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Spatio‑temporal evolution 
characteristics analysis 
and optimization prediction 
of urban green infrastructure: 
a case study of Beijing, China
Yin Ma1, Xinqi Zheng1,2,3*, Menglan Liu1, Dongya Liu1, Gang Ai1,3 & Xueye Chen4,5

The reasonable layout of green infrastructure is conducive to the low-carbon, livable and high-quality 
sustainable development of cities. The framework of spatio-temporal evolution characteristics and 
prediction analysis of Urban Green Infrastructure (UGI) was constructed by integrating morphological 
spatial pattern analysis (MSPA) and CA-Markov in the study. We analyzed the spatio-temporal 
evolution characteristics of UGI in Beijing from 1990 to 2019, predicted its future change trend in 2030, 
and put forward the optimization scheme for the ecological network of UGI. The area change of UGI 
presented a "V" shape from 1990 to 2019 in Beijing, and the turning point was around 2009. Its spatial 
distribution revealed a significant heterogeneity. The comprehensive change rate index showed a 
"rising and then falling" trend from 1990 to 2019. Core with an area of over 1000 km2 had inclined "C" 
shape, connecting the north, west and south of the study area. Among the three prediction scenarios 
for 2030, the area of UGI under the ecological conservation priority scenario is the largest, accounting 
for 86.35% of the total area. The area of UGI under the economic development priority scenario is the 
smallest, accounting for 76.85%. The optimization of zoning and road network are effective measures 
to improve the connectivity of UGI in Beijing. This study is beneficial to extend the research ideas of 
UGI and promote sustainable urban development.

In recent years, more and more people are pursuing high-quality urban life in order to get more happiness1–3. At 
the same time, people are not only concerned about urban environmental issues, such as urban heat island4, air 
pollution5, 6and flood disasters7, but also gradually pay attention to the theme of low-carbon, health, livability 
and high-quality development of cities3, 8. Therefore, the construction of the new theme city in the new era is 
an urgent task for the current research on urban issues. However, UGI can solve many problems in cities and 
has a prominent role and importance in sustainable urban development. The habitat around UGI has increased 
vegetation cover to improve urban ecosystem services2, 9. UGI can reduce the impact of climate change on cities 
by increasing carbon sequestration10. Some studies have shown that UGI is beneficial in reducing the incidence 
of diseases and crime rates11. In addition, UGI allows local detail planning and potential integrated planning 
among other urban settlements12.

The development of green infrastructure (GI) was heavily influenced by greenways and ecological networks, 
the concept of which was gradually defined in the 1990s13–15. With the attention and research of experts in various 
fields, there were different views on the definition of GI. The emphasis of the definition differs depending on the 
content of the study. Among them, the definition of GI which is ‘‘an interconnected network of natural areas and 
other open spaces that protects the values and functions of natural ecosystems, sustains clean air and water, and 
provides a wide range of benefits to people and wildlife’’ was widely used by ecologist and urban researcher13, 16. 
Based on existing research, UGI refers to the interrelated and organic unified green space network composed of 
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natural and semi-natural areas in cities, including forest lands, cultivated lands, grasslands, watersheds, wetlands, 
parks and urban greening in this study17. The network can provide a source for animal migration and ecological 
processes, enhance ecosystem health and resilience, maintain bio-diversity and ecosystem balance, and provide 
benefits for human welfare14, 15. Therefore, it is of great practical significance to construct research framework of 
UGI, explore its spatio-temporal evolution characteristics, optimize ecological network, and enhance its stability 
and connectivity for high-quality urban development18–20.

After nearly 30 years of development, the identification of UGI has made great progress. Various methods 
have been developed and applied from the perspective of landscape science and urban ecology17, 21. Some schol-
ars identified UGI through ecosystem services and source sink theory22. Some scholars have also explored the 
shape and distribution of UGI using the MSPA identification method based on mathematical morphology18. 
With the development of data diversification, remote sensing information extraction methods were also used 
for the identification of UGI23. Among, the common identification method was MSPA, a mathematical mor-
phology algorithm developed by Vogt18–20. The method mapped individual pixel categories to different classes, 
such as cores, bridges, loops, branches, perforations, and edges24. On the basis of UGI’s identification, Fragstats 
and ArcGIS plug-in tools were used to calculate the patch density of each category of UGI25 and the minimum 
cost distance to describe the fragmentation and connectivity of UGI26, 27. Based on the above identification 
methods and tools, scholars have explored the evolutionary characteristics of UGI to diagnose its development 
and distribution problems for the optimization of UGI. In detail, some scholars have reflected the change of 
UGI by analyzing the evolution characteristics of urban forest28, 29. Other scholars have used the image data in 
2003 and 2018 to identify total area changes of UGI and impacts on habitat connectivity in Stockholm, Sweden, 
and the research results provided data and ideas for planning optimization of UGI23. Studies have either ana-
lyzed the evolution of UGI as represented by the evolution of urban forests or have focused more on the overall 
spatio-temporal variation of the types of UGI. But fewer studies have analyzed major types, rates of change, and 
barycenter migration in time series.

UGI was attracted extensive attention from researchers in various disciplines. Urban ecology researchers have 
used expert opinion method30, ecosystem services assessment method31 and natural capital model method4 to 
study the quantitative relationship between UGI and urban ecosystem. Atmospheric experts have paid more 
attention to the relationship between UGI and air quality. Some scholars have used the integrated dispersed-
deposition modelling and the weather research and forecasting model-community air quality modeling system to 
explore the linear or more complex relationships between UGI and air quality32, 33. Soil experts have believed that 
soil, water, climate and vegetation were a unified organic whole, and paid attention to the relationship between 
UGI and soil moisture through field monitoring methods34. Forest specialists were more concerned about how 
to plan and design vegetation to make the most out of UGI28, 29. In addition, some scholars have explored the 
assessment methods of UGI35, 36, the relationship between UGI and poor areas37, the role of UGI in urban flood 
management7 and promoting the construction of green roofs and green walls38. The prediction of UGI is also of 
particular interest. Fewer scholars have conducted related studies. Lin et al. used the CA–Markov model to predict 
the future spatial pattern of green infrastructure under three different scenarios, and the results of the study can 
provide basis and reference for the optimization of green space in the study area39. Diana et al. and Charlotte 
et al. also used CA–Markov model to achieve the prediction of UGI, and to quantitatively explore the relation-
ship between green infrastructure and urban planning40. However, there is still much potential research space 
to promote high-quality sustainable urban development through development pattern trend prediction of UGI.

In order to fill the gap in the detailed study of UGI and its future development trend prediction, this study 
integrated the ideas of mathematical morphology and prediction to build a research framework. Specifically, we 
constructed a framework which is based on MSPA and CA-Markov to analyze the spatio-temporal evolution 
characteristics and predictions of UGI, and proposed two indicators to quantify the evolution characteristics 
of UGI. Moreover, the spatio-temporal evolution of UGI in Beijing from 1990 to 2019 was explored, the devel-
opment trend in 2030 was predicted under three different scenarios, and the distribution characteristics, con-
nectivity and barycenter migration trends of the core were analyzed, so as to better optimize urban ecological 
network and promote urban livability.

Results
Spatio‑temporal evolution of UGI from 1990 to 2019.  According to statistics, the area of UGI 
accounted for more than 76% of the total area of the study area from 1990 to 2019. The area of core was the 
largest of the seven categories, accounting for more than 90% of the total area of UGI, while island, bridge and 
loop were smaller, accounting for only about 0.2% of the total area. As shown in Fig. 1, the area of total and 
core showed a "V" shaped change trend from 1990 to 2019, with the turning point around 2009(Fig. 1A(a),(b)). 
The area of the island presented an inverted "V" shaped change trend, which was opposite to the change trend 
of the core. The turning point of its change also appeared around 2009 (Fig. 1A(c)). Moreover, the area of loop 
decreased year by year (Fig. 1A(d)). We found that there was no clear regularity in the trend of area changes 
of bridge, branch, edge and perforation (Fig. 1A(e)–(h)).From the perspective of network ecology of UGI and 
urban ecological integrity, there was a correlation between categories with edge and connectivity effects and 
those with ecological source and ecological island jump effects, and the trends of area changes were opposite. Just 
as in 2009, the area of core was the smallest during the study period. On the other hand, the branch and bridge 
had the largest area to ensure the connectivity and integrity of UGI. From the perspective of change rate index, 
as shown in Table 1, the comprehensive change rate index showed a "rising and then falling" trend, with 0.85% 
for 1990–1999, 1.00% for 1999–2009, and 0.90% for 2009–2019. From 1999 to 2009, the single change rate index 
was larger, in which the change rate of the core was -1.14%, and the area of core decreased significantly during 
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Figure 1.   Spatio-temporal evolution of UGI in Beijing from 1990 to 2019. (A) Area variation of categories of 
UGI in Beijing from 1990 to 2019. (B) Distribution of UGI in Beijing from 1990 to 2019 and overlay map of 
UGI and sixth ring road network in 2009. The figure was drawn with ArcGIS sofware version 10.4. (https://​
www.​esri.​com/​en-​us/​arcgis/​produ​cts/​arcgis-​deskt​op/​overv​iew).

Table 1.   Single and comprehensive change rate index of UGI in Beijing from 1990 to 2019.

Date

Single change rate index Comprehensive change 
rate index (%)Core (%) Islet (%) Edge (%) Bridge (%) Loop (%) Perforation (%) Branch (%)

1990–1999 −0.20 1.84 −0.64 −2.10 0.61 0.31 −1.80 0.85

1999–2009 −1.14 10.61 10.99 7.20 −1.37 −4.63 6.27 1.00

2009–2019 0.80 −1.84 −2.66 −3.16 −0.85 4.08 −3.19 0.90

https://www.esri.com/en-us/arcgis/products/arcgis-desktop/overview
https://www.esri.com/en-us/arcgis/products/arcgis-desktop/overview
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this period. Moreover, the change rates of island, edge and bridge were 10.61%, 10.99% and 7.20% respectively, 
and their area had a tendency to increase.

The spatial distribution of UGI in Beijing from 1990 to 2019 was shown in Fig. 1B(a)–(d). The ecological 
network and background areas of UGI showed obvious "ring" distribution characteristics in Beijing. The distribu-
tion characteristics are consistent with the circular radial greenway system layout of "three ring guidance, multi 
corridor connection and multi-layer expansion" proposed by relevant departments. The outer ring was ecological 
network of UGI, which is distributed around the study area. The inner ring, as the background area, was mainly 
distributed in the main urban area of Beijing. In this region, extensive construction land and a high-density road 
network resulted in a sparse distribution of UGI. In the time series of the study, the background area showed 
a trend of "expansion followed by contraction" centered on the main urban area. In detail, there was a trend of 
annual expansion from 1990 to 2009, and a clear trend of contraction from 2009 to 2019, especially in the east-
ern part of Chaoyang and the northern part of Haidian. The characteristic is mainly influenced by the policies 
enacted between 2011 and 2014 regarding the preservation and expansion of scenic garden construction such as 
historical and cultural scenic areas. Thus, it can be seen that the increase of green area in the parks is beneficial to 
enhance the connectivity of UGI within the city. On the contrary, the ecological network of UGI showed a trend 
of "contraction before expansion". From the perspective of Beijing’s unique transportation network (Fig. 1 B(e)), 
the ecological network of UGI in the sixth ring road was relatively fragile, while the ecological network in the 
suburbs was relatively stable. The finding is consistent with the location of the second green barrier in Beijing as 
proposed in the greening policy promulgated in 2003. The construction of the green barrier has an important 
influence on the overall distribution characteristics of UGI in Beijing.

Analysis of major cores from 1990 to 2019.  From 1990 to 2019, the area of cores greater than 10 km2 
accounted for more than 90% of the total area, and the ecological source area of 10 km2 can also provide a rela-
tively stable ecological environment for organisms. From the perspective of proportion and ecological function, 
the cores with an area of more than 10 km2 were studied as major cores (Fig. 2A). On the whole, the major cores 
were mainly located in the suburbs surrounding the study area, while there was no major cores in the city center. 
Core (No. 1) with an area of over 1000 km2 had inclined "C" shape, connecting the north, west and south of the 
study area. The major core played an important role in Beijing because of its wide coverage and connectivity. 
The cores with an area of 100–1000 km2 were mainly distributed in the southeast of the study area, including 
the southern of Tongzhou, Daxing and the eastern of Fangshan, with smaller numbers. The cores with an area 
of 10–100 km2 were scattered and independent. Their number was more than the number of cores with larger 
area. In the study time series, the area, number and distribution of the major cores changed steadily from 1990 
to 1999. However, the network of the major cores was affected in 2009. Specifically, the main manifestations were 
the decrease in total area, the significant increase in number, the large degree of ecological fragmentation, and 
the weak connectivity, especially in the central urban area, Tongzhou and Daxing. By 2019, the overall situation 
of the major cores were improved, which was shown by an increase in total area and the enhancement of connec-
tivity. The ecological restoration effect of Daxing and Tongzhou was evident. However, the degree of ecological 
fragmentation was still large.

Based on the analysis of the potential corridors and pinch points between the major cores, we found that 
they were mainly distributed in four types of landscapes: cultivated land, water area, construction land and for-
est land. There were three main scenarios: (1) the potential ecological corridor between core (NO. 3) and core 
(NO. 7) was dominated by cultivated land and supplemented by forest land (Fig. 2B(a)). The ecological corridors 
were more likely to pass through woodland and cultivated land if they do so. The current value was large, and 
there were multiple paths connecting the two major cores with distinct pinch points and strong connectivity 
(Fig. 2B(b)). (2) The potential ecological corridor between core (NO.3) and core (NO.4) was dominated by water 
area (Fig. 2B(c)). Although the current path was single, the current value reached the maximum (Fig. 2B(d)). 
The water area can enhance the connectivity of cores and consolidate the ecological network of UGI. (3) In addi-
tion, potential ecological corridors existed between the cores of the construction land (Fig. 2B(e)). This potential 
ecological corridors had greater obstacles, smaller current value between the cores, weaker connectivity, and no 
obvious pinch points (Fig. 2B(f)).

Prediction analysis of UGI in 2030.  In order to verify the feasibility of the CA–Markov model in IDRISI 
17.0 to predict the land use and cover data of Beijing in 2030, the study used the model to predict the land use 
and cover data of Beijing in 2009 and 2019. Specifically, the actual data of 1990 and 1999 were used to predict 
the data of 2009, and the actual data of 1999 and 2009 were used to forecast the data of 2019. Then, the consist-
ency between the predicted and actual data for 2009 and 2019 was verified, and the kappa coefficients of the 
prediction accuracy were 0.8277 and 0.7877 respectively. The prediction accuracy of the CA–Markov model met 
the requirements of further research. Three development scenarios were proposed based on Beijing’s develop-
ment vision and national policies. Under the ecological conservation priority scenario, the transfer of elements 
within the ecological conservation red line was restricted. Elements included mainly forest land, water area and 
cultivated land. The effect of altitude and slope should also be considered. Under the economic development 
priority scenario, the transfer of construction land was restricted. In addition, the probability of transferring out 
of unused land should be increased. Again, the effects of elevation and slope were to be considered. The natu-
ral development scenario did not consider the influence of policies and the constraints of conversion between 
land types. After generating a scenario-specific land use suitability atlas, the CA–Markov model was applied to 
simulate each of the three scenarios. The land use prediction results were converted into elemental data of UGI 
by MSPA.
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Figure 2.   (A) Distribution of major cores of UGI in Beijing from 1990 to 2019. The figure was drawn with 
ArcGIS sofware version 10.4. (https://​www.​esri.​com/​en-​us/​arcgis/​produ​cts/​arcgis-​deskt​op/​overv​iew). (B) 
Potential corridors and pinch points between major cores. (a,c,e) represent the potential corridors between 
major cores and the land cover of the potential corridor crossing. (b,d,f) represent the current values between 
the major cores, and the large current value indicates a significant pinch point. On the contrary, it indicates that 
the pinch point is not obvious.

https://www.esri.com/en-us/arcgis/products/arcgis-desktop/overview
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As shown in Table 2, the total area of UGI and the change rate of each type under the three development 
scenarios are significantly different. Under the ecological conservation priority scenario, the total area of UGI in 
Beijing in 2030 is 14,155.50 km2, which is 744.3 km2 more than that in 2019, accounting for 86.35% of the total 
area of the study area. The percentage of the area of the core reaches 95.45% of the total area of the UGI, while 
the total percentage of the other categories is only 4.55%. Under the natural development scenario, the total area 
of the UGI is 13,426.03 km2, accounting for 81.89% of the total area. It is comparable to the area in 2019, but 
is 729.47 km2 less than the area under the ecological conservation priority scenario. The total area of the UGI 
under the economic development priority scenario is 12,598.46 km2, accounting for 76.85% of the total area 
of the Beijing. In comparison with 2019, the area under this scenario is reduced by 812.71 km2. In terms of the 
change rate, the economic development priority scenario have the largest comprehensive change rate index of 
0.82%. The ecological conservation priority scenario is the next largest, at 0.49%. The smallest combined rate of 
change index is 0.17% for the natural development scenario. From the above analysis, it is clear that the policy 
and development constraints have a greater role in regulating the change of UGI. From the development plan of 
Beijing, economic development and ecological optimization need to be carried out simultaneously in the next 
ten years. In addition, the spatial distribution of UGI in urban center of Beijing is widely different under the 
three scenarios, as shown in Fig. 3. Among them, the background area of the urban center is the largest in scope 
under the economic development priority scenario in comparison with the other two development scenarios. 
The connectivity of UGI is severely affected, and there is almost no UGI in the eastern and western urban areas. 
Under the ecological conservation priority scenario, the distribution of UGI in the central city is significantly 
broader and more connected. In consideration of the fact that the core accounts for a large proportion of the 
total area of UGI, the migration of its barycenter can reflect the overall change of UGI. The core in 2030 under 
the ecological conservation priority scenario and the core in the previous period are selected for the barycenter 
migration study. As shown in Fig. 4, from 1990 to 2030, the barycenter of cores is in Changping, showing a trend 
of "from south to north, then from north to south". The turning point of barycenter migration direction is around 
2009, which further indicated that ecological network of UGI is gradually improving towards the urban center 
after 2009. In other words, in the future development, the policy and system of eco-environmental protection 
need to be given high priority in order to ensure the spatial distribution pattern and area of UGI.

Discussion
As for the research framework of UGI, several scholars have studied it from the perspectives of planning and 
management1, renovation and restoration25, identification and rendering41. We explored the spatio-temporal 
evolution of UGI from a historical-present-future long time series perspective. Our goal was to provide ideas 
for analysis and optimization of UGI at the urban scale, and also to support sustainable development of low-
carbon, healthy, livable and high-quality cities. In order to ensure the consistency of the before-and-after data, 
and make the research more meaningful, we chose 30 m resolution images of the Landsat series. However, there 
were limitations of the 30 m resolution data for the study. For example, the data cannot better represent the 
spatio-temporal characteristics of UGI within the street and community scales. In other words, it is unable to 
characterize the fine-grained features of UGI. In the future, we will use higher resolution data to conduct studies 
of UGI at the street scale or community scale in Beijing. Besides, it was a new attempt to integrate CA–Markov 
model into the study of spatio-temporal evolutionary characteristics of UGI. With the support of the prediction 
model, the future development trend and general situation of the study area can be well known in advance, which 
provided data support for policy formulation and optimization scheme design. Although our study has conducted 
a multi-scenario prediction analysis, there are some limitations in terms of the constraints perspective. In detail, 
the evolution of UGI is influenced by multiple factors. In addition to the constraints currently considered in the 
study, it may also be affected by natural disasters and unexpected situations.

Beijing is surrounded by mountains on three sides in the west, north and northeast, and forest land and cul-
tivated land are widely distributed. This is the main reason that the area of UGI in Beijing accounted for more 
than 76% of the total area of the study area. The unique topography of the study area with high northwest and low 
southeast also affected the distribution and connectivity of the major cores in UGI42, 43. The cores in high terrain 
areas were widely distributed and highly connected, while the cores in low terrain areas were sparsely distributed 
and weakly connected. We found that the area and distribution centers of UGI changed significantly in 2009. 
In the past 20 years from 1990 to 2009, the country’s development centered on economic construction, and a 
large influx of people into cities, which accelerated the rate of urban expansion. In order to meet the economic 

Table 2.   The area and rate of change of UGI in Beijing in 2030.

Multi-Scenarios Type Core Islet Edge Bridge Loop Perforation Branch Total
UGI percentage of 
total area (%)

Comprehensive 
change rate index 
(2019–2030) (%)

Ecological conservation 
priority scenario

Area (km2) 13,511.48 13.42 209.78 5.69 20.51 346.15 48.47 14,155.50
86.35 0.49

Percentage 95.45% 0.10% 1.48% 0.04% 0.14% 2.45% 0.34% 100%

Natural development 
scenario

Area (km2) 12,340.17 38.33 432.00 28.87 24.56 448.96 113.14 13,426.03
81.89 0.17

Percentage 90.49% 0.39% 4.71% 1.34% 0.21% 2.53% 1.34% 100%

Economic development 
priority scenario

Area (km2) 11,399.86 48.70 592.93 43.41 26.27 318.65 168.64 12,598.46
76.85 0.82

Percentage 91.91% 0.29% 3.22% 0.21% 0.18% 3.34% 0.84% 100%
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development and the housing for a large population, the area of construction land had increased rapidly, and it 
had been achieved mainly by expropriating cultivated land around the former urban area42, 44. Insufficient atten-
tion has been paid to the balance of environment, resulting in a reduction of urban green space. Urban expansion 

Figure 3.   Distribution of UGI in 2030 in Beijing (a) ecological conservation priority scenario; (b) natural 
development scenario; (c) economic development priority scenario. The figure was drawn with ArcGIS sofware 
version 10.4. (https://​www.​esri.​com/​en-​us/​arcgis/​produ​cts/​arcgis-​deskt​op/​overv​iew).

https://www.esri.com/en-us/arcgis/products/arcgis-desktop/overview
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mainly occurred in the main urban area centered on the Dongcheng and Xicheng districts, while the green base 
was widely distributed in the northwest of the entire study area, so the barycenter of UGI shifted northward from 
1990 to 2009, as shown in Fig. 4. With the inclusion of ecological civilization construction in the “five-sphere 
integrated plan” national development strategy in 2012, we have paid more attention to ecological construction 
from the national level. In addition, the implementation of afforestation and demolition of illegal buildings has 
increased the area of the green space in Beijing, which has increased the area of UGI from 2009 to 2019, as shown 
in Fig. 1A(a). This also caused the distribution of barycenter of UGI to shift from north to south, as shown in 
Fig. 4. The prediction study found that the area of green space increased under the natural development scenario 
and ecological conservation priority scenario, while it decreased under the economic development scenario. Liu 
et al. and Li et al. also came up with similar findings45, 46. In conclusion, some policies are needed to guarantee 
the area and the connectivity of ecological network of UGI.

According to the distribution of UGI, Beijing was divided into three regions. Region one was a suburban areas 
of Huairou, Miyun and Yanqing, where UGI was widely and intensively distributed. The area and distribution 
pattern of UGI should be maintained in this region. Region two mainly referred to Tongzhou, Daxing and the 
east of Fangshan. The distribution of UGI in this region was relatively sparse, and the area of a single core was 
small. Meanwhile, this region was also a key area for urbanization and urban expansion. In the urban planning, 
we should take the premise of non-destruction of ecological environment and firmly curb the occupation of 
UGI. Region three mainly referred to the main urban area within the sixth ring road of Beijing, which was the 
most sparsely distributed area of UGI and also the key optimization area. According to the results of the study, 
the road network was the key factor affecting the connectivity of UGI. Other scholars have also demonstrated 
that the traffic road network in Beijing affects the connectivity of ecological networks47. Taking the data of 1999 
as an example, the connectivity between the major cores of the amplification window was affected by the cut-off 
of the roads, as shown in Fig. 5. The road network severely affected connectivity between key cores, which can 
be achieved by building ecological corridors on the roads to enhance the connectivity between UGI without 
affecting the accessibility of the road. Within the sixth ring road in the central area of the study area, as shown 
in Fig. 1B(e), construction land and road network in the area were relatively dense, with few large core. In these 
areas, the connectivity of UGI can be enhanced as much as possible by planting street trees.

Figure 4.   Barycenter migration of cores in Beijing from 1990 to 2030. The figure was drawn with ArcGIS 
sofware version 10.4. (https://​www.​esri.​com/​en-​us/​arcgis/​produ​cts/​arcgis-​deskt​op/​overv​iew).

https://www.esri.com/en-us/arcgis/products/arcgis-desktop/overview
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Conclusions
We proposed a framework of spatio-temporal evolution characteristics and prediction analysis of UGI based on 
MSPA and CA-Markov, which has strong universality and migration. The research framework combined predic-
tion and mathematical morphology, which enables to diagnose the historical, current and future evolutionary 
characteristics of UGI in a comprehensive manner. The results showed that from 1990 to 2019, the total area of 
UGI and the area of core in Beijing presented "V" shaped change trend. Further study revealed that the turning 
point of area and the distribution of barycenter both turned in 2009. From 1990 to 2009, the country’s develop-
ment paid more attention to economic progress, which led to a large influx of people into cities and rapid urban 
expansion, occupying more cultivated land and forest land. With the inclusion of ecological civilization in the " 
five-sphere integrated plan" national development strategy at the 18th National Congress of the Communist Party 
of China in 2012, some departments at all levels actively responded by planting trees and demolishing illegal 
buildings. The area of UGI was gradually increasing, and the connectivity was gradually increasing. Therefore, 
there was a clear turning point in the UGI of Beijing in 2009. Among the three prediction scenarios for 2030, 
the area of UGI under the ecological conservation priority scenario is the largest, accounting for 86.35% of the 
total area. The area of UGI under the economic development priority scenario is the smallest, accounting for 
76.85%. The road network was the main factor affecting connectivity of UGI. Ecological corridors may be built 
on the road network in the suburbs of Beijing, and street trees may be planted in the city center to promote the 
connectivity of UGI in Beijing.

In conclusion, clarifying the evolutionary characteristics and mastering the change rules of UGI can better 
serve the planning and development of low-carbon, livable and high-quality cities. In addition, road network is 

Figure 5.   Potential corridors between major cores in 1999. The figure was drawn with ArcGIS sofware version 
10.4. (https://​www.​esri.​com/​en-​us/​arcgis/​produ​cts/​arcgis-​deskt​op/​overv​iew).

https://www.esri.com/en-us/arcgis/products/arcgis-desktop/overview
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an important factor in research of UGI. Finally, the next step is to carry out analysis on the street scale with the 
support of higher resolution images.

Materials and methods
Study region.  Beijing (39.4°–41.6°N, 115.7°–117.4°E) is located in the central part of China. It is a megacity 
composed of 16 administrative districts with a total area of 16,410.54 km243, as shown in Fig. 6. The terrain of 
Beijing is high in the northwest and low in the southeast. It is surrounded by mountains in the west, north and 
northeast. In the southeast, it is a plain. The climate is semi-humid and semi-arid monsoon climate in the warm 
temperate zone, with high temperature and rainy summer, concentrating 80% of the annual precipitation. The 
winter is cold and dry, and the spring and autumn are short. The study area is capital of China, a municipality 
directly under the central government, a national central city, a megacity and a first-tier city in the world. Beijing 
is also political, cultural, international exchange and technological innovation center of China. In recent years, 
it has been developing in the direction of livability and high quality. In terms of the size, status and development 
pattern of the city itself, Beijing has a strong representation, so it is selected as the study area.

Data sources.  Due to the constraints of imaging time, quality, accessibility and continuity of image data, 
the Landsat remote sensing image data in 1990, 1999, 2009 and 2019 can meet the needs of this study. Image 
data was downloaded from the Geospatial Data Cloud (http://​www.​gsclo​ud.​cn/​home). Details of the data were 
shown in Table 3, in which the cloud cover in the image was not within the scope of the study area. According 
to the climate and phenology information of Beijing, we selected the image data of August and September for 
the study.

Figure 6.   The location of Beijing in China and the administrative zoning map of Beijing. The figure was drawn 
with ArcGIS sofware version 10.4. (https://​www.​esri.​com/​en-​us/​arcgis/​produ​cts/​arcgis-​deskt​op/​overv​iew). The 
China map data and Beijing boundary data were collected from Resources and Environmental Science and Data 
Center (http://​www.​resdc.​cn/).

Table 3.   Landsat image data information.

Imaging time Satellite Sensor Track Resolution Cloud cover
Overall classification accuracy 
(%) Kappa coefficient

1990.9.18 Landsat 5 TM 123.032 30 0.00
96.63 0.931

1990.9.18 Landsat 5 TM 123.033 30 0.00

1999.8.10 Landsat 5 TM 123.032 30 0.00
94.60 0.909

1999.8.10 Landsat 5 TM 123.033 30 0.00

2009.9.22 Landsat 5 TM 123.032 30 0.00
93.99 0.901

2009.9.22 Landsat 5 TM 123.033 30 0.00

2019.9.02 Landsat 8 OLI 123.032 30 0.74

96.58 0.9062019.9.02 Landsat 8 OLI 123.033 30 0.02

2019.8.24 Landsat 8 OLI 124.032 30 2.08

http://www.gscloud.cn/home
https://www.esri.com/en-us/arcgis/products/arcgis-desktop/overview
http://www.resdc.cn/
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With the help of ENVI 5.3, the land use and cover data of Beijing from 1990 to 2019 were extracted. Firstly, the 
image data were preprocessed by radiometric correction, atmospheric correction and clipping. The Normalized 
Difference Vegetation Index (NDVI), Normalized Differences Built-up Index (NDBI) and Modified Normal-
ized Differences Water Index (MNDWI) indices of the images were extracted to prepare for subsequent image 
classification. Then, the sample points were selected by combining Google high-resolution images, extracted 
index, road network, POI and other related data. Among them, 70% of the selected sample points were used as 
classification sample points, and the remaining 30% were used as verification sample points. Finally, the images 
are classified using support vector machines (SVM), which can find the optimal classification surface among 
different samples from small samples48, 49 According to GB/T 21010-2017, the study area was divided into six 
categories: cultivated land, forest land, grassland, construction land, water area and unused land. It was validated 
that the overall classification accuracy was above 93% for all periods, and the kappa coefficients were all greater 
than 0.90, as shown in Table 3.

Research framework.  The framework constructed in this paper realizes the spatio-temporal evolution 
characteristics and prediction analysis of UGI, as shown in Fig. 7. We used SVM to extract land use and cover 
data of the study area from 1990 to 2019. Then, the research framework was divided into three modules. The 
first module was supported by CA–Markov model, and the future land use and cover data were simulated. The 
history, current and future periods of the study area were linked together to achieve a long time series in tan-
dem. The first module was mainly divided into two parts. One was to verify the feasibility of CA–Markov model 
by using the existing data. The other was to predict the land use and cover data under three different scenarios 
in 2030. The second module was to reclassify the land use classification data into foreground and background 
data, and input them into the Guidooolbox to complete the seven categories of UGI classification. Finally, the 
spatio-temporal evolution characteristics of UGI were explored by using the analysis methods of change rate 
index, connectivity and barycenter migration, so as to reasonably optimize UGI and achieve sustainable and 
high-quality urban development.

Research method.  CA–Markov model.  In the late 1940s, Stanislaw Ulan and John Von Neumann pro-
posed cellular automata (CA), which is a kind of dynamic model of networks with discrete state, time and space, 
and strong dynamic. The behavior of CA models is affected by uncertainties arising from the interaction between 
model elements, structures, and the quality of data sources used as the model input50, 51. The model predicts the 
state of the cell in the next time period by transformation rules based on the current state of each cell in the cell 
space52. Due to its high applicability, the model is widely used in land use change prediction. In the prediction 
process, both natural and human factors are taken into account to make the prediction results more accurate51, 53. 
In addition, Markov model proposed by Andrey Markov is another commonly used dynamic prediction model 
in academic research. The model predicts the situation at a future moment by studying the probability of occur-
rence and change pattern of random events54. The CA model is able to express the prediction data and spatial 
variation trends, but it cannot quantitatively reflect the influence of neighborhood on central cell. However, 
Markov model has a greater advantage in quantitative prediction, but it cannot be expressed in space55. In order 
to better express the prediction results in time and space, the CA–Markov model was used to predict the land 
use and cover data of Beijing in 2030 to analyze the change trend of UGI56. The kappa coefficient is chosen for 
the study to evaluate the accuracy of the model. It is a validation method to determine the accuracy of the model, 
and the coefficient is a common indicator to measure the accuracy of the prediction results57, 58. The kappa coef-
ficient is able to evaluate and analyze the prediction results in terms of both quantity and location. The closer its 
value is to 1, the more perfect it is58. When evaluating the prediction accuracy of the model, it is generally con-
sidered that the prediction accuracy is high when kappa coefficient is in the range of 0.60–0.80. The prediction 
accuracy is considered to be very high when the coefficient is in the range of 0.80–1.0058–60.

MSPA.  MSPA is a method based on mathematical morphology for identifying the categories of UGI61. Accord-
ing to the survey of the study area, UGI were divided into seven types, namely core, island, edge, perforation, 
bridge, loop and branch19, as shown in Table 4. The tool that we used in our research was Guidostoolbox 3.0 soft-
ware, which was designed and updated by the Joint Research Center of the European Commission17. Researchers 
have different views on the correspondence between land use types and UGI when conducting studies in dif-
ferent study areas. Beijing is a mega-city with a large demand for green space. Green parks, waters, grasslands, 
woods and crops in cities all play a positive role in safeguarding urban green space and urban environment. 
With reference to scholars’ research and according to the standard of China’s Land Use Status Classification 
(GB/T 21010-2017), four primary classification types of forest land, cultivated land, grass land and water area 
were studied as the main scope of UGI in this study62, 63. In detail, the construction land and unused land in the 
land use and cover data were reclassified as background data, setting the image element value to 1. The other 
categories are reclassified as foreground data, setting the image element value to 2. The data was converted from 
the original land use data to a TIFF file with a raster size of 30 m × 30 m. Then, the TIFF files were imported 
into Guidostoolbox 3.0 software for 8-neighborhood MSPA analysis. For the other parameters, the edge width 
parameter is set to 1, the transition parameter is set to 1, and the intext parameter is set to 1.

Rate of change index of UGI.  In order to quantitatively study the range and rate of change of UGI’s area, we 
proposed single change rate index and comprehensive change rate index of UGI based to the concepts of single 
land use dynamic degree and comprehensive land use dynamic degree64, and its expressions are as follows:
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where Ps is the single change rate index. Ua and Ub represent the area of the same categories of UGI at the begin-
ning and end of the study period, with the unit of km2. T represents the beginning and end of the study period, 
with the unit of year.

(1)Ps =
Ub − Ua

Ua
×

1

T
× 100%

Figure 7.   The framework of spatio-temporal evolution characteristics and prediction analysis of UGI.
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where, Pc is the comprehensive change rate index. Ui represents the area of a certain category(i ) of UGI at the 
beginning of the study, and �Ui−j represents the absolute value of the conversion of category ( i ) to non-cate-
gory(i ) of UGI during the study period, with the unit of km2. T represents the beginning and end of the study 
period, with the unit of year.

Connectivity analysis.  We analyzed the potential corridors and pinch points of UGI with the help of linkage 
paths tool and pinch point mapper tool. The linkage paths tool was used to identify the potential corridors with 
the help of core vector files and regional resistance grids. The resistance grids used in this study were drawn from 
the land use and cover maps and categories maps of UGI, and each grid value represented the energy consump-
tion, difficulty or death risk value of wild animals through the grid 65. In addition, the use of pinch point mapper 
tool required the auxiliary support of linkage mapper toolbox. This tool used the Ohm’s law principle to calculate 
the pinch point, indicating that some energy was required to pass through two unconnected UGI regions. In 
detail, the raster with small resistance consumed less energy, which facilitated the connection and construction 
of ecological corridor. On the contrary, the raster with large resistance consumed more energy, and it was more 
difficult to connect and construct the ecological corridor.

Barycenter migration.  The overall characteristics of spatial variation of UGI can be expressed intuitively by bar-
ycenter migration. By analyzing the migration direction of barycenter of UGI, the distribution characteristics of 
spatial variation of UGI can be understood to a certain extent. The calculation formula of barycenter coordinate 
is as follows66:

where Xt and Yt respectively represent the longitude and latitude coordinates of the barycenter of a certain 
category of UGI in the year(t).Cti represents the area of the patch(i ) of a certain category of UGI in the year(t  ). 
Xi and Yi represent the longitude and latitude coordinates of the geometric center of the patch(i ) of a certain 
category of UGI respectively. Taking the core shape file from 1990 as an example, the X and Y coordinates of 
the geometric center of each core were calculated separately with the assistance of ArcGIS 10.4. Calculation of 
the coordinates of the barycenter was achieved based on the above formulas and the area of the core. Then, the 
coordinates of the barycenter of each year’s core were calculated in turn, and the migration pattern was explored.

Data availability
The China map data and Beijing boundary data can be collected from Resources and Environmental Science 
and Data Center (http://​www.​resdc.​cn/). The Landsat remote sensing image data in 1990, 1999, 2009 and 2019 
can be downloaded from the Geospatial Data Cloud (http://​www.​gsclo​ud.​cn/​home). Due to the requirements 
of the author’s dissertation and the needs of further experiments, the GI datasets of Beijing obtained through 
processing in this study are not convenient for direct public access. But are available from the corresponding 
author on reasonable request (email: zhengxq@cugb.edu.cn; zxqsd@126.com).
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(2)Pc =
(
∑n

i=1
�Ui−j)

(2
∑n

i=1
Ui)

×

1

T
× 100%

(3)Xt =

∑n
i=1

(Cti × Xi)
∑n

i=1
Cti

(4)Yt =

∑n
i=1

(Cti × Yi)
∑n

i=1
Cti

Table 4.   Categories and ecological meanings of UGI61.

Categories Ecological meanings

Core Habitat patches with large foreground pixel area are the center of green infrastructure network. As the "source" of ecological 
network, they provide habitat for species and are of great significance to the protection of biodiversity.

Island Small, isolated and poorly connected green patches are equivalent to "ecological island hopping" in the ecological network. 
They play a role of media in the ecological network.

Edge The transition zone between the core and peripheral non green landscape patches can effectively reduce the impact of exter-
nal landscape man-made interference. They have edge effect.

Perforation The function of the transition zone between the core and the inner non green landscape patches is similar to that of the edge. 
They play the role of protecting the core and have the edge effect.

Bridge The narrow areas with high connectivity between two adjacent cores represent corridors connecting patches in the ecological 
network. They are important for biological migration, energy exchange and landscape connectivity.

Loop The inner corridor connecting the same core is the channel for species diffusion and energy exchange within the core patch.

Branch They are areas where only one end is connected to an edge, bridge, ring, or perforation.

http://www.resdc.cn/
http://www.gscloud.cn/home
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