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Abstract

To elucidate the genes involved in the formation of white and black plumage in ducks, RNA from white and black feather
bulbs of an F2 population were analyzed using RNA-Seq. A total of 2,642 expressed sequence tags showed significant
differential expression between white and black feather bulbs. Among these tags, 186 matched 133 annotated genes that
grouped into 94 pathways. A number of genes controlling melanogenesis showed differential expression between the two
types of feather bulbs. This differential expression was confirmed by qPCR analysis and demonstrated that Tyr (Tyrosinase)
and Tyrp1 (Tyrosinase-related protein-1) were expressed not in W-W (white feather bulb from white dorsal plumage) and W-
WB (white feather bulb from white-black dorsal plumage) but in B-B (black feather bulb from black dorsal plumage) and B-
WB (black feather bulb from white-black dorsal plumage) feather bulbs. Tyrp2 (Tyrosinase-related protein-2) gene did not
show expression in the four types of feather bulbs but expressed in retina. C-kit (The tyrosine kinase receptor) expressed in
all of the samples but the relative mRNA expression in B-B or B-WB was approximately 10 fold higher than that in W-W or W-
WB. Additionally, only one of the two Mitf isoforms was associated with plumage color determination. Downregulation of c-
Kit and Mitf in feather bulbs may be the cause of white plumage in the duck.
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Introduction

Identification of genes controlling plumage color and their

associated inheritance patterns are important topics in poultry

science research. Plumage color control is essential for the uniform

appearance of birds in the poultry industry. White plumage is the

most favorable color for producers of meat-type commercial birds

not only because ducks with unpigmented feathers are easy to

clean (comparing with unpigmented feather body, pigmented

feather bulbs or follicles left in skin showing black dots and make

carcass look dirty ), but also genes involved in melanogenesis may

have pleiotropic effects on other phenotypes [1]. It has been

reported that multiple genes exist at different loci controlling

plumage color in ducks [2]. These loci include white neck MR,

extended black E, blue dilution G, dominant white belly S, head

cheek decorated R, white skin and mouth Y, and recessive white c.

Compared to studies of plumage color in chicken and quail, few

gene or pathway identification studies have been conducted in

ducks. A 6-bp deletion that inactivated Tyrosinase (Tyr) in a line of

albino chickens was reported [3]. Chang et al. [4] found that the

causal mutation for the recessive white allele in chickens is the

insertion of a complete avian retroviral sequence in intron 4 of the

tyrosinase gene. The Mitf (Microphthalmia-associated transcrip-

tion factor) gene encodes a transcription factor of Tyr family genes

with important roles in pigmentation. MITF seems to be primarily

associated with loss of pigmentation and patterning, i.e., white

spotting in both dogs and cattle [5–7] as opposed to hyperpig-

mentation, which in the Silky was recently shown that the higher

expression of Mitf is a downstream effect of increased EDN3

expression [8]. Higher expression of Mitf, which is associated with

hyperpigmentation, was observed in Silky Fowl [9]. A stop codon

caused by a 2-bp deletion in exon 11 of Mitf was found to be

responsible for the ‘‘silver’’ plumage color in Japanese quail [10].

Mitf expression can be regulated by Scf-Kit signaling and can itself

activate the transcription of the Tyr genes [11,12]. c-Kit is required

during the feather growth cycle for melanocyte activation in

humans [13]. Mutations in c-Kit can cause coat color change in

mammals [14–16]. Allele-specific genetic interactions between

Mitf and c-Kit were also reported to affect melanocyte development

in humans [17]. The expression pattern of c-Kit was investigated

during embryonic development in chicken and quail [18,19].

Mutations in other genes were also found to be associated with

plumage color in these systems. Gunnarsson et al. [20] reported an

8.3-kb deletion upstream of Sox10 that caused dark-brown

plumage in chickens. Other genes, including Mc1r, Asip, and

Pmel17, also contribute to plumage color [21–23]. Few recent

studies have focused on the genetic mechanisms involved in duck

plumage color formation. High-throughput genomic approaches

are promising ways to identify genes and pathways involved in

plumage color formation. Due to the unavailability of an

assembled reference sequences, high-throughput expression tools
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have not been widely used in ducks, although one study used

chicken microarrays for genome-wide expression analysis to

identify genes related to sperm storage [24].

The white Liancheng is an egg-type duck and white Kaiya is a

meat-type duck in South China. In our previous study, 80% of

individuals in an F1 population from a Kaiya 6Liancheng cross had

a phenotype of grey plumage on their heads, wings, backs or tails,

with a white belt running from neck to chest. The F2 population

was segregated, individuals with white, black, and black-white

plumage were found. We reported a new autosomal locus

(designated T) that may control plumage color in ducks [25].

However, the identity and number of genes involved in plumage

color control in these ducks is not clear.

This study is the first genome-wide expression analysis to use

RNA-Seq to find differentially expressed genes related to black

and white plumage color in ducks. A large number of genes was

found to be differentially expressed between white and black

feather bulbs. Our analysis found that important genes and

pathways associated with pigment formation are differentially

regulated between black and white feather bulbs. We further

characterized the expression of a few key genes related to

pigmentation.

Results

Overview of RNA-Seq Data
To maximize the coverage of duck feather bulb mRNA by RNA

sequencing, libraries were constructed by pooling RNA isolated

from 6 white feather bulbs (3 from white dorsal plumage and the

other 3 from white-black dorsal plumage) as sample W-1 library,

and 6 black feather bulbs (3 from black dorsal plumage and the

other 3 from white-black dorsal plumage) as sample B-1 library.

RNA-Seq yielded 5,000,000 raw reads from each library. Low-

quality reads (i.e., tags containing only adaptors and ambiguously

called bases (reads that has many Ns)) were removed, resulting in

4,887,399 and 4,867,376 clean tags, 217,133 and 235,874 of

which were distinct (i.e., non-identical), from white and black

feather bulbs, respectively. These distinct clean tags were mapped

to 9,009 and 8,498 genes in Ensemble Gallus gallus databases, and

1,458 and 1,584 genes in an Anas platyrhynchos EST library for W-1

and B-1 libraries, respectively. In total, 10,467 and 10,082 distinct

clean tags were mapped to genes, accounting for 4.43% and

4.64% of the total distinct clean tags in the white and black feather

bulb RNA libraries, respectively. A summary of sequencing tags

and matched genes is shown in Table 1.

Tag reads analysis showed that more than 83% of the tags were

present in 1 to 5 reads, while less than 2% of the tags were present

in more than 100 reads. Tags with different numbers of reads

between black and white feather bulb libraries matched 5,240

annotated genes. Details of these genes and their related sequence

counts in the W-1 and B-1 libraries are listed in Table S1.

Differentially Expressed Genes in White and Black Feather
Bulbs

In this study, a rigorous algorithm was used to identify

differentially expressed genes in the two samples based on ‘‘The

significance of digital gene expression profiles’’ [26]. A total of

2,642 tags were found to be differentially expressed (DETs).

Among these tags, only 186 mapped to annotated genes, yielding

133 differentially expressed genes (log2Ratio$1, P,0.01,

FDR,0.001) (see Tables S2 and S3) [26,27]. Compared to black

feather bulbs, white feather bulbs showed 82 downregulated and

51 upregulated genes according to statistical criteria for raw reads

and TMP (number of transcripts per million clean tags).

Gene Ontology Analysis of Differentially Expressed Genes
These 133 genes that are differentially expressed between white

and black feather bulbs could be grouped into 94 pathways by

gene ontology (GO) analysis. The pathways and differentially

expressed genes between the two types of feather bulbs are shown

in Table S4. Among the pathways, melanogenesis (c-Kit/Tyr/

Tyrp1) and tyrosine metabolism (Tyr/Tyrp1) were directly related to

bird plumage pigmentation. A summary of this pathway analysis is

shown in Table 2. GO analysis also identified the MAPK

(Mitogen-Activated Protein Kinase) signaling pathway, which

can link the functions of Kit and Mitf. Differential expression of the

Mitf isoforms is dependent on the activation of MEK1-ERK2 in

the MAPK signaling pathway [28]. Interestingly, GO analysis also

showed enrichment of pathways involving p53 signaling, apoptosis,

Toll-like receptor signaling and immune function. Compared to

unpigmented feather bulbs, pigmented feather bulbs have normal

melanocytes, in which a series gene cooperated with each other to

perform melanogenesis, melanin formation and transportation.

Defects occurring in any part of this process may cause feather

unpigmentation. The melanogenic pathway which involved in

melanogenesis and Tyrosine metabolism was also enriched in the

94 pathways in GO analysis. In addition, we found that pigmented

and unpigmented feather bulbs may have differences in many

physiological and biochemical processes, including apoptosis, cell

cycle, immune response, metabolism, and signaling transduction,

Table 1. RNA-Seq data summary and annotation results.

RNA-Seq sample Black feather bulb (B-1) White feather bulb (W-1)

Total tags (raw data) 5,000,000 5,000,000

Clean tags 4,887,399 4,867,376

Total distinct clean tags 217,133 235,874

Mapping to gene Reference Chicken Duck Chicken Duck

DCT 8,498 1,584 9,009 1,458

total 10,082 10,467

% of TDCT 4.64% 4.43%

Total unknown DCT 207,051 225,407

% unknown of TDCT 95.36% 235,874

Note: DCT- distinct clean tag; TDCT- Total distinct clean tag; Chicken- Gallus gallus; Duck- Anas platyrhynchos.
doi:10.1371/journal.pone.0036592.t001

Gene Expression in Duck Plumage Feather Bulbs
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etc. It is a complicated regulation network. It could be that genes

involved in several processes including melanogenesis and

immunity are co-expressed. However, earlier studies showed that

some of these pathways may be related to pigmentation [29],

which is similar to our results. For example, up-regulation of genes

in the Toll like receptor signaling pathway can be associated with

melanocytes cell growth and melanogenesis [30]. Our result may

provide further evidence for a relationship between TLRs and

melanogenesis.

qPCR Confirmation of Differential Gene Expression in
White and Black Feather Bulbs from Different Types of
Ducks

To confirm the differential gene expression from the RNA-Seq

data, we used qPCR to measure the expression of Tyr, Tyrp1, and

c-Kit, three genes in the melanogenesis pathway, in four

combinations of feather bulbs and plumage types: W-W (white

feather bulb from white plumage), W-WB (white feather bulb from

white-black plumage), B-B (black feather bulb from black

plumage), and B-WB (black feather bulb from white-black

plumage). The results showed that the two critical genes in the

melanogenesis pathway, Tyr and Tyrp1, had almost no expression

in white feather bulbs from either white dorsal plumage or white-

black dorsal plumage (Figure 1). We also found that Tyr and Tyrp1

were normally expressed in black feather bulbs from either black

dorsal plumage or white-black dorsal plumage. The expression or

absence of expression of Tyr and Tyrp1 genes indicated the

pigmentation status of the feathers, regardless of whether the

feather is from ducks with white, black or white-black plumages.

C-Kit expression was significantly different (P,0.01, Figure 2)

between W-W and B-B, or B-WB, as well as between W-WB and

B-B, or B-WB samples. In contrast, c-Kit expression showed no

significant difference between W-W and W-WB or between B-B

and B-WB samples. C-Kit mRNA expression is approximately 10-

fold higher in B-B and B-WB compared to W-W or W-WB

samples.

Expression Comparison of Mitf, Tyr, Tyrp1, c-Kit and Tyrp2
in Retinas and Feather Bulbs

The expression of Tyr and Tyrp1 is regulated by Mitf. However,

we did not find differential expression of Mitf in the RNA-Seq

data. To investigate whether Mitf showed the same expression

pattern as Tyr and Tyrp1, we performed cloning and qPCR

analysis of this gene. The results showed that two isoforms of Mitf,

M and B, exist. The B isoform was expressed in both black and

white feather bulbs, while the M isoform was only expressed in

black feather bulbs, regardless of whether they were collected from

ducks with pure black or black-white plumage (Figure 3). We also

used qPCR to test the relative expression of Tyr, Tyrp1, c-Kit and

Tyrp2 in retinas, another organ in which melanogenesis occurs.

The results showed that all 4 genes were expressed in retinas

(Figure 4). Moreover, Tyrp2 is expressed only in retinas; no

expression was detected for this gene in feather bulbs (Figure 5).

Discussion

Until now, there has been no study using genome-wide

expression analysis in duck feather bulbs by RNA- sequencing.

Table 2. Digital differential expression analysis of c-Kit, Tyrp1, Tyr and Tyrp2 genes between black and white feather bulbs by RNA-
Seq.

Gene Raw-B-1 Raw-W-1 TPM-B-1 TPM-W-1 Log2ratio(W-1/B-1) P-Value FDR

c-Kit 160 16 32.74 3.29 23.31489 3.44E-31 5.00E-29

Tyrp1 3250 0 664.89 0.01 216.021 0 0

Tyr 184 0 37.65 0.01 211.8784 5.96E-56 3.48E-54

Tyrp2 0 0

Note: Raw-B-1, Raw data of black feather bulb expression; Raw-W-1, Raw data of white feather bulb expression; TPM-B-1, Normalized expression level of genes in black
plumage feather bulb library; TPM-W-1, Normalized expression level of genes in white plumage feather bulb library; Log2 ratio(W-1/B-1), log2(multiples of differentially
expressed genes); P-value corresponds to differential gene expression test; FDR (False Discovery Rate) is used to determine the threshold P-value in multiple tests and
analyses by manipulating the FDR value [27].
doi:10.1371/journal.pone.0036592.t002

Figure 1. The expression of Tyrp1 and Tyr genes in black and
white feather bulb samples from different plumage types.
doi:10.1371/journal.pone.0036592.g001

Figure 2. The expression of c-Kit gene in black and white
feather bulb samples from different plumage types.
doi:10.1371/journal.pone.0036592.g002

Gene Expression in Duck Plumage Feather Bulbs
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Our study offered new information related to gene expression

profiles in black and white feather bulbs in the duck. The entire

duck genomic sequence is not available; thus, our data analysis was

based on the Ensemble Gallus gallus database and the Anas

platyrhynchos EST database. Although duck and chicken coding

sequences have high homology (up to 90% for many genes), using

the Gallus gallus database to match duck sequences can be difficult,

as most of the tags are from the 39UTR of genes. Compared to

more than 10 million tags, only 3,000 reference ESTs exist in the

Anas platyrhynchos EST library, which is too few for annotation. In

our study, only 133 genes were identified from 2,642 differentially

expressed tags, while most tags did not match any annotated

genes. The reasons may include: (1) The short tags were from

39UTR of the mRNAs; (2) When using the chicken sequences as

reference to annotate the genes, the tag will not be annotated to

genes if there are 2-bp mismatches as the length of each tag is 17-

bp. Thus, only a low proportion of differentially expressed tags

could be matched to annotated genes. Also, this method is not

sensitive enough to detect genes that are very weakly expressed.

Fortunately, three genes in the melanogenesis pathway were

identified, indicating that this pathway is crucial for duck plumage

color determination.

Skin, coat, and feather color in mammals and birds are

determined mainly by 2 melanins, eumelanin and pheomelanin

[31]. In human, hair color (or lack thereof, i.e., white hair) is

determined by whether the hair bulb has normal biosynthesis of

melanin and its subsequent transfer from melanocyte to keratino-

cytes [32]. In colored feather bulbs, melanin can be synthesized at

the first step as described by Korner [33]. For melanogenesis, Tyr,

Tyrp1, and Tyrp2 were directly involved in the synthesis of

melanins. In this study, Solexa sequencing showed low expression

of Tyr and Tyrp1 in white feather bulbs from ducks with pure white

or white-black plumage, while these genes showed normal

expression in black feather bulbs from ducks with pure black or

white-black plumage. These results demonstrated that a lack of Tyr

and Tyrp1 expression led to a deficiency in the biosynthesis of

melanin in white feather bulbs and is the direct cause of white

duck plumage. Surprisingly, Tyrp2 was not expressed in white or

black feather bulbs but was expressed in retinas, indicating that

this gene may be responsible for retinal pigmentation. This result is

similar to that in human [34]. We cloned this gene from duck eye

retina mRNA, but the mechanism of its restricted gene expression

is not clear.

Previous studies on coat or feather color mainly focused on the

effects of nucleotide deletion, mutation, or insertion in single

genes. Schmidt [35] found that a single point mutation in exon 1

of the mouse tyrosinase gene caused the dark-eyed albino

phenotype. Tobita-Teramoto et al., [3] reported that a six-

nucleotide deletion in the tyrosinase coding sequence caused

chickens to be albino. Additionally, in chickens, a retroviral

insertion in intron 4 of the tyrosinase gene, leading to a lack of

exon 5, which encodes the carboxy-terminal membrane spanning

domain, caused the recessive white phenotype [4,36,37]. In this

study, our results showed that the duck Tyr gene was expressed

normally in retinas from ducks with either black or white plumage.

All the ducks in this study had normal, dark retinas. Thus, the Tyr

gene has normal function ducks with black or white plumage, but

the expression in white feather bulbs was suppressed. The genes

that inhibit Tyr expression could be responsible for plumage color

in this population.

It was reported that Mitf is a member of the bHLH-leucine

zipper transcription factor family and played an important role in

the development of retinal cells, mast cells, osteoclasts and

melanocytes [38]. Alleles of Mitf have been associated with coat

color in dogs [7] and mice [39,40], as well as with plumage color

in quail [41]. Minvielle [10] demonstrated that a 2-bp deletion in

exon 11 of Mitf caused white plumage in Japanese quail. In this

study, in contrast to Japanese quail, the Mitf-M isoform did not

show expression in white plumage feather bulbs, although both

Mitf-M and Mitf-B isoforms were normally expressed in retinas

and black plumage feather bulbs. The difference in Mitf-M

expression between white and black feather bulbs in this study

suggests that Mitf-M is involved in determining feather pigmen-

tation in the duck through either cis or trans acting regulatory

elements as opposed to non-synonymous coding variants like in

the quail. The expression pattern of the duck Pmel17 is the same as

Mitf-M, Tyr, Tyrp1. Pmel17 plays a central role in the biogenesis of

melanosomes. Studies in other animals showed that this gene is

involved in the maturation of melanosomes [42]. Plumage variants

in chicken are associated with insertion/deletion polymorphisms

in the Pmel17 gene [23,43,44]. Also, silver coat color in horse is

associated with a missense mutation in the Pmel17 gene [45]. Our

study demonstrated Pmel17 may also play roles in duck pigmen-

tation.

Although little is known about the role of c-Kit expression in the

regulation of plumage color in birds, the roles of Scf and c-Kit

signaling in melanoblast or melanocyte migration, proliferation

and differentiation during embryogenesis and maintaining post-

natal cutaneous melanogenesis were reported in mammals

[13,46,47]. Additionally, the function of c-Kit in feather follicle

melanogenesis [46,48,49] and the maintenance of human hair

pigmentation [50] have been widely studied in various models.

Figure 3. The expression of Mitf gene in black and white
feather bulb samples from different plumage types.
doi:10.1371/journal.pone.0036592.g003

Figure 4. The expression of Tyrp1, Tyr, c-Kit and Mitf genes in
retina samples from black plumage and white plumage ducks.
doi:10.1371/journal.pone.0036592.g004

Gene Expression in Duck Plumage Feather Bulbs
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Nucleotide deletions from introns [14] and copy-number variation

[51–53] of c-Kit were associated with pig coat color. C-Kit

mutations in horses were associated with white coat color

[16,54–56], and exon skipping in the c-Kit gene in horses causes

a Sabino spotting pattern [57]. Furthermore, c-Kit is a candidate

for white spotting in cats [58], and the c-Kit signaling pathway is

involved in post-developmental processes of mature cells [59].

Taken together, the c-Kit gene plays a critical role in animal coat

color and is specifically associated with ‘white’. In this study, we

found there was no significant difference in c-Kit expression in

retinas from ducks with white or black plumage. W-W, B-B, W-

WB, and B-WB feather bulbs all showed expression of the c-Kit

gene, although the expression level in black feather bulbs was 10-

fold higher than that in white feather bulbs. In white feather bulbs,

this basal level of c-Kit expression may be able to maintain cell

proliferation and differentiation but is not sufficient to promote

pigmentation, although there is no in vitro confirmation work. In

contrast, c-Kit expression in black feather bulbs is 10 times higher

than that in white feather bulbs, allowing for cell proliferation and

differentiation as well as maintenance of postnatal melanogenesis.

It is possible that the lower level of c-Kit expression in the white

feather bulb is a downstream consequence of few or no active

melanocytes in the feather bulb, but not a genetic lesion at the c-Kit

locus.

Conclusion
Plumage color variation in Kaiya-Liancheng F2 ducks was

determined by whether melanin can be synthesized in the feather

bulb. Our results provide solid evidence on some of the functional

players in feather pigmentation in the duck, e.g. upregulation of c-

Kit and Mitf in black feather bulbs may be responsible for black

plumage formation.

Materials and Methods

Experimental Animals
The genetic background of experimental ducks was described

by Gong et al., [25]. Three white plumage ducks, three black

plumage ducks and three white-black plumage ducks were

randomly selected from a population of the Kaiya-Liancheng F2

Figure 5. Semi-RT-PCR measurement of Tyrp2 gene expression in retinas and feather bulbs from ducks with different plumage
types. Lanes 1–6: cDNA from 2 replicates of white, white-black and black plumage duck eyes; lanes 7–14: cDNA from 2 replicates of W-W, B-WB, W-
WB and B-B feather bulbs; lanes 15–22: b-actin, samples are the same as lane 7–14, respectively. M: Marker I, six bands at 600, 500, 400, 300, 200, and
100 bp.
doi:10.1371/journal.pone.0036592.g005

Figure 6. Plumage types and feather bulbs used in this study. A: Three duck plumage types; B: Feather bulbs from four plumage types, W-W
(white feather bulb from white plumage), B-B (black feather bulb from black plumage), W-WB (white feather bulb from white-black plumage), B-WB
(black feather bulb from white-black plumage).
doi:10.1371/journal.pone.0036592.g006

Gene Expression in Duck Plumage Feather Bulbs
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generation. The three plumage patterns are shown in Figure 6.

Three feather bulbs from the same individual were pooled as one

sample. The white feather bulbs from white duck back were

marked as W-W, whereas the black feather bulbs from black duck

back were marked as B-B. White feather bulbs from white-black

duck back were marked as W-WB and black feather bulbs from

white-black duck back were marked as B-WB, respectively. The

four feather bulb types are shown in Figure 6. All research

involving animals were conducted according to the regulation

(No. 5 proclaim of the Standing Committee of Hubei People’s

Congress) approved by the Standing Committee of Hubei People’s

Congress, and the ethics committee of Huazhong Agricultural

University, P. R. China. The approved permit number for this

study is ‘‘HBAC20091138’’.

Total RNA Extraction from Feather Bulbs and RT-PCR
Feather bulbs were put into 2-mL tubes containing 1 mL

TRIzol reagent (Invitrogen, San Diego, CA). One ceramic bead

was added immediately to each tube. The tubes were then ground

for 30 seconds by EASY GRIND. Total RNA was extracted

according to the manufacturer’s protocol. The quality and

quantity of RNA samples were checked by

Spectrophotometer ND-1000 (Nano-Drop) and denaturing aga-

rose gel electrophoresis. All RNA samples were treated with

DNAse-I for later use.

RNA-Seq, Data Mining and Gene Ontology Analysis
Solexa sequencing of W-W and B-B pooled RNA was

conducted in BGI, Shenzhen. Three databases were employed

for sequence analysis, the Ensemble Gallus gallus databases,

reference gene (ftp.ensembl.org/pub/release-59/fasta/gallus_gal-

lus/cdna/Gallus gallus. WASHUC2.59.cdna. all. fa.gz), reference

genomic DNA (ftp://ftp.ensembl.org/pub/release-59/fasta/

gallus_gallus/dna), and the Anas platyrhynchos EST database

(http://www.ncbi.nlm.nih.gov/nucest/

?term = Anas%20platyrhynchos). In this study, a rigorous algo-

rithm has been developed to identify differentially expressed genes

between two samples by BGI based on ‘‘The significance of digital

gene expression profiles’’ [26]. We used a P-value corresponding

to a differential gene expression test at statistically significant levels

[27]. ‘‘FDR (False Discovery Rate) #0.001 and the absolute value

of log2Ratio$1’’ were used to identify DEGs (Different Expression

Genes) and DETs (Different Expression Tags). Pathways of

differentially expressed genes were analyzed by DAVID v6.7.

Gene function classification was conducted using the Gene

Ontology FAT set term.

c-Kit, Tyr, Tyrp1 and Tyrp2 Gene Expression in Feather
Bulb and Retina Samples by qPCR

To confirm the differential expression of genes revealed by

RNA-Seq, the expression of genes in the melanogenesis pathway,

including c-Kit, Tyr and Tyrp1, was measured by qPCR. In

addition, the expression of Mitf and Tyrp2 was measured because

they are directly involved in melanin biosynthesis. b-actin was used

as a reference control. qPCR analysis was performed on Roche

lightercyclerH 480, using lightercyclerH 480 SYBR Green I master

detection reagents (Roche Diagnostics 11367523). All reactions

were performed in triplicate within each PCR assay and under the

same cycling conditions: denaturation at 95uC for 3 min, followed

by 40 cycles of amplification (95uC for 20 s, 60uC for 20 s, and

72uC for 20 s) with a single acquisition of fluorescence at the end

of the extension step. Melt curve analysis was performed over a

range of 55,95uC to verify single product generation at the end of

the assay. qPCR data analysis was performed with the Light

Cycler analysis software. Relative quantification analyses were

performed in EXCEL using the comparative CT method.

Comparisons between qPCR data sets were made with Student’s

t-test. Differences were considered significant if P,0.05. Further,

semi-RT-PCR measurements of Tyrp2 gene expression in retinas

and feather bulbs from ducks with different plumage types were

also conducted. All primers information is shown in Table 3.

Supporting Information

Table S1 The information of genes that expressed in
duck feather bulbs that have different reads.

(XLS)

Table S2 Differentially expressed tags between white
and black plumage feather bulb libraries.

(XLS)

Table S3 Differentially expressed genes between white
and black plumage feather bulb libraries.

(XLS)

Table 3. Primers used in Semi-RT-PCR and qPCR.

Gene Primers Sequence (59- 39) Size (bp) AT Function

b-actin b-actin-F
b-actin-R

AACTGGGATGACATGGAGAAGA
ATGGCTGGGGTGTTGAAGGT

189 60uC Semi-RT PCR & qPCR

c-Kit c-Kit-F
c-Kit-R

GCTGATGCTGCCAATGAGT
TTTGCCACCTGGTAAGAGA

151 60uC qPCR

Tyr E3-F1425

E4NR
TTACATGGTCCCCTTTATTC
CAATCACAGCTGCACCAACC

182 60uC qPCR

Tyrp1 F1250

R1439

AATGAGATGTTTGTTACTG
ACTGATCAGTGAGAAGAGG

208 60uC qPCR

Tyrp2 F1496

R1703

CACCTATGCCATTGACCTGCC
AGCAAGGAAACGAAGCAAGGG

228 60uC qPCR

Mitf-B BF383

MBR220

CCCAGTTCATGCAGCAGAGAGT
CCAGGCGGCATGACATGATCAC

268 60uC Semi-RT-PCR

Mitf-M MF16

MBR220

TGCAGTCACTTCTCTCACAACC
CCAGGCGGCATGACATGATCAC

226 60uC qPCR

Note: AT = Annealing temperature.
doi:10.1371/journal.pone.0036592.t003
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Table S4 Gene Ontology analysis of the differentially
expressed genes.
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