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Tsunami hazards have been observed to cause soil
instability resulting in substantial damage to coastal
infrastructure. Studying this problem is difficult
owing to tsunamis’ transient, non-uniform and large
loading characteristics. To create realistic tsunami
conditions in a laboratory environment, we control
the body force using a centrifuge facility. With an
apparatus specifically designed to mimic tsunami
inundation in a scaled-down model, we examine the
effects of an embedded impermeable layer on soil
instability: the impermeable layer represents a man-
made pavement, a building foundation, a clay layer
and alike. The results reveal that the effective vertical
soil stress is substantially reduced at the underside of
the impermeable layer. During the sudden runup flow,
this instability is caused by a combination of temporal
dislocation of soil grains and an increase in pore
pressure under the impermeable layer. The instability
during the drawdown phase is caused by the
development of excess pore-pressure gradients, and
the presence of the impermeable layer substantially
enhances the pressure gradients leading to greater soil
instability. The laboratory results demonstrate that the
presence of an impermeable layer plays an important
role in weakening the soil resistance under tsunami-
like rapid runup and drawdown processes.

1. Introduction
Tsunamis occur infrequently; when generated, they are
often a result of co-seismic seafloor displacements in
subduction zones. They can make landfall in nearby
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Figure 1. Photographs taken after the 2011 Heisei tsunami in Japan: (a) a four-story, reinforced concrete building supported by
32 piles was toppled and washed inland for 30 m [1] in the town of Onagawa (38◦ 26’ 33” N, 141◦ 26’ 44” E) (Photo by Shunichi
Koshimura); (b) an undermined road (1.5 m deep) along the harbour of Tohni (39◦ 12’ 30” N, 141◦ 53’ 13” E); (c) a damaged
pavement of the wharf in Yori-iso-hama (38◦ 23’ 22” N, 141◦ 31’ 32” E).

coastal areas as well as travel long distances across oceans to damage coastal communities
far away from the tsunami source. Tsunamis’ temporal and spatial characteristic scales are
unique and different from the scales of other natural hazards such as riverine floods, hurricanes
and earthquakes. Tsunami events can vary greatly in their magnitude and flow characteristics;
hence, the potential damage is difficult to mitigate in design. The 2011 Heisei tsunami in Japan
caused many well-engineered buildings and coastal infrastructure to fail. Damages caused by the
tsunami may be explained by lateral hydrodynamic forces, buoyant uplift forces and foundation
failures due to soil instability [1,2]. Driving mechanisms of soil instability by tsunami action are
poorly understood at present and should be advanced to appropriately design critical coastal
infrastructure and buildings.

There is evidence from field observations after the 2011 Heisei tsunami event that the presence
of an impermeable layer in a soil bed plays a significant role in the enhancement of scour,
undermining foundations, and detaching pavements during tsunami inundation [1]. The 2011
tsunami event is the first where the toppling of several reinforced concrete buildings was
observed. The toppled building shown in figure 1a retained its structural integrity and was
pushed inland from its original location, indicating that the failure must have occurred during
the runup phase of tsunami inundation. Additionally, it has been reported that a relatively rapid
reduction of overburden load on the soil surface during tsunami drawdown can contribute
to structural damage [1,3]. The effect of tsunami-drawdown could have severely undermined
paved roads such as that shown in figure 1b. As another example of damage induced by soil
instability, figure 1c shows the peeled off surface of a wharf (foreground) and the large, bubble-like
deformation of a pavement (background).

Studying tsunami-soil interactions is formidable because tsunami-induced overland flows
are highly transient and turbulent with substantial speeds and depths. Additionally, soil is a
multi-phase particulate medium that can deform permanently when subjected to small strain.
Owing to the unpredictability and rarity of tsunami occurrence, soil response measurement
during an actual tsunami event is impractical. It is necessary to resort to a controlled laboratory
study. Traditional water-wave-tank experiments have a significant drawback due to scale effects
(i.e. changes in dynamic characteristics of a phenomenon due to smaller geometric scales of
the model). Despite the substantial scale effects involved, laboratory experiments to study
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effects of tsunami loading on soil stability have been performed previously [4,5]. Yeh et al. [4]
conducted their experiments in a water-wave tank to study tsunami-induced scour around a
vertically erected cylinder (50 cm in diameter) placed on a sloping sandy beach. They reported
an occurrence of soil liquefaction around the shoreward side of the cylinder wall during the
drawdown resulting in the formation of a large scour hole. They explained that, as the water
level subsides rapidly, the pressure on the surface of the soil bed decreases, creating a vertical
pressure gradient within the soil and decreasing the effective vertical stress (i.e. a measure of
inter-soil-particle contact force) within the soil. Using their data, a prediction model for tsunami-
induced soil instability was proposed by Tonkin et al. [6], who demonstrated that the upward
pore-pressure forces could indeed cause momentary liquefaction due to the rapid reduction
of overburden load on the soil surface. Tonkin et al. [6] claim that momentary liquefaction
occurs when the pressure gradient reaches the buoyant unit weight of the soil. Abdollahi &
Mason [7] developed a soil response model applicable to tsunami loading, and their numerical
simulations confirm that the drawdown process induces instability at the soil surface due to the
pore pressure gradient. Enhanced soil instability during the drawdown phase of a solitary wave
is also confirmed by Young et al. [5]. Note that similar momentary liquefaction is known to occur
at short time scale under the trough of a water wave when the pressure from the preceding wave
crest is released from the soil [8]. On a much longer time scale, momentary liquefaction is known
to occur in dams and embankments due to a rapid reservoir drawdown [9,10].

In the present study, we quantitatively explore mechanisms of soil instability associated with
a tsunami-like inundation process—both its runup and drawdown—through the laboratory
experiments. To mitigate the scaling issues, we perform the experiments imposing a centripetal
acceleration to the scaled-down model with the use of a large centrifuge facility. By increasing
the body force on the model using a centrifuge, the magnitudes of field-scale flow speed and
pressure on the soil surface can be realized in the model. Additionally, as discussed in §2, the
use of viscous fluid to saturate the soil enables better reproduction of the field-scale response
in the pore-pressure dissipation in the soil. Although not common, centrifuge apparatuses have
been used to study soil response to water waves previously. The first reported comprehensive
centrifuge experiments are by Sassa & Sekiguchi [11] for their study on soils under progressive
wave action. There have been a few other previous attempts to use a centrifuge for the study
of tsunamis but they primarily aimed to demonstrate the engineering performance of coastal
structures during the runup stage of tsunami inundation [12–15].

2. Background
Mechanisms of soil response to tsunami inundation are difficult to study experimentally due to
the scale of the problem. To achieve the dynamic similitudes in hydrodynamics, the Reynolds
Re, Froude Fr, Euler Eu and Rossby Rb numbers of the scaled-down model must match those of
the field condition. When this is achieved, the non-dimensionalized Navier–Stokes equation that
represents the field becomes identical to the model. In a reference frame revolving at a rotation
rate of Ω , the non-dimensionalized Navier–Stokes equation at the radial distance r from the
rotating frame axis can be derived (for example, from [16])

∂u
∂t

+ u · ∇u + R−1
b Ω × u = −Eu∇p + R−1

e ∇2u + F−2
r ∇

(
Φg + 1

2
Ω2r2

)
, (2.1)

where u is the fluid velocity, t is time, p is pressure and Φg is the gravity potential: they are all
normalized quantities. As discussed in §3, the primary flow direction in the model of centrifuge
experiments is parallel to the axis of rotation; therefore, the third term on the left-hand side of
(2.1) is unimportant—this term represents the Coriolis effect. For the field condition, the Rossby
number Rb is very large, hence this term is also negligible. The last term on the right-hand side of
(2.1) represents the net body force G per unit mass. In the field, this quantity is the gravitational
acceleration g, while in the centrifuge the body force is dominated by the centripetal acceleration
in the radial direction, which is conveniently presented by G = Ng, in which g = |g| and G = |G|.
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To study the soil response, we consider a governing equation for soil dynamics. Here we use a
basic theory represented by the Terzaghi equation [17]: it is a model for the dissipation of excess
pore pressure pe based on the assumption of a stable soil lattice structure. Non-dimensionalizing
the Terzaghi equation

∂pe

∂t
= Tz∇2pe, (2.2)

yields the Terzaghi number Tz, which must be same for the model and the field conditions to
achieve similitude. Note that the excess pore pressure is defined by pe = p + ρGz, in which ρ is
the fluid density and z is the coordinate from the soil surface in the direction opposite to G.
Furthermore, for the condition at the soil surface, we consider matching the Shields number Θ ,
which represents the ratio of the fluid-induced shear force to the body force of the soil grains.
Consequently, to analyse the field conditions by performing laboratory-scale experiments, the
following numbers for the field and the model need to match:

Re = ρu0L0

μ
, Fr = u0√

GL0
, Eu = p0

ρu2
0

, Tz = κt0

μL2
0

Ev

1 − φ
, Θ = τ0

Gd0ρ(Sg − 1)
, (2.3)

where L0, t0, u0, p0 and τ0 are representative scales of the length, time, velocity, pressure and
shear stress, respectively; d0, Sg, Ev , κ , and φ are the soil grain size, specific gravity, bulk modulus
of elasticity, intrinsic permeability and porosity of the soil, respectively; μ represents the fluid
viscosity. For the Shields number Θ , we assume the flow is fully turbulent so that the flow-
induced shear stress on the soil surface can be approximated by τ0 ∼ fu2

0/8, where f is Darcy’s
friction factor [18]. In spite of the foregoing requirements to create equivalent dynamic conditions
between the model and the field, it is difficult to match all of the numbers because some of the
parameters (e.g. ρ, μ, G) are difficult to control. For example, the Reynolds number Re and the
Froude number Fr cannot be matched simultaneously unless the values of μ and G are properly
controlled. This is called the scale effect in the model [18].

To examine soil response in a scaled-down model, we use soils equivalent to those in the field.
This is because the use of scaled-down soil grains in the model causes problematic outcomes
in soil response. According to Kutter [19], soil’s interparticle contact forces depend on stresses
and the number of contacts per area, which depends on the absolute particle size. Therefore, it
is important to use the same soils in both the field and the model: for example, the value of d0
for the model and the field should be the same. It is noted, however, this constraint causes an
unavoidable mismatch in the Shields number Θ , as discussed below.

For a model of 1/N the field geometric scale, stress in soils can be equivalent to that in the field
when the body force is increased by N times the gravity. Under the hypergravity condition, the
Euler number Eu of the model matches that of the field; consequently, stresses in the field can be
realized in the model. This is the primary advantage in using a centrifuge. Scaling considerations
for 1/N scaled models in the Ng centrifuge environment are well established to study geotechnical
problems [19–25]. For a more detailed discussion on scaling this problem in a centrifuge, see Exton
et al. [20].

The present experimental study reported herein is for gravity-driven flows; hence, it is
necessary to match the Froude number Fr. Imposing G = Ng in a 1/N geometric scale model, the
flow speed in the model is identical to that in the field. While the Euler number Eu is matched, the
Terzaghi number Tz would be N times greater in the model than in the field; the Shields number Θ

and the Reynolds number Re for the model would be 1/N the field condition. To mitigate the scale
effects in Terzaghi number Tz, a viscous fluid (N times larger viscosity than water) can be used
to saturate the soil. This treatment is practical since a relatively small soil specimen is used in the
hypergravity experiments. Saturating the soil with a viscous fluid can match the Terzaghi number,
assuming that κ , Ev and φ remain constant and (2.2) is valid. On the other hand, increasing the
viscosity of the fluid worsens the Reynolds number mismatch in the overland flow. To circumvent
this, we keep water as the surface-flow fluid. It is anticipated that the use of a different fluid for
soil saturation makes little difference in shear stress on the soil surface because the bed shear
stress is proportional to the velocity squared and independent of fluid viscosity for a sufficiently
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high Reynolds-number flow. Furthermore, it is reasonable to assume that the pore-pressure field
within the soil remains unaffected as long as the fluid density remains the same.

Even with the foregoing treatments, there remains mismatch in the Reynolds number and
the Shields number. None the less, the degree of mismatch in Reynolds number is substantially
reduced by the use of a centrifuge: N versus N3/2 with and without use of centrifuge, respectively.
The mismatch in the Shields number Θ remains the same with or without the use of the centrifuge.
In short, realistic tsunami flows and loading conditions can be achieved by use of a centrifuge due
to the improved dynamic similitudes by controlling the body force combined with the use of a
viscous saturating pore fluid.

To evaluate soil instability, the concept of effective vertical stress σ ′ is used in the geotechnical
engineering field, which represents the net interparticle contact forces per unit area: i.e. σ ′ = σ − p,
where σ is the vertical component of the total stress and p here represents the pore pressure. (For
brevity, from hereinafter, we term σ and σ ′, total stress and effective stress, respectively, without
stating ‘vertical component.’) It is cautioned that the notion of effective vertical stress is not exact,
because soil ‘stress’ is determined by the net force divided by a finite (not infinitesimal) area and
soil’s interparticle contact occurs in a finite area but not at a ‘point.’ In other words, the validity
of continuum hypothesis is in question for a soil medium. Therefore, the effective stress should
be considered as an approximate indicator for soil instability.

Tsunami inundation creates variable overburden loads on the soil surface. Following Yeh &
Mason [27], it is convenient to represent the effective stress in terms of the ‘excess’ pore pressure
pe = p + ρGz and the ‘excess’ total stress σe = σ + ρsatGz, where ρsat is the bulk density of the
saturated soil skeleton. Note that G = g in the field and G = Ng for the centrifuge condition. The
effective stress in the soil medium can be written as

σ ′ = σe − pe − (ρsat − ρ)Gz. (2.4)

Note that, prior to tsunami inundation, both the excess pore pressure and the excess total stress
are nil everywhere in a fully saturated soil domain. Also note that vanishing effective stress σ ′ → 0
implies the state close to no net interparticle contact forces on the soil grains, i.e. an approximate
indicator for the state of soil liquefaction.

The vertical gradient of excess pore pressure alters the effective body force on soil grains. The
local soil grains become free from resistance when the vertical upward gradient in pore pressure
reaches the buoyant specific weight of the saturated soil:

∂pe

∂z
→ −(ρsat − ρ)G. (2.5)

Under water-flow loading on the soil surface, it was found empirically (e.g. [6,28]) that the soil
becomes unstable when the effective stress becomes approximately one-half the equilibrium state:
namely, ∂pe/∂z → − 1

2 (ρsat − ρ)G. It is noted that, unlike (2.4), (2.5) is independent of the initial
and boundary conditions. Tonkin et al. [6] used (2.5) to study scour formation around a vertical
cylinder by tsunami-like runup and drawdown actions. Furthermore, Mason & Yeh [29] discussed
the advantages of (2.5) to investigate soil response under transient loadings. Nonetheless, in the
present study, we use (2.4) to evaluate the soil instability because accurate pore-pressure gradients
are difficult to obtain in the small soil specimen used in the centrifuge experiments. Specifically,
a dense vertical array of pore-pressure transducers is impractical to install, as described
in §3.

3. Experimental set-up
The experiments are performed in the 9.1 m radius geotechnical centrifuge at the University of
California, Davis: see figure 2. When the centrifuge rotates, the bucket at the end of the arm swings
outward by the centrifugal effect. The tsunami generation container (1.93 m long, 0.94 m wide
and 0.58 m deep) that was specifically designed and constructed to generate realistic tsunami
inundation, is installed in the centrifuge bucket. The container is equipped with two gates; one
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is to create the runup flow and the other to create the drawdown flow by lifting the gate with
a pneumatic actuator, as seen in figure 2b. The soil specimen box (0.520 m long, 0.345 m wide,
0.230 m deep) is installed in the container. The soil box is designed for optical observations from
an adjacent compartment that is sealed from water. This compartment houses an angled, front-
surface mirror that allows an elevation view through the window from above: see figure 2c.
Schematics of the container and the soil specimen box are shown in figure 2d,e. Because the
experiments are performed under substantial body force induced by the centrifuge, the apparatus
is constructed to be rigid; for example, the outside walls of the container are made of 31.75 mm
thick aluminium plate and the pneumatic actuator produces 8.8 kN of force to lift the gate
under enhanced body force. Detailed descriptions of the laboratory apparatus can be found in
Exton [30].

Figure 3 depicts sketches of the experimental operation from the initial to final condition.
Tsunami inundation is established by opening the ‘runup gate’ and discharging fluid onto the soil
specimen (figure 3b). With the aid of vanes (figure 2d), the flow is uniformly released in the portion
of the container where the soil specimen is placed. The flow is then directed around and behind
the observation compartment after hitting the end wall of the container. The discharged water
continually flows into the space of runup water storage (figure 2d). The fully inundated condition
(figure 3c) is then maintained for 10 min to establish equilibrium prior to opening the ‘drawdown
gate’ to induce the receding flow (figure 3d). When the drawdown gate is opened, the water is
rapidly drained and stored underneath the reservoir. The final condition is when all overburden
is removed from the soil (figure 3e). During the centrifuge flight, both runup and drawdown flow
directions are aligned with the axis of centrifuge rotation. Consequently, the Coriolis effect (the
term involved Ω × u in (2.1)) is negligible for the flows.

We set the centripetal acceleration to 40 g (the scale factor N = 40) with a model scale that is
1/40 of the field condition. Under the 40 g condition, the soil model is equivalent to a relatively
large soil domain in the field scale: viz., 20.8 m long, 13.8 m wide and 9.2 m deep. The target
tsunami condition in the field is a maximum flow depth of 5 m and a maximum runup flow speed
of 10 m s−1, which are considered to be realistic based on historical tsunami data: see for example
the database provided by NOAA [31]. Such flow characteristics correspond to a maximum flow
depth of 125 mm in the 1/40-scaled centrifuge model.

Soil used in the experiments is a fine-grained sand (Ottawa F-65): a mean grain-size diameter
d0 = 0.21 mm and a specific gravity Sg = 2.65, and the model was constructed with porosity φ =
0.38, corresponding to a relative density of 58%. Additional details of the soil properties can be
found in [32]. The buoyant specific weight of the soil skeleton is γb = (ρsat − ρ)Ng = 403 kN m−3

in which ρsat = 2026 kN m−3 is the bulk density of the saturated soil skeleton. The soil specimen
was fully saturated with a mixture of water and hydroxypropyl methylcellulose to establish a
pore fluid with a viscosity 40 times that of water and to satisfy the Terzaghi number Tz for the
dynamic similitude of pore-pressure dissipation. While viscous fluid is used for the pore fluid
in the soil, we use water to impose the flow on the soil surface to circumvent worsening the
Reynolds-number mismatch, as discussed in §2. Note that this viscous-fluid density is essentially
the same as water [30].

Considering that the order of magnitude of a realistic tsunami runup is a flow speed of 10 m s−1

and a 2 m water depth, and the order of magnitude for the drawdown is a flow speed of 2 m s−1

with a 5 m inundation depth, the corresponding scales for the N = 40 model are listed in table 1.
Also presented are the values of Reynolds number (Re), Froude number (Fr), Euler number (Eu),
Terzaghi number (Tr) and Shields number (Θ). As discussed in §2, all of the parameters match
for dynamic similitude, except the Reynolds and Shields numbers. The Reynolds number for the
model is sufficiently large so that viscous effects do not play a major role. Recall that this is an
advantage of the hypergravity experiments since the Reynolds number is N1/2 times larger than
the conventional laboratory experiments. However, the Shields number mismatch remains the
same as conventional experiments. The Shields number in the model is close to critical (i.e. the
incipient sediment motion occurs when Θ � O(10−1)), while the value for the field condition is
large. Despite the mismatch of the interface condition at the soil surface, it is evident that the
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runup
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so
li 

bo
x

mirror

runup water storage

soil specimen

runup

flow block

flow guides
and vanes

(e)

Figure 2. Centrifuge equipment that consists of (a) a 9.1 m radius geotechnical centrifuge, (b) a tsunami-generation container
installed in the bucket of (a), and (c) a soil-specimen box installed in (b). Two pneumatic actuators seen in (b) are used to lift
the discharge gates to initiate the runup phase and the subsequent drawdown phase. The angled mirror and the observation
window next to the soil specimen box are seen in (c) on the right-hand side of the image. Schematic drawings of the container
(1.93 m long, 0.94 mwideand0.58 mdeep) aredepicted in (d) planviewand (e) elevationview:filleddots represent the location
of water-pressure transducer to measure the flow depth. Placement of the soil-specimen box (c) (0.520 m long, 0.345 m wide,
0.230 m deep) is marked with the dashed line in both (d,e).

hypergravity experiments can create more realistic tsunami runup and drawdown loading in the
model than in the conventional laboratory experiments.

It is crucial to fully saturate the soil prior to the experiment because a small amount of
air bubbles (or even dissolved air) could alter the soil response significantly [33]. Saturation is
achieved by the following steps. First, vacuum is applied to the soil model to remove the air.
Then, the model is flushed with carbon dioxide because it is 50 times more soluble in water than
nitrogen. This procedure is repeated twice, prior to introducing de-aired pore fluid slowly in the
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(a) drawdown gate

DRAWDOWN BASIN SOIL

Ng

RESERVOIR

runup gate

(b)

(c)

(d)

(e)

Figure 3. Schematics of operation of the centrifuge apparatus that applies a tsunami load to a soil specimen: (a) initial
condition; (b) the runup flooding stage is established by opening the ‘runup gate’ and discharging fluid onto the soil specimen;
(c) the fully inundated condition is maintained for 10 min to establish equilibrium; (d) the drawdown stage is established by
opening the ‘drawdown gate’ to induce the receding flow; (e) final condition.

Table 1. Flow characteristics for the field conditions for tsunami runup and drawdown, and the corresponding hypergravity
model with N = 40. For soil properties, we use d0 = 0.21 mm, Sg= 2.65, and take the soil depth at the underside of the
impermeable layer. The loading times are estimated from the experiments. To estimate the Terzaghi number Tz , we used Ev ∼
2.3 × 103 kPa: this yields an empirical value obtained for fine sands [26]. To estimate the Shields numberΘ , we assumeDarcy’s
friction factor f = 0.01 [27].

runup drawdown

field laboratory field laboratory

velocity, u0 (m s−1) 10 10 2 2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

flow depth, L0 (m) 2 0.05 5 0.125
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

soil depth, L0 (m) 1.2 0.03 1.2 0.03
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

loading time, t0 (s) 20 0.5 120 3.0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Re 2 × 107 5 × 105 1 × 107 2.5 × 105
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fr 2.0 2.0 0.3 0.3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Eu 0.2 0.2 12.5 12.5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Tz 1.0 1.0 6.25 6.25
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Θ 36 0.9 1.4 0.04
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

soil specimen. After the specimen is completely inundated, the vacuum is slowly released. Any
small amount of low-pressure gas trapped in voids compresses and dissolves in the de-aired fluid.
According to Kutter [34], the preceding procedure theoretically results in full saturation.
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Figure 4. Elevation view of the soil specimen set-up within the specimen box, which is a part of the apparatus shown in
figure 2d,e. ◦: locations of pore-pressure sensors that are placed along the centreline of the soil specimen box. The coordinates
of pore-pressure sensors are listed in table 2. The z-axis points upward from the soil surface, and x points horizontally from the
edge of the soil specimen box. Total normal-stress transducers are placed at the same location as the pore-pressure sensors at
X3Z1 and X3Z4, as depicted with the thick black bar. The location of the water-pressure transducer is not shown here because it
is placed on the soil surface at X3 along the sidewall of the soil box, as shown in figure 2d. The embedded impermeable layer is
shown by the shaded area: the top surface is at z = −30 mm in the soil and the leading edge is at x = 220 mm.

Instruments deployed in the experiments are miniature pore-pressure transducers with
the sensor head diameter of 7 mm (Keller’s 2Mie), total normal-stress transducers with the
sensor head diameter of 50 mm (Tokyo Sokki Kenkyujo, model KDE-PA) and a water-pressure
transducer (Schaevitz Sensors US66X-00000X-030PA). All sensors are sampled at 5000 Hz and
measure the pore-pressure changes in the soil, the total stress changes and the water pressure
on the surface of the soil, respectively. Note that the relatively large sensor head size of the
normal-stress transducer is necessary to measure the mean stress created by the soil particles.

A high-speed high-resolution video camera (Photron AX-100) is used to record the flow using
the mirror installed in the observation compartment (figure 2c). We set a rate of 3600 frames
per second with 1024 × 1024 pixel resolution. Note that the high-speed video camera is needed
because the model time is scaled N times faster than that of the field phenomenon.

Two sets of experiments were performed: one with and one without placing an impermeable
horizontal layer in the soil. The impermeable layer is a 29 cm by 34 cm acrylic plate with a
thickness of 1.8 cm that covers the downstream half of the soil specimen. The layer spans the
lateral breadth of the soil specimen and is embedded 3.0 cm below the soil surface, as shown
in figure 4. The layer contains an embedded total normal-stress transducer with the sensor
head flush to its underside surface. Also shown in the figure are the locations of pore-pressure
transducers placed within the soil: the x–z coordinates of the sensor locations are presented in
table 2. The water-pressure transducer is installed adjacent to the model, level with the soil surface
and parallel to the direction of flow: the location is indicated with filled dots in figure 2d. Total
normal-stress transducers are placed with the pore-pressure sensors at X3Z1 and X3Z4. From
hereinafter, we identify the sensor locations by the coordinates shown in figure 4: namely, X for
the longitudinal locations and Z for the vertical locations. Moreover, for brevity, we call the case
with no impermeable layer the Flat Beach experiment and call the case with the impermeable layer
installed the Layer experiment.

4. Results
All data shown in this section are presented at the model scale. The field scale values are found
by multiplying the model values for lengths and time by N (= 40), and by using a one-to-one
ratio for velocity and pressure. For the runup stage, based on the sensor response and the leading
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t = 0.208 s t = 0.307 s t = 0.452 s

Figure 5. Snapshots of the video footage for the initial runup process. The video camerawas installed above the soil box looking
downward (figure 2d,e). The upper part of the images is the side view through the mirror and observation window; the lower
part is the top view. The arrow indicates the direction of flow.

Table 2. Pore-pressure sensor locations (x : z in mm) based on the coordinate system shown in figure 4.

X1 X2 X3 X4

Z1 142 :−48 224 :−45 374 :−49 439 :−50
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Z2 142 :−94 226 :−92 373 :−94 445 :−94
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Z3 146 :−143 232 :−144 375 :−142
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Z4 148 :−214 375 :−214
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

surge line observed with the high-speed video, the flow is sufficiently uniform across the surface
of the soil specimen. The drawdown is also uniform laterally across the soil specimen.

Figure 5 shows snapshots of the video footage for the Layer experiment. The bright portion in
the image is the water flow dyed with fluorescein. The view at t = 0.208 s captures the moment
just prior to the leading surge tongue reaching the downstream end of the specimen box. At
t = 0.307 s, we see a small splash from the initial impact with the end wall of the container. It is
seen that sediments are picked up and entrained in the flow, as anticipated by the sufficiently
large value of Shields number Θ ≈ 0.9 (table 1): as we discussed in §3, the critical value of Θ that
causes incipient sediment motion is less than O(10−1). Nonetheless, change in soil-surface profile
was found to be negligible, less than 3 mm in the area over the impermeable layer according to
Exton [30]. The flow continues (t = 0.452 s) without a sign of backup flow: the continual discharge
is filling the space around the specimen box (figure 2d).

Because the flow conditions are carefully controlled by the geometry of the apparatus, the
volume of water used and the centripetal acceleration, the experimental flow conditions are
repeatable. The conditions of the two experiments (Layer and Flat Beach) are nearly identical,
as demonstrated in the time series of water pressure during the runup and drawdown stages
in figure 6. There is a small, observable difference in the arrival time of the surge front as well
as in the variations of the water surface. Towards the end of the drawdown stage there is also
a small difference in water height. The water velocity between the experiments is also nearly
identical, as shown in figure 6. Note that the runup flow speeds are measured using high speed
video (Photron AX-100) and estimated using Farnebäck’s [35] optical-flow algorithm applied to
the top view of the flow, as shown in the bottom panels of figure 5. Figure 6a shows that during
runup, the maximum flow velocity is approximately 10 m s−1 and occurs at the leading edge of
the surge front; the velocity gradually reduces to around 5–6 m s−1 at t = 0.6 s. During drawdown
(figure 6b), the average flow speed is between 1 and 2 m s−1. (Note that, because the Farnebäck
algorithm tracks aeration in the flow, it cannot be applied to the video to determine the drawdown
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Figure 6. Temporal variations of water pressure pw on the soil surface and flow velocity u for two experiments: solid line, the
Layer case (with impermeable layer); dashed line, the Flat Beach case (without impermeable layer). (a) Runup process; (b)
drawdown process.

velocity. Instead, we estimated the flow speed based on the conservation of volume using the
measured data of receding water depth.) The measured velocities confirm that the target flow
speeds represent realistic tsunami inundation processes of the field (table 1).

For runup, we first focus on how the soil responds to the initial surging process as the leading
tongue runs across the soil specimen box: in the duration of 0 < t < 0.6 s (note that the runup
gate opens at time t = 0). After t = 0.6 s, the incoming flow is affected by backflow resulting
from the enclosed container. Later analysis will include the backflow as it induces secondary
soil response. No such disturbance occurred in the drawdown stage, so we will analyse for the
entirety of the drawdown stage, from 0 < t < 4.5 s (the time origin of the drawdown is set at the
instance when the drawdown gate opens). Recall that the duration of 0 < t < 0.6 s in the model
runup is equivalent to the duration of 24 s in the field, and the model drawdown for 0 < t < 4.5 s
is equivalent to the duration of 180 s in the field.

(a) Runup
The tsunami runup stage can be divided into four phases, as shown in figure 7. In phase 1, there
is a sudden increase in overburden loading by the surging front at a rate of approximately 840
kPa/s (commencing at t ∼ 0.2 s). In phase 2, there is near constant loading during the flooding
process (commencing at t ∼ 0.4 s). Phase 3 exhibits a gradual increase in loading due to backflow
caused by the limited volume of the runup-water storage (figure 2d) at an approximate rate of
160 kPa s−1 (commencing at t ∼ 0.6 s). Finally, in phase 4, an equilibrium static state is established
(roughly t � 1.3 s).

Figure 8 shows the phase 1 response at X3 due to the sudden load increase at the arrival of
the surge front. The left panels show the temporal variations of water pressure pw on the soil
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Figure7. Temporal variationofwater pressurepw at X3 in the runupprocess for the Layer case. Thewater pressurewasmeasured
with the pressure transducer placed on the soil surface along the sidewall of the soil specimen box: see figure 2d. Phases 1 and
2 represent the increase in inundation depth due to the initial surge; phase 3 shows the increase in water depth by the backup
flow resulted from the finite space of the runupwater storage as seen in figure 2d; phase 4 represents the equilibrium state after
the full inundation is reached.

surface, the excess total stress σe and the excess pore pressure pe. Note that σe is obtained from the
data of the total normal-stress transducers, and pe is obtained from the data of the pore-pressure
transducers. The right panels show the difference between excess pore pressure and excess total
stress, � = pe − σe, at three locations: (a) at Z1, the underside of the impermeable layer in the
Layer experiment; (b) at Z4, the bottom of the soil specimen, also in the Layer experiment; (c)
at Z4, the bottom of the soil specimen without impermeable layer in the Flat Beach experiment.
According to (2.4), � represents the degree of soil instability. The soil response is caused by the
sudden water-surface increase in phase 1 (∼ 840 kPa s−1). This loading is extremely transient and
therefore, interpreting the soil response based on our knowledge of the equilibrium state would
be misleading.

It is clear from figure 8b,c that the excess pore pressure and the excess total stress behave
very similarly (� ∼ 0) at the bottom of the soil specimen regardless of the presence of the
impermeable layer. On the other hand, figure 8a, right shows that there is a substantial increase
in �, approximately 9.15 kPa, immediately beneath the impermeable layer. This is 67% of the
critical value of �(= (ρsat − ρ)Gz = 13.7 kPa) at Z1 that causes the effective stress to vanish: see
equation (2.4). (Note that the critical � is computed considering the presence of the impermeable
layer.) Figure 8a, left indicates that the increase in � is a result of a delay in the excess total
stress response to the overburden load pw. This behaviour seems to be confined to the region
just beneath the impermeable layer because no influence is detected at the deeper location
in the same soil specimen (figure 8b, right). A possible cause of this localized and transient
behaviour is dislocation of the soil lattice caused by the impermeable layer due to the sudden
impulse of substantial overburden load. This appears to resemble the mechanism of blast-induced
liquefaction [36,37], although the impulse in the present case is made by a plane (impermeable
layer), not a point source. Blast-induced liquefaction also takes place at a shorter duration than
the present case.

We now include the backup-flow phase in the soil response analysis. Figure 9 shows the soil
response at X3 as was shown in figure 8 but for a longer duration; plotting the longer duration
reveals a secondary increase in � that occurs in phase 3 (figure 7). In phase 3, the water pressure on
the soil surface increases gradually in comparison with phase 1. Figure 9c shows that when there is
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Figure 8. Soil response at X3 during the initial runup stage (phases 1 and 2 as denoted in figure 7.) The left panels show the
temporal variations of excess pore pressure pe (solid line), excess total stress, σe (dashed line) and water pressure on the soil
surface pw (dotted line). The right panels show the difference between the excess pore pressure and the excess total stress,
� = pe − σe, (a) at the underside of the impermeable layer (Z1) in the layer experiment; (b) at thebottomof the soil specimen
(Z4) in the Layer experiment; (c) at thebottomof the soil specimenwithout impermeable layer (Z4) in the Flat Beachexperiment.
The critical values of� for vanishing effective vertical stress at Z1 and Z4 are 13.7 and 83.4 kPa, respectively.

no impermeable layer in the soil, the pressure on the soil surface pw, the excess total stress σe and
the excess pore pressure pe essentially coincide as expected for a quasi-equilibrium process. By
contrast, when the impermeable layer is present, the pore pressure exceeds the excess total stress;
see the right panels of figures 9a,b. The difference � reaches a maximum at the end of phase 3
(t = 1.2 ∼ 1.3 s), then gradually converges at t ∼ 3.5 s at both depths (Z1 and Z4), indicating that
the equilibrium state is reached within the soil. Note that equilibrium within the soil is reached
after the surface flow reaches equilibrium.
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Figure 9. Soil response at X3 during the entire runup process. The left panels show the temporal variations of excess pore
pressure pe (solid line), excess total stress σe (dashed line) and water pressure on the soil surface pw (dotted line). The right
panels show the difference between the excess pore pressure and the excess total stress,� = pe − σe, (a) at the underside
of the impermeable layer (Z1); (b) at the bottom of the soil specimen (Z4); (c) at the bottom of the soil specimen without
impermeable layer. The critical values of� for vanishing effective stress at Z1 and Z4 are 13.7 kPa and 83.4 kPa, respectively.

At the underside of the impermeable layer, figure 9a, left shows that the excess pore pressure
pe exceeds both the excess total stress σe and water pressure load pw on the soil surface after the
cessation of the backup flooding at t ∼ 1 s. As shown in figure 9a, right, the excess total stress
response is lower than the increase in pore pressure at the underside of the layer, i.e. � > 0.
The increase in overburden stress in phase 3, although less rapid than that in phase 1, must
be sufficiently fast to cause another process of soil lattice dislocation, which contributes to the
creation of a substantial value of �: the maximum value is � = 8.12 kPa, at t = 1.24 s (recall that
the critical value of � indicating zero effective stress and thus soil liquefaction is 13.7 kPa at Z1). In
this case, however, the effect of soil lattice dislocation/rearrangement is prolonged for a duration
longer than the phase-1 response presented in figure 8, and gradually approaches its equilibrium
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state: it takes more than 2 s. Furthermore, this effect propagates to the bottom of the soil specimen,
as shown in figure 9b, right. These behaviours are different from those that occurred at the initial
impact of the surge front (t � 0.6 s) presented in figure 8.

At the bottom of the soil specimen with the impermeable layer, figure 9b, left shows that
the excess total stress σe coincides with the overburden stress (pressure on the soil surface, pw)
for t > 1 s. This represents a quasi-equilibrium state for a stable soil lattice at Z4. However, the
excess pore pressure pe exceeds the excess total stress σe: this is caused by the impedance of the
impermeable layer, which delays pore-pressure dissipation. The excess pore pressure exceeds
both the overburden stress and the excess total stress during the entire process in phases 3
and 4. This behaviour is similar to the phenomenon called ‘overpressure,’ which is the state of
pore pressure exceeding the hydrostatic condition and is commonly discussed in the field of
geology [38–41]. In the field of geology, abnormally high pore pressure can develop where burial
of sediments is swift and the permeability is low, such that pore fluids cannot escape rapidly
enough; this condition causes the pore pressure to increase as overburden increases. This process
is called ‘disequilibrium compaction’, a phenomenon known to occur at a depth of 1 ∼ 2 km. The
overpressure caused by disequilibrium compaction dissipates slowly (over many years) due to
slow fluid movement. The present case is like the overpressure phenomenon, but the time scale is
much shorter (seconds to minutes in the field time scale) and the spatial scale is much smaller
(metres in depth in the field scale). Rapidly transient overburden loading creates a condition
similar to the ‘overpressure’ under the impermeable layer. The disequilibrium state must be
corrected by the pore-pressure dissipation around the outer edge of the impermeable layer. Our
laboratory data shown in figure 9 support the conjecture of the occurrence of the overpressure-like
phenomenon under the overburden load of tsunami-like inundation.

(b) Drawdown
For the drawdown process, we first present the overall pore-pressure field at the centreline of
the model in the form of isobaric contour plots in figure 10 for three instances after opening the
drawdown gate: t = 0.5, 1.0 and 2.0 s. The plots are based on interpolations of the pore-pressure
data using a mesh created with Delaunay triangulation [42]. The data are not extrapolated to the
container boundaries; however, we consider the fact that the boundaries, except the soil surface,
are impermeable and hence have a no-flux condition. The data points are sparse, and therefore
the isobaric contours are limited in resolution. As seen in figure 10 for the Flat Beach case, the
pressure release within the soil is fairly uniform across the soil specimen. On the other hand, the
pressure release for the Layer case is notably altered by the presence of the impermeable layer.
Relatively uniform pressures are retained underneath the layer, and a locally high region of pore
pressure emerges under the layer.

The effects of the impermeable layer can be further explored and shown in figure 11, of which
the left panels show the temporal variations of water pressure on the soil surface pw, the excess
total stress σe and the excess pore pressure pe at X3 for the Layer experiment at two depths: Z1
and Z4. The right panels show the differences between the excess pore pressure and the excess
total stress for the Layer case, � = pe − σe; the difference between the excess pore pressure and the
water pressure on the soil surface for the Layer case, �pL = pe − pw; and the difference for the Flat
Beach case, �pF = pe − pw. At the bottom of the soil specimen (Z4) for the Layer case, figure 11b,
left shows that the change in water pressure on the soil surface closely coincides with the excess
total stress. This is anticipated as for a quasi-equilibrium state of a stable soil lattice structure. That
is not the case, however, at the underside of the impermeable layer (Z1), as shown in figure 11a,
left. The excess total stress reduces at a faster rate than the reduction in water pressure on the soil
surface. This must be caused by soil-grain dislocation due to the swift reduction of the overburden
loading.

During drawdown, the downward gradients of pore pressure, which generate upward
pressure forces, are developed: note that this phenomenon has been reported previously by Yeh
et al. [4]. The quantitative process of this behaviour is exhibited by the dashed line (�pL) for the
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(a), with a locally high-pressure region forming beneath the layer. The locations of pore-pressure sensors are shown by open
dots: the coordinates are listed in table 2. Note that the data points are sparse, therefore the isobaric contours are estimates and
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Figure 11. Soil response during the drawdown process at X3. The left panels show the temporal variations of excess pore
pressure pe (solid line), excess total stress σe (dashed line) and water pressure on the soil surface pw (dotted line). The right
panels show the difference between the excess pore pressure and the excess total stress, � = pe − σe (solid line); the
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Layer case and by the dotted line (�pF) for the Flat Beach case in figure 11, right at both Z1 and
Z4. The presence of the impermeable layer creates the condition of higher pore pressures than that
for the case with no layer. This is because the presence of the layer is a barrier to drainage and
therefore causes a delay in the dissipation of pore pressure. While figure 11, right shows that the
difference in excess pore pressure and surface water pressure (for both �pLand �pF) at the deep
location (Z4) is greater than that at the shallow location (Z1), the excess pore-pressure gradient is
greater at the shallow location: hence less stable according to (2.5).

The maximum value of �(= pe − σe) in figure 11a, right is 8.51 kPa at t = 1.13 s, which is
approximately 60% of the critical value (= 13.7 kPa at Z1) needed for the effective stress to vanish.
The rapid drawdown associated with tsunamis can induce potentially substantial soil instability
under the impermeable layer. As discussed in §2, the soil tends to become unstable when the
effective stress becomes approximately one-half of the equilibrium state [6,28]. While disturbance
of the soil is not observed at the surface in the experiment, it is likely that the soil supporting the
impermeable layer from the underneath is substantially weakened.

5. Conclusion
Many observations of post-tsunami surveys indicate that soil instability plays a substantial role in
causing damage to coastal infrastructure. Yet, soil response to tsunami loading is not adequately
understood. We present an experimental attempt to explore fundamental mechanics of soil
instability induced by tsunami-like loading. To achieve a controlled laboratory environment, we
utilize a centrifuge apparatus that enables us to enhance the body force and viscous force to
reduce scale effects. The apparatus realistically creates tsunami runup and drawdown processes
in a single experiment and allows us to obtain quantitative measurements of the fluid flow
velocities, depths and pressures, as well as measurements of soil response in terms of pore
pressures and total soil stresses. The present hypergravity experiments represent a field-scale
runup flow speed of approximately 10 m s−1, inundation depth of 5 m and drawdown period of
approximately 2 min with a flow speed of 1–2 m s−1. Such flow conditions are representative of a
typical tsunami event. We study two cases: a homogeneous soil specimen with a flat, horizontal
surface, and the same soil condition with an impermeable rigid horizontal layer embedded near
the soil surface. The latter case is considered important based on the field observations: see
equation figure 1, for example. The results of the present experiments yield unique measurements
of soil response to transient tsunami loading.

In the present experiments, soil response is monitored by the variations of excess pore
pressures and excess total stresses. As an indicator of soil instability, we calculate the difference
between the excess pore pressure and the excess total stress, � = pe − σe. According to (2.4), the
soil loses intergrain resistance when � → (ρsat − ρ)Gz. Furthermore, as we stated in §2, Sumer
et al. [28] and Tonkin et al. [6] suggest that soil instability may occur earlier than the criterion
under dynamic loading conditions. While soil liquefaction was not observed visually in the
present experiments, the data evidently indicate that the rapid runup and drawdown stages cause
substantial soil response towards instability during both the runup phase and the drawdown
phase.

In the runup phase, it is thought that increase in water level after passing the surge front results
in a positive pressure gradient in the soil, hence enhanced soil stability. However, our laboratory
results show otherwise when the impermeable layer is present. Immediately after the tsunami
surge arrives, the sudden pressure impact on the soil surface causes dislocation of soil grains at
the underside of the impermeable layer (Figure 8a). The excess total stress temporarily becomes
lower than the excess pore pressure, leading to instability: our results show a 67% reduction of
the effective body force. The soil stability quickly recovers afterward: the recovery commences
around 0.5 s (figure 8a, right), which is about 20 s in field time scale. It is noted that this ‘impulse-
induced instability’ is confined in the region near the underside of the impermeable layer; the
soils in the deeper location are not affected.
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During the later runup stage, an additional increase in overburden load occurs due to the
backup flow (figure 9). This secondary load is slower than the initial surging load, and also
induces a difference in the excess pore pressure and the excess total stress, �, resulting in a
reduction of the effective body force. Unlike the localized and short-lived instability associated
with the rapid initial loading, the reduction in effective stress under the impermeable layer affects
the deeper part of the soil specimen, and is prolonged for a longer duration until gradually
approaching its equilibrium state. At the underside of the impermeable layer, this is a result of the
lower excess total stress and the higher excess pore pressures than those in the quasi-equilibrium
state. At the bottom of the soil specimen, the reduction of the effective stress is caused by the
enhanced and prolonged pore pressure. It appears that this behaviour resembles the mechanism
of so-called ‘overpressure‘ or ‘disequilibrium compaction’, which is discussed in the field of
geology at a much longer time and larger depth scale.

During drawdown, the downward gradients of pore pressure, which generate upward
pressure forces, are developed due to the rapid relief of the overburden load. While there have
been a few laboratory studies to address this mechanism of soil instability [4,5], reported herein
are the first quantitative measurements of pore pressures and vertical soil stresses under realistic
tsunami loading scales. This is a notable advantage of centrifuge experiments in terms of stress
states. The soil instability effect is substantially enhanced with the presence of the impermeable
layer: our results show a 60% reduction of the effective body force (figure 11). The data illustrate
that rapid drawdown associated with tsunamis can induce substantial soil instability under the
impermeable layer. While instability of the soil may not be observed at the surface, soil supporting
structures and pavements may be weakened substantially.

Soil instability mechanisms revealed in the present study advance understandings of
damaging effects caused by rapid tsunami-like inundation processes. The findings should
contribute to yield improvements in design, construction and retrofit of infrastructure and
buildings in potentially vulnerable flood zones by extreme events.
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