5.20 for logistic regression and 12.9 for
random forest); therefore, we decided to use this combination to establish a model for distinguishing
IBS patients from control subjects.
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The AUC obtained using only taxa-assigned data was 0.911 ± 0.088 (95% CI, 0.905–0.916)
(Figure 4A). That obtained using both taxa-assigned and SCFA data was better at 0.920 ± 0.086 (95% CI,
0.915–0.926) (p <0.05, t ~2.47). Some SCFA levels in feces differed significantly between IBS patients
and healthy controls (Table 2). However, the AUC obtained using only SCFA data was 0.733 ± 0.165
(95% CI, 0.722–0.743); subsequently, it was more difficult to distinguish IBS patients from healthy
controls when using models with only taxa-assigned data (p < 0.05, t ~30.1).

We also attempted to distinguish healthy controls from each of the IBS subtypes using our
machine-learning model with taxa-assigned data. IBS-D was well distinguished, and the AUC score
was 0.980 ± 0.058 (95% CI, 0.976–0.983). IBS-C and IBS-M/U were also distinguishable with AUC
scores of 0.854 ± 0.175 (95% CI, 0.843–0.865) and 0.906 ± 0.175 (95% CI, 0.895–0.917), respectively
(Supplementary Figure S2).

3.7. Comparison of Japanese IBS Featured Taxa with Swedish IBS

To determine whether the microbiomes in Japanese and Swedish IBS patients are similar or
different, we extracted featured taxa using the LASSO logistic regression algorithm developed by
Tap et al., which has been used to analyze Swedish IBS data [11]. The features extracted from our
Japanese IBS data showed some bacteria that were not evident in the Swedish data, such as Halomonas,
Klebsiella, Dorea, Prevotella, Lachnobacterium, Ruminococcus, Collinsella, Streptococcus, Bifidobacterium,
and Oscillospira (Table 3 and Supplementary Table S1). Featured genera commonly observed in both
the Swedish and our Japanese data were Bacteroides, Faecalibacterium, Parabacteroides, and Blautia
(Supplementary Table S1).
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4. Discussion

To establish an objective tool for diagnosis of IBS, we investigated the fecal gut microbiota profile
in Japanese healthy subjects and IBS patients. Overall, the α-diversity of the gut microbiome was
significantly decreased in Japanese IBS patients relative to that of healthy subjects and was lowest in
IBS-D than in other types of IBS (Figure 1). However, the reduction of diversity was not as great as that
in obesity [27] or patients with IBD [28], indicating that the dysbiosis in IBS may be comparatively
subtle. Furthermore, since the gut microbiome data were based on analysis using 16S rRNA gene
sequencing, exclusion of PCR bias may have been necessary. In a considerable proportion of IBS
patients, the microbiome composition was similar to that in healthy subjects, although in some it was
clearly different (Figure 2), similar to previous findings by Laubus et al. [29]. This variation may not be
surprising, as a number of factors (e.g., race, diet, age, gender, social environment) that might possibly
affect the gut microbiome profile play a role in the development of IBS, creating heterogeneity among
patients [30]. The gut microbiota profile is known to be affected by race [31], and even within the
same racial group, healthy individuals may show differences [12]. In this context, it was interesting to
compare our data for Japanese IBS patients with those of Swedish IBS patients obtained using a similar
study design [11]. This allowed us to extract some bacteria that were specific to Japanese IBS patients
(Table 3 and Supplementary Table S1) and not observed in the Swedish study. Since the amplicon
regions of the 16S rRNA gene differed between our study and the Swedish one, these two studies need
to be compared with reference to the difference in the bioinformatics protocols employed. However,
it was perhaps noteworthy that we detected a decrease of specific genera (Bacteroides, Faecalibacterium,
Parabacteroides, and Blautia; Supplementary Table S1) that were common to both the Swedish and
Japanese cohorts, suggesting that these genera may be highly reliable for distinguishing IBS patients
from healthy controls.

There is also the issue of whether the difference in the gut microbiome profile is causative of IBS,
or results from its development. This would appear difficult to address as both the gut microbiome
profile and IBS pathophysiology are influenced by common environmental factors such as diet,
psychological stress, lifestyle, and hormones [30]. In this context, fecal microbiota transplantation
might seem to be an appealing approach for clarifying whether alteration of the gut microbiome is a
possible cause of IBS. Interestingly, in germ-free animals, transplantation of the fecal microbiota from
IBS patients has been shown to reproduce the visceral hypersensitivity or gastrointestinal dysmotility
characteristic of IBS [32,33], indicating that the gut microbiome may indeed be a possible cause of
IBS. However, Halkjær et al. have reported that transplantation of the fecal microbiota from healthy
subjects to IBS patients conferred no benefit in terms of symptom relief [34]. Taken together, therefore,
at least in humans, the existing data suggest that specific alteration of the gut microbiome profile
may have no pathophysiological significance in IBS. On the other hand, among the environmental
factors mentioned above, diet may have a critical impact on both the gut microbiome profile and
IBS pathophysiology [35,36]. Using gnotobiotic methodology, Gordon’s group has suggested that
diet plays an essential role in defining the gut microbiome profile [37], and moreover that certain
dietary components such as fermentable oligosaccharides, disaccharides, monosaccharides, and polyols
(FODMAP) not only change the composition of the human gut microbiome but also exacerbate the
symptoms of IBS patients [38,39]. Unfortunately, the scope of the present study did not extend to
analysis of the influence of diet on the gut microbiota profile in IBS patients, thus representing a
qualitative limitation. However, not only diet but also various environmental factors influence the gut
microbiome profile as well as IBS pathophysiology; therefore, it appears extremely difficult to clarify
whether gut microbiome alterations are of crucial significance in this context.

The gut microbiota interacts with the host by producing SCFAs as mediators [40]. Indeed, it has
been clarified that SCFAs act via specific receptors not only on epithelial cells but also immune cells
in intestinal tissues [40,41], suggesting that SCFAs play a pivotal role in the pathophysiology of
various gastrointestinal diseases. Our data indicated that propionic acid and the difference between
butyric acid and valerate were significantly increased in IBS patients whereas acetic acid tended
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to be decreased (Table 2). When our patients were divided into groups according to IBS subtypes,
those with IBS-D showed a significantly increased difference between butyric acid and valerate values,
whereas acetic acid was decreased. As SCFAs are products of bacterial dietary fiber metabolism, their
properties are determined by a combination of diet and gut microbiome composition. Although the
existing data are conflicting, several studies have revealed that the propionic-acid-producing genus
Veillonella is increased whereas the butyrate-producing Erysipelotrichaceae are decreased in feces
from IBS patients [42–44]. In this context, the increase of propionic acid is consistent with previous
reports [42–44], but we were unable to observe such alterations in the bacterial strains investigated
here. Although a low FODMAP diet is useful for symptom relief in 50–80% of IBS patients [39],
the mechanism of its effect is still unclear. Interestingly, a low FODMAP diet leads to a reduction of
Biffidobacteria and butyrate-producing bacteria [45,46], which characterize IBS. Moreover, although a
low FODMAP diet is likely to reduce the production of SCFAs, several studies have obtained conflicting
results regarding the effects of such a diet [45–47]. Furthermore, we found that the differences in
SCFAs among the various IBS subtypes were not so distinct (Table 2), implying that differences in fecal
SCFA concentrations may not play a very significant role in determining the specific symptoms of
IBS patients.

Our present goal was to establish a model for diagnosis of IBS using data for the fecal microbiome
and SCFAs. Using LASSO regularized multiple logistic regression [22], we evaluated data obtained by
16 rRNA gene sequencing, and finally established a machine learning model for diagnosis of patients
with IBS using fecal microbiome data (Figure 4B; sensitivity > 80% and specificity > 90%). We had
initially expected that the SCFA data would have an additive effect on the diagnostic model, since
SCFAs are also potential markers for IBS diagnosis [44]. However, as shown in Figure 4B, the SCFA
data were of little additional advantage for our diagnostic model of IBS. This may not be surprising in
view of the only slight differences in SCFAs between IBS patients and healthy subjects (Table 2). There
is a need for powerful biomarkers that can aid in the objective diagnosis of IBS and/or prediction of
the response to therapy, and numerous candidates (e.g., serum molecules, fecal metabolites, motility,
psychological aspects) have been investigated [48–50]. Although data on fecal microbiota signatures
have varied among studies of IBS patients, such differences may have been at least partly due to not
only the design of such studies but also the geographic regions where they were conducted, as this
aspect can affect diet and lifestyle [30]. Nevertheless, it is interesting that features observed at the
phylum level, such as a Firmicutes/Bacteroidetes ratio, have been almost consistent among IBS patients [9],
and some common findings at the genus level have also been reported for different cohorts such the
Swedish and present Japanese ones. We have no exact explanation for why certain taxa are common to
IBS patients in different geographic regions; however, a machine leaning system or statistical analysis
may help to reveal the complex associations among IBS-related environmental factors and improve the
sensitivity and specificity of tools for IBS diagnosis based on microbiome information.

In summary, we have clarified the gut microbiome characteristics of Japanese IBS patients and
the SCFAs they produce. Moreover, we have established a machine learning model for diagnosis of
IBS using fecal microbiome data. However, we concede that this study had several limitations. First,
it lacked any functional investigations of the microbial community, and the number of control subjects
was small, thus diminishing the study relevance. To advance this study, integration of meta-omics
approaches such as metagenomics, metatranscriptomics, metaproteomics, or metabolomics would be
required. Second, the lack of dietary information might have concealed any effect of diet on the gut
microbiota profile. In addition, it might be questionable whether our diagnostic tool would be able
to classify IBS patients into various subtypes. In this context, we aimed to create a model based on
gut microbiome data and preliminary indications suggested that our strategy might also contribute to
the establishment of a machine learning model for subclassification of IBS patients (Supplementary
Figure S2). Although further analyses will be needed before this diagnostic model can be established,
our present work represents a first step towards devising an objective tool based on gut microbiome
data for identifying IBS patients or individuals likely to develop the condition.
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potential biomarkers. Gastroenterol. Res. Pract. 2015, 2015, 490183. [CrossRef] [PubMed]

4. Mearin, F.; Lacy, B.E.; Chang, L.; Chey, W.D.; Lembo, A.J.; Simren, M.; Spiller, R. Bowel disorders.
Gastroenterology 2016, 150, 1393–1407.

5. Ford, A.C.; Bercik, P.; Morgan, D.G.; Bolino, C.; Pintos-Sanchez, M.I.; Moayyedi, P. Validation of the Rome III
criteria for the diagnosis of irritable bowel syndrome in secondary care. Gastroenterology 2013, 145, 1262–1270.
[CrossRef]

6. Sood, R.; Law, G.R.; Ford, A.C. Diagnosis of IBS: Symptoms, symptom-based criteria, biomarkers or
‘psychomarkers’? Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 683–691. [CrossRef]

7. Canavan, C.; Card, T.; West, J. The incidence of other gastroenterological disease following diagnosis of
irritable bowel syndrome in the UK: A cohort study. PLoS ONE 2014, 9, e106478. [CrossRef]

8. Pimentel, M.; Purdy, C.; Magar, R.; Rezaie, A. A predictive model to estimate cost savings of a novel diagnostic
blood panel for diagnosis of diarrhea-predominant irritable bowel syndrome. Clin. Ther. 2016, 38, 1638–1652.
[CrossRef]

9. Fukui, H.; Xu, X.; Miwa, H. Role of Gut microbiota-gut hormone axis in the pathophysiology of functional
gastrointestinal disorders. J. Neurogastroenterol. Motil. 2018, 24, 367–386. [CrossRef]

10. Simrén, M.; Barbara, G.; Flint, H.J.; Spiegel, B.M.; Spiller, R.C.; Vanner, S.; Verdu, E.F.; Whorwell, P.J.;
Zoetendal, E.G. Intestinal microbiota in functional bowel disorders: A Rome foundation report. Gut 2013, 62,
159–176. [CrossRef]

11. Tap, J.; Derrien, M.; Törnblom, H.; Brazeilles, R.; Cools-Portier, S.; Doré, J.; Störsrud, S.; Le Nevé, B.;
Öhman, L.; Simrén, M. Identification of an intestinal microbiota signature associated with severity of irritable
bowel syndrome. Gastroenterology 2017, 152, 111–123. [CrossRef] [PubMed]

12. Nishijima, S.; Suda, W.; Oshima, K.; Kim, S.W.; Hirose, Y.; Morita, H.; Hattori, M. The gut microbiome of
healthy Japanese and its microbial and functional uniqueness. DNA Res. 2016, 23, 125–133. [CrossRef]
[PubMed]

13. Heaton, K.W.; O’Donnell, L.J. An office guide to whole-gut transit time. Patients’ recollection of their stool
form. J. Clin. Gastroenterol. 1994, 19, 28–30. [CrossRef] [PubMed]

14. NCBI Sequence Read Archive, SRA Accession: PRINA637763. Available online: https://www.ncbi.nlm.nih.
gov/bioproject/PRJNA637763/ (accessed on 27 July 2020).

http://www.mdpi.com/2077-0383/9/8/2403/s1
http://dx.doi.org/10.1053/j.gastro.2005.11.061
http://www.ncbi.nlm.nih.gov/pubmed/16678561
http://dx.doi.org/10.1038/nrdp.2016.14
http://www.ncbi.nlm.nih.gov/pubmed/27159638
http://dx.doi.org/10.1155/2015/490183
http://www.ncbi.nlm.nih.gov/pubmed/26170833
http://dx.doi.org/10.1053/j.gastro.2013.08.048
http://dx.doi.org/10.1038/nrgastro.2014.127
http://dx.doi.org/10.1371/journal.pone.0106478
http://dx.doi.org/10.1016/j.clinthera.2016.05.003
http://dx.doi.org/10.5056/jnm18071
http://dx.doi.org/10.1136/gutjnl-2012-302167
http://dx.doi.org/10.1053/j.gastro.2016.09.049
http://www.ncbi.nlm.nih.gov/pubmed/27725146
http://dx.doi.org/10.1093/dnares/dsw002
http://www.ncbi.nlm.nih.gov/pubmed/26951067
http://dx.doi.org/10.1097/00004836-199407000-00008
http://www.ncbi.nlm.nih.gov/pubmed/7930429
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA637763/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA637763/


J. Clin. Med. 2020, 9, 2403 13 of 14

15. DeSantis, T.Z.; Hugenholtz, P.; Larsen, N.; Rojas, M.; Brodie, E.L.; Keller, K.; Huber, T.; Dalevi, D.; Hu, P.;
Andersen, G.L. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with
ARB. Appl. Environ. Microbiol. 2006, 72, 5069–5072. [CrossRef]

16. Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Peña, A.G.;
Goodrich, J.K.; Gordon, J.I.; et al. QIIME allows analysis of high-throughput community sequencing data.
Nat. Methods 2010, 7, 335–336. [CrossRef]

17. Edgar, R.C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010, 26, 2460–2461.
[CrossRef]

18. Cole, J.R.; Wang, Q.; Cardenas, E.; Fish, J.; Chai, B.; Farris, R.J.; Kulam-Syed-Mohideen, A.S.; McGarrell, D.M.;
Marsh, T.; Garrity, G.M.; et al. The Ribosomal Database Project: Improved alignments and new tools for
rRNA analysis. Nucleic Acids Res. 2009, 37, D141–D145. [CrossRef]

19. R Core Team. R: Language and Environment for Statistical Computing. 2016. Available online: https:
//www.R-project.org/ (accessed on 27 July 2020).

20. Millman, K.J.; Aivazis, M. Python for scientists and engineers. Comput. Sci. Eng. 2011, 13, 9–12. [CrossRef]
21. Miyamoto, J.; Watanabe, K.; Taira, S.; Kasubuchi, M.; Li, X.; Irie, J.; Itoh, H.; Kimura, I. Barley β-glucan

improves metabolic condition via short-chain fatty acids produced by gut microbial fermentation in high fat
diet fed mice. PLoS ONE 2018, 13, e0196579. [CrossRef]

22. Tibshirani, R. Regression shrinkage and selection via the lasso: A retrospective. J. R. Stat. Soc. Ser. B Stat.
Methodol. 2011, 73, 273–282. [CrossRef]

23. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
24. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, B.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.;

Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12,
2825–2830.

25. The Source Code for the IBS Prediction Model is Available from GitHub. Available online: https://github.
com/Cykinso/paper_supplements-ibs-classifier (accessed on 27 July 2020).

26. Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol.
1990, 215, 403–410. [CrossRef]

27. Ley, R.E.; Turnbaugh, P.J.; Klein, S.; Gordon, J.I. Microbial ecology: Human gut microbes associated with
obesity. Nature 2006, 444, 1022–1023. [CrossRef] [PubMed]

28. Qin, J.; Li, R.; Raes, J.; Arumugam, M.; Burgdorf, K.S.; Manichanh, C.; Nielsen, T.; Pons, N.; Levenez, F.;
Yamada, T.; et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature
2010, 464, 59–65. [CrossRef]

29. Labus, J.S.; Hollister, E.B.; Jacobs, J.; Kirbach, K.; Oezguen, N.; Gupta, A.; Acosta, J.; Luna, R.A.; Aagaard, K.;
Versalovic, J.; et al. Differences in gut microbial composition correlate with regional brain volumes in irritable
bowel syndrome. Microbiome 2017, 5, 49. [CrossRef]

30. Chong, P.P.; Chin, V.K.; Looi, C.Y.; Wong, W.F.; Madhavan, P.; Yong, V.C. The microbiome and irritable bowel
syndrome—A review on the pathophysiology, current research and future therapy. Front. Microbiol. 2019,
10, 1136. [CrossRef]

31. Li, J.; Jia, H.; Cai, X.; Zhong, H.; Feng, Q.; Sunagawa, S.; Arumugam, M.; Kultima, J.R.; Prifti, E.; Nielsen, T.;
et al. An integrated catalog of reference genes in the human gut microbiome. Nat. Biotechnol. 2014, 32,
834–841. [CrossRef]

32. Crouzet, L.; Gaultier, E.; Del’Homme, C.; Cartier, C.; Delmas, E.; Dapoigny, M.; Fioramonti, J.;
Bernalier-Donadille, A. The hypersensitivity to colonic distension of IBS patients can be transferred to rats
through their fecal microbiota. Neurogastroenterol. Motil. 2013, 25, e272–e282. [CrossRef]

33. De Palma, G.; Lynch, M.D.; Lu, J.; Dang, V.T.; Deng, Y.; Jury, J.; Umeh, G.; Miranda, P.M.; Pigrau Pastor, M.;
Sidani, S.; et al. Transplantation of fecal microbiota from patients with irritable bowel syndrome alters gut
function and behavior in recipient mice. Sci. Transl. Med. 2017, 9, eaaf6397. [CrossRef]

34. Halkjær, S.I.; Christensen, A.H.; Lo, B.Z.S.; Browne, P.D.; Günther, S.; Hansen, L.H.; Petersen, A.M. Faecal
microbiota transplantation alters gut microbiota in patients with irritable bowel syndrome: Results from a
randomised, double-blind placebo-controlled study. Gut 2018, 67, 2107–2115. [CrossRef] [PubMed]

35. El-Salhy, M.; Hatlebakk, J.G.; Hausken, T. Diet in irritable bowel syndrome (IBS): Interaction with gut
microbiota and gut hormones. Nutrients 2019, 11, 1824. [CrossRef] [PubMed]

http://dx.doi.org/10.1128/AEM.03006-05
http://dx.doi.org/10.1038/nmeth.f.303
http://dx.doi.org/10.1093/bioinformatics/btq461
http://dx.doi.org/10.1093/nar/gkn879
https://www.R-project.org/
https://www.R-project.org/
http://dx.doi.org/10.1109/MCSE.2011.36
http://dx.doi.org/10.1371/journal.pone.0196579
http://dx.doi.org/10.1111/j.1467-9868.2011.00771.x
http://dx.doi.org/10.1023/A:1010933404324
https://github.com/Cykinso/paper_supplements-ibs-classifier
https://github.com/Cykinso/paper_supplements-ibs-classifier
http://dx.doi.org/10.1016/S0022-2836(05)80360-2
http://dx.doi.org/10.1038/4441022a
http://www.ncbi.nlm.nih.gov/pubmed/17183309
http://dx.doi.org/10.1038/nature08821
http://dx.doi.org/10.1186/s40168-017-0260-z
http://dx.doi.org/10.3389/fmicb.2019.01136
http://dx.doi.org/10.1038/nbt.2942
http://dx.doi.org/10.1111/nmo.12103
http://dx.doi.org/10.1126/scitranslmed.aaf6397
http://dx.doi.org/10.1136/gutjnl-2018-316434
http://www.ncbi.nlm.nih.gov/pubmed/29980607
http://dx.doi.org/10.3390/nu11081824
http://www.ncbi.nlm.nih.gov/pubmed/31394793


J. Clin. Med. 2020, 9, 2403 14 of 14

36. Hills, R.D., Jr.; Pontefract, B.A.; Mishcon, H.R.; Black, C.A.; Sutton, S.C.; Theberge, C.R. Gut microbiome:
Profound implications for diet and disease. Nutrients 2019, 11, 1613. [CrossRef] [PubMed]

37. Faith, J.J.; McNulty, N.P.; Rey, F.E.; Gordon, J.I. Predicting a human gut microbiota’s response to diet in
gnotobiotic mice. Science 2011, 333, 101–104. [CrossRef]

38. Collins, S.M. A role for gut microbiota in IBS. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 497–505. [CrossRef]
39. Staudacher, H.M.; Whelan, K. The low FODMAP diet: Recent advances in understanding its mechanisms

and efficacy in IBS. Gut 2017, 66, 1517–1527. [CrossRef]
40. Levy, M.; Blacher, E.; Elinav, E. Microbiome, metabolites and host immunity. Curr. Opin. Microbiol. 2017, 35,

8–15. [CrossRef]
41. Priyadarshini, M.; Kotlo, K.U.; Dudeja, P.K.; Layden, B.T. Role of short chain fatty acid receptors in intestinal

physiology and pathophysiology. Compr. Physiol. 2018, 8, 1091–1115.
42. Tana, C.; Umesaki, Y.; Imaoka, A.; Handa, T.; Kanazawa, M.; Fukudo, S. Altered profiles of intestinal

microbiota and organic acids may be the origin of symptoms in irritable bowel syndrome. Neurogastroenterol.
Motil. 2010, 22, 512. [CrossRef]

43. Pozuelo, M.; Panda, S.; Santiago, A.; Mendez, S.; Accarino, A.; Santos, J.; Guarner, F.; Azpiroz, F.; Manichanh, C.
Reduction of butyrate- and methane-producing microorganisms in patients with irritable bowel syndrome.
Sci. Rep. 2015, 5, 12693. [CrossRef]

44. Farup, P.G.; Rudi, K.; Hestad, K. Faecal short-chain fatty acids—A diagnostic biomarker for irritable bowel
syndrome? BMC Gastroenterol. 2016, 16, 51. [CrossRef] [PubMed]

45. Staudacher, H.M.; Lomer, M.C.; Anderson, J.L.; Barrett, J.S.; Muir, J.G.; Irving, P.M.; Whelan, K. Fermentable
carbohydrate restriction reduces luminal bifidobacteria and gastrointestinal symptoms in patients with
irritable bowel syndrome. J. Nutr. 2012, 142, 1510–1518. [CrossRef]

46. Halmos, E.P.; Christophersen, C.T.; Bird, A.R.; Shepherd, S.J.; Gibson, P.R.; Muir, J.G. Diets that differ in their
FODMAP content alter the colonic luminal microenvironment. Gut 2015, 64, 93–100. [CrossRef] [PubMed]

47. Hustoft, T.N.; Hausken, T.; Ystad, S.O.; Valeur, J.; Brokstad, K.; Hatlebakk, J.G.; Lied, G.A. Effects of varying
dietary content of fermentable short-chain carbohydrates on symptoms, fecal microenvironment, and
cytokine profiles in patients with irritable bowel syndrome. Neurogastroenterol. Motil. 2017, 29, e12969.
[CrossRef] [PubMed]

48. Sood, R.; Gracie, D.J.; Law, G.R.; Ford, A.C. Systematic review with meta-analysis: The accuracy of diagnosing
irritable bowel syndrome with symptoms, biomarkers and/or psychological markers. Aliment. Pharmacol.
Ther. 2015, 42, 491–503. [CrossRef] [PubMed]

49. Mujagic, Z.; Tigchelaar, E.F.; Zhernakova, A.; Ludwig, T.; Ramiro-Garcia, J.; Baranska, A.; Swertz, M.A.;
Masclee, A.A.; Wijmenga, C.; van Schooten, F.J.; et al. A novel biomarker panel for irritable bowel syndrome
and the application in the general population. Sci. Rep. 2016, 6, 26420. [CrossRef]

50. Camilleri, M.; Halawi, H.; Oduyebo, I. Biomarkers as a diagnostic tool for irritable bowel syndrome: Where
are we? Expert Rev. Gastroenterol. Hepatol. 2017, 11, 303–316. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/nu11071613
http://www.ncbi.nlm.nih.gov/pubmed/31315227
http://dx.doi.org/10.1126/science.1206025
http://dx.doi.org/10.1038/nrgastro.2014.40
http://dx.doi.org/10.1136/gutjnl-2017-313750
http://dx.doi.org/10.1016/j.mib.2016.10.003
http://dx.doi.org/10.1111/j.1365-2982.2009.01427.x
http://dx.doi.org/10.1038/srep12693
http://dx.doi.org/10.1186/s12876-016-0446-z
http://www.ncbi.nlm.nih.gov/pubmed/27121286
http://dx.doi.org/10.3945/jn.112.159285
http://dx.doi.org/10.1136/gutjnl-2014-307264
http://www.ncbi.nlm.nih.gov/pubmed/25016597
http://dx.doi.org/10.1111/nmo.12969
http://www.ncbi.nlm.nih.gov/pubmed/27747984
http://dx.doi.org/10.1111/apt.13283
http://www.ncbi.nlm.nih.gov/pubmed/26076071
http://dx.doi.org/10.1038/srep26420
http://dx.doi.org/10.1080/17474124.2017.1288096
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Design and Participants 
	Fecal Sampling, DNA Extraction, and Sequencing 
	Taxonomy Assignment Based on the 16S rRNA Gene Sequence 
	Analysis of Bacterial Diversity 
	Measurement of Fecal Short-Chain Fatty Acids 
	Group Differences in Taxonomic Abundance 
	Prediction Model for IBS and Statistical Analyses of IBS Biomarkers 
	Statistical Analyses of the Fecal Microbiome to Determine the Featured Taxa in IBS Patients 

	Results 
	Patient Characteristics and Clinical Status 
	Biodiversity of IBS Subgroups and Healthy Controls 
	Short-Chain Fatty Acids in Feces Samples from IBS Patients 
	Distance of Microbial Composition between IBS and Healthy Controls 
	Comparisons of Relative Abundance of Each Taxon between Healthy Controls and IBS Patients 
	Classification of IBS and Healthy Controls by Machine Learning with Featured Taxa and Short-Chain Fatty Acids 
	Comparison of Japanese IBS Featured Taxa with Swedish IBS 

	Discussion 
	References

