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Abstract

Motivation: Measuring genetic diversity is an important problem because increasing genetic diversity is a key to
making new genetic discoveries, while also being a major source of confounding to be aware of in genetics studies.

Results: Using the UK Biobank data, a prospective cohort study with deep genetic and phenotypic data collected on
almost 500 000 individuals from across the UK, we carefully define 21 distinct ancestry groups from all four corners
of the world. These ancestry groups can serve as a global reference of worldwide populations, with a handful of
applications. Here, we develop a method that uses allele frequencies and principal components derived from these
ancestry groups to effectively measure ancestry proportions from allele frequencies of any genetic dataset.

Availability and implementation: This method is implemented in function snp_ancestry_summary of R package
bigsnpr.

Contact: florian.prive.21@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Several projects have focused on providing genetic data from diverse
populations, such as the HapMap project, the 1000 genomes project
(1KG), the Simons genome diversity project and the human genome
diversity project (1000 Genomes Project Consortium et al., 2015;
Bergström et al., 2020; International HapMap 3 Consortium et al.,
2010; Mallick et al., 2016). However, these datasets do not contain
many individuals per population and therefore are not large enough
for some purposes, such as accurately estimating allele frequencies
for diverse worldwide populations. The UK Biobank (UKBB) project
is a prospective cohort study with deep genetic and phenotypic data
collected on almost 500 000 individuals from across the UK. Despite
being a cohort from the UK, this dataset is so large that it includes
individuals that were born in all four corners of the world.
Therefore, the UKBB can serve as a global reference of worldwide
populations when used in its entirety, i.e. without discarding valu-
able multiancestry genetic data.

2 Implementation

Here, we carefully use information on self-reported ancestry, coun-
try of birth and genetic similarity to define 21 distinct ancestry
groups from the UKBB to be used as global reference populations,

which is the first innovation of this paper. These include nine groups
with genetic ancestries from Europe, four from Africa, three from
South Asia, three from East Asia, one from the Middle East and one
from South America (which are later merged into 18 groups in
Table 1). The detailed procedure used to construct these reference
ancestry groups is presented in the Supplementary Materials. As a
direct application of these groups, we propose a new method to esti-
mate global ancestry proportions from a cohort based on its allele
frequencies only (i.e. summary statistics). Arriaga-MacKenzie et al.
(2021) previously proposed method Summix, which finds the con-
vex combination of ancestry proportions ak (positive and sum to 1)

which minimizes the following problem:
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where M is the number of variants, K the number of reference popu-

lations, f
ðkÞ
j is the frequency of variant j in population k and f

ð0Þ
j is

the frequency of variant j in the cohort of interest. Arriaga-
MacKenzie et al. (2021) used the five continental 1KG populations
as reference.

Here, we provide reference allele frequencies for 5 816 590 gen-
etic variants across 21 diverse ancestry groups (which are later
merged into 18 groups in Table 1). Moreover, we rely on the projec-
tion of our reference allele frequencies onto the PCA (principal com-
ponent analysis) space computed from the corresponding UKBB
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Table 1. Reference populations with their size (N), and corresponding ancestry proportions (in %) inferred from the proposed snp_ancestry_summary method, for several GWAS summary

statistics

Ancestry group N BBJ FinnGen Perú Qatar Africa GERA PAGE BrCa PrCa CAD Body fat COVID Eczema Epilepsy Urate

Africa (West) 735 30 1.9 27.7 0.3 0.3 2.2 0.7 4 0.2 0.7 2.2

Africa (South) 449 70 0.9 5.9 0.2 1.2 0.3 1.2 0.5 0.3 3.5

Africa (East) 276 13 0.1 0.3 1.9

Africa (North) 268 22 0.5 0.1

Middle East 523 64.6 0.2 1.3

Ashkenazi 1975 4.4 0.5 0.2 1.8 0.4 0.8 0.4 0.6 1.8

Italy 345 4.6 3.1 1.2 9.7 5.5 3.4 0.8

Europe (East) 667 10.5 6.9 11.3 10.5 11.4 13.2 11.7 13.9 10.8

Finland 143 (þ 99) 100 2.4 0.7 9.7 13 5.9 8.8 14.8 12.8 6.5 2

Europe (North West) 4416 59.9 5.6 68.5 64.5 51.8 59.8 61.4 70.9 68 46

Europe (South West) 603 3.5 15.8 4.7 4.5 2.1 2.1

South America 473 (þ 84) 100 4.6 25.4 1.5 0.8 1.6 0.4 1.8 0.5

Sri Lanka 372 0.4 0.4 3.4 1.7 4.7 4.2 1.8 1.9

Pakistan 400 1.1 7 4

Bangladesh 223 (þ 86) 1.6

Asia (East) 961 3.5 1.2 1.2 0.7 2.5 1.2 0.1 0.1 3.1

Japan 240 (þ 104) 100 2.2 9.4 0.4 2.4 2.8 0.7 0.7 0.3 29.8

Philippines 295 1.5 4.6 0.2

Note: Note that, because they are very close ancestry groups, we merge a posteriori the ancestry coefficients ak from ‘Ireland’, ‘United Kingdom’ and ‘Scandinavia’ into a single ‘Europe (North West)’ group, and similarly for

‘Europe (North East)’ and ‘Europe (South East)’ into a single ‘Europe (East)’ group. Citations for the allele frequencies used: the BBJ (Sakaue et al., 2021), FinnGen (Kurki et al., 2022), GWAS in Peruvians (Asgari et al., 2020),

GWAS in Qataris (Thareja et al., 2021), GWAS in Sub-Saharan Africans (Africa; Chen et al., 2019), GERA (Hoffmann et al., 2018), PAGE (Wojcik et al., 2019), breast cancer (BrCa; Michailidou et al., 2017), prostate cancer

(PrCa; Schumacher et al. 2018), coronary artery disease (CAD; Nikpay et al. 2015), body fat percentage (Lu et al., 2016), COVID-19 (The COVID-19 Host Genetics Initiative, 2021), eczema (Paternoster et al., 2015), epilepsy

(The International League Against Epilepsy Consortium on Complex Epilepsies, 2018) and serum urate (Tin et al., 2019). Several of these GWAS summary statistics have been downloaded through the NHGRI-EBI GWAS

Catalog (MacArthur et al., 2017).
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(and 1KG) individuals, and also make these principal component
(PC) loadings available for download. Instead, we then minimize

PL
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; with the same convex constraints on ances-

try proportions ak, and where L is the number of PCs, p
ðkÞ
l is the pro-

jection of allele frequencies from population k onto PC l and p
ð0Þ
l is

the (corrected) projection of allele frequencies from the cohort of
interest onto PC l. Note that we need to correct for the shrinkage
when projecting a new dataset (here the allele frequencies from the
GWAS summary statistics) onto the PC space (Priv�e et al., 2020).
Finding the ancestry proportions in the PCA space (rather than using
the allele frequencies directly) provides more power to distinguish
between close populations, which is the second innovation of this
paper. This enables us to use more reference populations in order to
get a more fine-grained measure of genetic diversity.

The steps required by the proposed method are then 1/read all
summary statistics datasets into R, i.e. the reference allele frequen-
cies and corresponding PC loadings we provide for download as
well as the GWAS summary statistics containing the allele frequen-
cies of interest; 2/match variants and alleles between summary statis-
tics and the reference allele frequencies we provide; 3/project allele
frequencies onto the PCA space (matrix multiplication); 4/solve the
final (small) quadratic programming problem, by relying on R pack-
age quadprog (Turlach et al., 2019). Steps 3 and 4 are now imple-
mented in function snp_ancestry_summary in our R package
bigsnpr (Priv�e et al., 2018). Step 2 can be performed using existing
function snp_match. A tutorial is provided at https://privefl.
github.io/bigsnpr/articles/ancestry.html. All these steps are very fast
and overall require a few minutes only for GWAS summary statistics
with millions of variants.

3 Results

We download several genome-wide association study (GWAS) sum-
mary statistics for which allele frequencies are reported and apply
this new method to them. We first apply function snp_ances-
try_summary to more homogeneous samples as an empirical valid-
ation; when applying it to the Biobank Japan (BBJ; Japanese
cohort), FinnGen (Finnish), a Peruvian cohort, a Qatari cohort and
Sub-Saharan African cohort, the ancestry proportions obtained
match expectations (Table 1). When comparing our estimates with
reported ancestries for more diverse cohorts, for example PAGE is
composed of 44.6% Hispanic-Latinos, 34.7% African-Americans,
9.4% Asians, 7.9% Native Hawaiians and 3.4% of some other
ancestries (self-reported), whereas our estimates are of 25.4% South
American, 22.6% European (including 15.8% from South-West
Europe), 34.1% African, 2.7% South Asian, 10.6% East Asian and
4.6% Filipino. GWAS summary statistics from either European
ancestries or more diverse ancestries all have a substantial propor-
tion estimated from European ancestry groups, while ancestries
from other continents are still largely underrepresented (Table 1).

We then perform three secondary analyses. First, we compare
the results obtained previously in Table 1 with the results we would
get without using the PCA projection of allele frequencies (i.e.
equivalent to the Summix method). The resulting ancestry propor-
tions are presented in Supplementary Table S1 and are clearly less
precise for BBJ and FinnGen. Second, we compare previous results
with the ones obtained using a smaller number of variants, by ran-
domly sampling 100 000 variants to run the proposed method. The
resulting ancestry proportions are presented in Supplementary Table
S2 and are highly consistent with the ones from Table 1, showing
that 100 000 overlapping variants are enough to run the proposed
method. Third, we also infer ancestry proportions for all 345 indi-
viduals of the Simons genome diversity project (Mallick et al., 2016)
using the reference allele frequencies we provide and two methods.
We use either our proposed method with the genotypes of an indi-
vidual divided by 2 in place of allele frequencies, or by using the pro-
jection analysis of ADMIXTURE (-P, Shringarpure et al., 2016).
Results are very consistent between the two methods, and are overall

as expected, further validating the proposed ancestry groups and the
proposed method to infer ancestry proportions, which seems very
precise even at the individual level.

4 Discussion

Here, we have identified an unprecedentedly large and diverse set of
ancestry groups within a single cohort, the UKBB. Using allele fre-
quencies and PCs derived from these ancestry groups, we show how
to effectively measure diversity from GWAS summary statistics
reporting allele frequencies. Measuring genetic diversity is an im-
portant problem because increasing genetic diversity is key to mak-
ing new genetic discoveries, while also being a major source of
confounding to be aware of in genetics studies. Our work has limita-
tions though. First, it is unknown whether we can effectively capture
any existing ancestry as a combination of the 21 reference popula-
tions we defined. For example, it seems that Native Hawaiians in
the PAGE study are partly captured by the “Philippines” ancestry
group we define. Second, with the 21 ancestry groups we define, we
probably capture a large proportion of the genetic diversity in
Europe, but more fine-grained diversity in other continents may still
be lacking. Third, when using the allele frequencies reported in the
GWAS summary statistics, it is not clear whether they were com-
puted from all individuals (i.e. before performing any quality control
and filtering), and, for meta-analyses of binary traits, whether they
were computed as a weighted average of total or effective sample
sizes. Despite these limitations, we envision that the ancestry groups
we define here will have many useful applications. The presented
method that uses these groups could e.g. be used to automatically re-
port ancestry proportions in the GWAS Catalog (MacArthur et al.,
2017). These ancestry groups could also be used for assigning ances-
try in other cohorts using the PC projection from this study (Priv�e
et al., 2022), assessing the portability of polygenic scores (Priv�e
et al., 2022) or deriving linkage disequilibrium references matching
GWAS summary statistics from diverse ancestries.

Software and code availability

The newest version of R package bigsnpr can be installed from
GitHub (see https://github.com/privefl/bigsnpr) and a recent enough
version can be installed from CRAN. A tutorial on ancestry propor-
tions and ancestry grouping is available at https://privefl.github.io/
bigsnpr/articles/ancestry.html. The set of reference allele frequencies
for 5 816 590 genetic variants across 21 diverse ancestry groups
defined here can be downloaded at https://figshare.com/ndown
loader/files/31620968 and PC loadings for all variants across 16
PCs at https://figshare.com/ndownloader/files/31620953. All codes
used for this paper are available at https://github.com/privefl/freq-an
cestry/tree/main/code. We have extensively used R packages big-
statsr and bigsnpr (Priv�e et al., 2018) for analyzing large genetic
data, packages from the future framework (Bengtsson, 2021) for
easy scheduling and parallelization of analyses on the high-perform-
ance computing cluster and packages from the tidyverse suite
(Wickham et al., 2019) for shaping and visualizing results.
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