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Glioblastoma (GBM), which occasionally occurs in pediatric patients, is the most common
tumor of the central nervous system in adults. Clinically, GBM is classified as low-grade to
high-grade (from 1 to 4) and is characterized by late discovery, limited effective treatment
methods, and poor efficacy. With the development of immunotherapy technology,
effective GBM treatment strategies are of great significance. The main immune cells
found in the GBM tumor microenvironment are macrophages and microglia (MG). Both
these monocytes play important roles in the occurrence and development of GBM.
Macrophages are recruited during tumorigenesis, whereas MG is present in the brain
during embryonic development. Interestingly, the accumulation of these monocytes is
inversely proportional to the survival of adult GBM patients but not the pediatric GBM
patients. This study used single-cell RNA-seq data to reveal the heterogeneity of MG in
tumor lesions and to explore the role of different MG subtypes in the occurrence and
development of GBM. The results may help find new targets for immunotherapy of GBM.
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INTRODUCTION

GBM is the most common and infiltrating type of primary brain tumor, with a global incidence of
approximately 70,000–100,000 per year. It is characterized by hidden onset, high morbidity, high
fatality, high recurrence, and low cure rates [1]. Even with active therapy, GBM is extremely prone to
relapse and has poor prognosis. The median survival time of patients is usually between
15–19 months, and the 5-year survival rate is only 5%. Approximately 180,000–600,000 young
and middle-aged people die of GBM worldwide each year [2, 3].

In the past decade, researchers have found that the tumor microenvironment has a notable impact
on tumorigenesis and tumor development [4]. The interactions and mutual influence between non-
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tumor and tumor cells have gradually attracted attention and led
tomore in-depth discussions. Owing to the presence of the blood-
brain barrier, the tissue environment in which GBM exists is very
different from that of other tumors. Most GBM tumors are
characterized by immune tolerance. MGs, macrophages, and
T cells constitute the immune microenvironment [5, 6].

Malignant tumor and immune cells in the immune
microenvironment are regulated. Inflammatory infiltrating cells,
including macrophages and MG, account for more than half of the

total immune cells in the GBM immune microenvironment [4]. They
are considered important in inducing tumor invasion and growth by
secreting CCL5, IL-113, TGF-β, EGF, IL-6, and platelet-derived
growth factors [7, 8]. During its immune response to GBM, MG
can also release soluble factors to promote tumor migration. It is
believed thatmalignant tumor cells can secrete chemokines (CCL2 and
CXCL2) [9, 10] to recruit macrophages andMG, which gather around
tumor cells, thereby promoting tumor formation and evading immune
cell attack. MG is a source of yolk sac myeloid precursor cells.

FIGURE 1 | The subtype of MG cells in GBM tumor microenvironment. Integrated single-cell RNA-Seq analysis of human GBM tumor cells. All ten samples were
analyzed using canonical correlation analysis with the Seurat R package. Cells were clustered using a graph-based shared nearest neighbor clustering approach and
visualized using a UMAP plot. (A,B) All cells were clustered in 21 clusters from 10 patients. (C) 21 cluster’s marker genes expression heatmap. (D) All cells were
characterized into 4 cell types. (E) Automatically identify cell types with the singleR package. (F) Combined with the GBM tumor microenvironment, identify the cell
type and theMG cell subtype. (G)Heatmap of marker genes expressed in different cell types. (H) Some of MG cell associate genes are report by the previous studies and
the current MG especially expressed genes.
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In GBM, the mechanism through which MG differentiates into
subgroups with different roles is not fully understood. Previous
studies have shown that the loss ofMG induced in different ways can
inhibit the growth of malignant gliomas [11–13]. Gpnmb and Spp1
genes have also been implicated in the accumulation of disease-
related MG and MG-related cancer cell proliferation, and they are
associated with poor prognosis of human GBM [14]. The
tetracycline analog minocycline can block the activation of MG
and reduce tumor growth in a GBM mouse model [15, 16]. In a
mouse brain tumor slice model, antibodies against the MG Toll-like
receptors (TLRs) target the tumor size [17]. Unfortunately, human
clinical trials targeting MGs have not yielded satisfactory results. At
the same time, no markers have been identified that can distinguish
tumor-associated MGs from other MG subgroups. Accordingly,
analyzing single-cell sequencing data to explore the heterogeneity
of MGs in the immune microenvironment of GBM can help
determine the differentiation mechanism of tumor-related MG
cells during tumor formation. This will provide a potential target
for molecular diagnostics and clinical therapy of GBM.

MATERIALS AND METHODS

Data Collection
Single-cell RNA-seq data from 10 adult and pediatric patients
with IDH-wildtype glioblastomas were downloaded from the
Gene Expression Omnibus (GEO) database (dataset NO.
GSE131928). The old and young mice brain single-cell RNA-
seq data were also downloaded from the GEO database (dataset
NO. GSE147693).

Single-Cell RNA-Seq Data Processing
The Cell Ranger software (v3.3.0) provided by 10x Genomics
contains raw data with barcodes after single-cell sequencing. The
STAR (v0.3.7) tool was used to map reads to the genome and
transcriptome and aggregate the data in the samples to generate
normalization data for generating a gene expression count matrix
corresponding to the cell. We used the Seurat R package to process
the unique molecular identifier (UMI) count matrix (v3.0) [18]. To
remove low-quality cells and possible multiple captures, we filtered
out cells with a limit of +/− 2 times the number of UMI/genes
beyond the average value, assuming that the UMI/gene of each cell
has a Gaussian standard deviation. After checking the cell
distribution ratio for mitochondrial gene expression, Based on the
distribution of mitochondrial gene expression, we further discarded
>20% of the cells. After applying these quality control standards, we
normalized the filteredmatrix in Seurat to obtain normalized counts.
Principal component analysis (PCA) was performed to reduce
matrix dimensions. The cells are clustered based on the graph-
based clustering method and visualized in two dimensions using
UniformManifold Approximation and Projection (UMAP).Marker
genes can simultaneously test the average expression and percentage
of expressed cells to identify genes that are significantly differentially
expressed between the clusters. For cell type identification, the
singleR package (v1.4.1) [19] was used to assist in the
determination based on the “HumanPrimaryCellAtlasData”
parameter.

Pseudotime Analysis
We used Monocle and Monocle3 packages (http://cole-trapnell-
lab.github.io/monocle-release/) to set a pseudo-chronological
sequence of cell development [20]. First, we used the
importCDS function in Monocle to convert the original count
matrix in the Seurat object into the CellDataSet format and
determine the differentiation trajectory between cells. Then,
the Monocle3 package was used to infer the pseudo-time
trajectory and differentiation direction of cell development.

Differential Expression Analysis
Differential expression analysis was performed using the MetaDE
package (v1.30.1) [21]. Significantly differentially expressed genes
were identified using the meta-analysis method and Bonferroni
correction (adjusted p-value).

Gene Ontology Term and Pathway
Enrichment Analysis
We took the significantly different genes obtained from the Single-
cell RNA-seq analysis as the gene set and used the clusterProfile
package (v3.18.1) [22] to perform GO and KEGG function and
pathway enrichment analysis. The column chart displays the
KEGG pathway enrichment results and the original chart
displays the GO term enrichment analysis. The results show the
enrichment results of the top ten enrichment scores and the
presence of cross genes in the enriched set in the form of a network.

PPI-Network Analysis
The differentially expressed genes between the single-cell clusters
were placed into the protein interaction database (STRING:
functional protein association networks online analysis
software), the differential gene interaction (from curated
databases and experimentally determined) relationship
network was extracted, and Cytoscape (v3.6.1) was used to
perform protein interaction network analysis and find the key
network nodes by combining GO and KEGG enrichment results.

TCGA Clinical and Sequencing Data
Analysis
Connecting to the TCGA database through cBioPortal (www.
cbioportal.org), we downloaded the RNA-seq data of 543 patients
and the survival analysis data of 147 patients in the glioblastoma
(TCGA, Cell 2013) gene set. We then performed mRNA co-
expression analysis and analyzed the gene expression differences
corresponding to the survival rate analysis.

RESULT

Single-Cell RNA-Seq Identifies Multiple Cell
Population in 10 GBM Samples
To study the influence of MG in the tumor microenvironment of
human GBM on tumorigenesis and development, we
downloaded 10X single-cell RNA-seq data from 10 GBM
samples (Figure 1A) from the GEO database. Among them,
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FIGURE 2 |Genetic analysis of differences among subtypes of MG cells in GBM tumor microenvironment. (A–C) Volcano plot of different genes between every two
subtypes of MG cells. Significantly different genes (logFC > 1 and −log10 (p_val) > 20) are red dots (with gene names), while black dots represent those that are not
significant; the x-axis represents the log2 (fold change) and the y axis is the −log10 (p_val). (D,E) Monocle relies on machine learning technology, Reversed Graph
Embedding, to construct single-cell trajectories. (F,G) Trajectory inference by monocle3, the Pseudotime value of a cell, is the distance from its position along the
branch to the root (relatively). (H) Functional enrichment analysis was performed using GO enrichment with the significantly upregulated genes inMG-12 compare toMG-
3. The top 20 significantly enriched GO processes are shown.
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nine samples were from adults and one sample was from a minor.
After data quality control and principal component analysis
(PCA) (Supplementary Figure S1), all cells were classified
into 21 clusters (Figure 1A), combined with the marker genes
of cells in the HumanPrimaryCellAtlasData database, and they
were divided into five cell types (Figure 1D). Malignant tumor
cells accounted for the largest percentage of cells, followed by
macrophages, monocytes, T cells, and endothelial cells. Based on
previous studies on the microenvironment of GBM tumors and
the marker gene of each cluster (Figure 1C), the monocyte cluster
was further divided into three subsets of MGs (Figure 1F).
Analysis of the marker genes (Figure 1G) of the final six cell

types revealed that the three subsets of MG-1, MG-2, and MG-3
have the same markers (Figure 1H), including CCL3, CCL4, and
CXCL2, which have been reported to be significantly elevated
in MG.

GBM Associated MG Cells Transcriptomic
Alteration Analysis
First, the three subsets of MG cells were analyzed for differential
expression in pairs (Figures 2A–C; Supplementary Figure S2).
The results showed that the overall difference between MG-1 and
MG-3 was large, whereas the difference betweenMG-1 andMG-2

FIGURE 3 | Characteristic of MG-12 up-regulation genes. (A) PPI-Network representing related MG-12 up-regulation genes. (B) Cell chemotaxis-related genes.
(C,D) Myeloid cell differentiation GO term genes expression in all cell types.
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FIGURE 4 | Performance of MG-12 up-regulation genes in MG cells from old and young mice brain single-cell RNA-seq data. (A) Identification of cell types on
UMAP plot. (B) Heatmap of the top 100 different genes between old and young MG cells. (C) UMAP plot and violin plot show the relative expressions of old and young
MG cells in MG-12 up-regulation genes.
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was small. In the analysis of intercellular development trajectory
(Figures 2D,E), the distance between MG-1 and MG-3 was
greater than that between MG-1 and MG-2. The pseudo-time
trajectories (Figures 2F,G; Supplementary Figures S3A,B)
showed that MG-2 may be the intermediate stage of MG-1
and MG-3. Finally, we performed GO and KEGG function
and pathway enrichment analyses (Figure 2H; Supplementary
Figures S3C,D) of the genes showing significant differential
expression between the MG-1 and MG-2 combination and
MG-3. The results showed that the most significant GO
function terms were the myeloid cell chemotaxis-related genes
(Figures 2B, 3A) and many inflammatory and immune response
pathways (Supplementary Figures S3C,D). In particular, the
upregulated genes in MG-1 and MG-2, compared to those in
MG-3 (Figure 3A), were significantly enriched in multiple genes
related to myeloid cell chemotaxis, and the expression of these
genes in MG cells was significantly higher than that in other cell
types (Figures 3B–D). Integrating the results of MG cell
heterogeneity and pseudo-time analysis, we hypothesize that
MG in the GBM tumor microenvironment produces
inflammatory pathways and activates immune response
pathways (especially MHC-II). During the analysis, we found
several significantly altered genes (ZFP36, NFKBID, JUNB, FOS,
and FOSB) (Figure 3B), which are not only related to the
chemotaxis of myeloid cells but are also closely related to cell
senescence.

MG Cells Alteration Between Aged and
Young Mouse Brain Single-Cell RNA-Seq
Based on the key differential genes and pathways we identified,
we found that MG only has a cumulative effect in adult GBM; this
is consistent with the study by Engler et al. We Further focused on
what happens in MG cells during cell senescence. To compare the
changes in MG cells during the aging process and those during
the formation of GBM, we downloaded single-cell RNA-seq data
of young and old mice whole brains from the GEO database. The
MG cells were extracted based on cell typing, as in the original
paper (Figure 4A). Further analysis of the differential genes in the
expression profiles between old and young MG cells (Figures
4B,C), and the differential genes of GBM-related MG subsets,
such as Zfp36 andNfkbid, were found in the age differences of top
200 genes (Figure 4B). Changes in related genes were further
verified in terms of the expression level and proportion of
expressing cells (Figure 4C). ZFP36, as an inhibitor of the
cellular senescence pathway, and NF-κB, as an activator, can
directly regulate the expression of SASP-related 6 genes, thereby
regulating cellular senescence. ZFP36 and NFKBID decreased
when MG cells aged, which is probably the key factor that causes
only adult GBM to be affected by the number of MG cells.

Specific Manifestations of Genes
Associated With MGCell Heterogeneity in
Clinical Data
To understand the important role of ZFP36 and other key genes in
the survival and prognosis of GBM, we analyzed the bulk RNA-seq

data of tumor samples and their corresponding survival data by
downloading the “Glioblastoma (TCGA, Cell 2013)” data. Among
the 543 tumor samples, a considerable portion showed highmRNA
levels of these genes (Figure 5A). Almost all the above genes were
co-expressed with a significant positive correlation (Figure 5B;
Supplementary Figure S4). Further analysis of the correlation
between ZFP expression levels and GBM survival (Figure 5C)
revealed significant difference (p < 0.05) between high and low ZFP
expression levels. Analysis of clinical data further verified that
ZFP36 and other MG heterogeneity-related genes play an
important role in the survival and prognosis of GBM.

DISCUSSION

The research for GBM therapy has been progressing slowly. Drugs
against GBM are limited by the blood-brain barrier. Various studies
have shown that the antitumor immune response of GBM is
modulated. This indicates the feasibility of immunotherapy for
GBM treatment. Like many other malignant tumors, GBM highly
expresses typical immunosuppressive factors, such as PD-L1; A lot of
progress has beenmade in immunotherapy targeting T cells [23–25].
However, owing to the blocking effect of the blood-brain barrier, the
immune cell composition in the tumormicroenvironment of GBM is
significantly different from that of other tumors. This also suggests
that it may be more meaningful to target GBM tumor-related
macrophages and MG for immunotherapy of GBM.

The development of single-cell sequencing technology provides
better methods and possibilities for studying cell heterogeneity and
cell state transformation. In this study, we discovered a GM state
identification method that is different from the traditional M1/M2
state model. In our cell state identification, we did not observe a
difference in the expression of the typical features of M1/M2 (iNOS
and Arginase1) [26]. Using the pseudo-time analysis method based
on different algorithms, we found that MG-1 and MG-3 from our
three classifications should be the two most distant populations.
However, owing to the limitation of the depth of single-cell
sequencing, we did not observe numerous differences between the
two cell populations in the single-cell data. Fortunately, we are still
exposed to a series of important differential genes, such as ZNF36, in
gene set enrichment analysis. ZNF36 is associated with the MAPK
and TNF pathways and possesses complex negative feedback
regulation mechanisms [27]. These two important pathways have
been reported in many studies to be closely related to GBM [28–30],
especially with respect to inflammation (MHC II) [31] and immune
activation [25, 32]. In addition, we found that some genes such as
ZNF36, AP-1, and CCL3 are closely related to cell differentiation
[33–36], especially the differentiation of myeloid monocytes as
chemokines. This result suggests that chemotaxis between
different types of MG cells is likely to be affected by the
pathways in which genes such as ZNF36 are located, and that
this mechanism is affected by stress from the tumor
environment, such as inflammatory factors.

Given the simultaneous appearance of key genes, such as
ZNF36, NFKBID, and IL-6, we focused on the cellular
senescence pathway [37]. There are large differences between
adult and pediatric GBM, resulting in many therapy programs
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for adult GBM that cannot be used for children. The enrichment of
these genes related to the cellular senescence pathway may remind
us that the difference between adult and pediatric patients is
important for GBM tumor microenvironment. We identified
MG cells in old and young mice through whole-brain single-cell
sequencing data. Changes in MG cells during the aging process
were analyzed. Perhaps because of the technical limitations of the
depth of single-cell sequencing or the experimental protocol, we
did not enrich the pathway in the aged and younger groups. It is
worth noting that the main differential genes found in the tumor-

related MG cell state differential gene set were still found to appear
in the elderly related differential gene set. This result suggests that
changes in MG cells during the aging process may have a huge
impact on the tumor microenvironment of GBM.

To verify the criticality of the genes found in GBM, we
performed co-expression analysis and survival analysis in the
RNA-seq data of human GBM tumor samples. Except for these
results, these genes not only showed very good consistent
expression in tumor samples, the expression level of ZFP36
was also significantly negatively correlated with patient survival.

FIGURE 5 |Characteristic of MG-12 up-regulation genes in clinical data from TCGA database. (A)Comprehensive status of important genes in clinical samples. (B)
The significance fitting curve of co-expression between genes. The red curve (C) The survival curve was significantly correlated with the expression of the ZFP36 gene
(p = 0.0398, Gehan-Breslow-Wilcoxon test).
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Supplementary Figure S1 | QC and PCA analysis of single-cell RNA-seq data. (A)
Overview of all cell types of variable genes in the 10 samples highlighting the top-10
significant variable genes. (B) The top-20 principal components and their
significance. (C) gene set that has greater influence in the top-9 principal
components. (D) Heat-map based on a single principal component.

Supplementary Figure S2 | Marker genes of MG cell subtypes in GBM tumor
microenvironment. (A–C) MG-1, MG-2, and MG-3 cluster marker genes are
compared to each other.

Supplementary Figure S3 |Characteristic analysis of the subtypes of MG cells. (A)
Genes with dispersion (variation) coefficients higher than the set value were selected
for developmental trajectory analysis. (B) The stage of cells in Figures 2F,G. (C,E)
Downregulated gene set KEGG pathway enrichment analysis result, top-10
pathway and their relationship (lines means that there are overlap genes
between the two pathway). (D,F) Upregulated gene set KEGG pathway
enrichment analysis result, top-10 pathway and their relationship (lines means
that there are overlap genes between the two pathway).

Supplementary Figure S4 | ZFP36 signature co-expressed genes in TCGA GBM
RNA-seq. (A–F) CD83, CCL4, CCL4L1, and NFKB1 are co-expressed with ZFP36
in clinical RNA-seq.
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