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Abstract: Osteoarthritis (OA) is a degenerative joint disease and a leading cause of adult 

disability. There is no cure for OA, and no effective treatments which arrest or slow its 

progression. Current pharmacologic treatments such as analgesics may improve pain relief 

but do not alter OA disease progression. Prolonged consumption of these drugs can result 

in severe adverse effects. Given the nature of OA, life-long treatment will likely be 

required to arrest or slow its progression. Consequently, there is an urgent need for OA 

disease-modifying therapies which also improve symptoms and are safe for clinical use 

over long periods of time. Nutraceuticals—food or food products that provide medical or 

health benefits, including the prevention and/or treatment of a disease—offer not only 

favorable safety profiles, but may exert disease- and symptom-modification effects in OA. 

Forty-seven percent of OA patients use alternative medications, including nutraceuticals. 

This review will overview the efficacy and mechanism of action of commonly used 

nutraceuticals, discuss recent experimental and clinical data on the effects of select 

nutraceuticals, such as phytoflavonoids, polyphenols, and bioflavonoids on OA, and 

highlight their known molecular actions and limitations of their current use. We will 

conclude with a proposed novel nutraceutical-based molecular targeting strategy for 

chondroprotection and OA treatment. 
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1. Introduction 

Osteoarthritis (OA) affects over 27 million Americans, is a leading cause of pain and disability [1,2], 

and is a significant economic burden in the United States, with over $185.5 billion in annual medical 

care expenditure [3]. OA is a disease of the entire synovial joint, and affects the underlying bone, 

synovium, meniscus, ligaments/tendons, and articular cartilage [4,5]. Progressive degradation and 

eventual loss of articular cartilage is the pathological hallmark of osteoarthritis, and is a major target 

for exploring disease-modifying treatment [4,6–8]. Cartilage plays a major role in cushioning the ends 

of the bones, allowing for the articulation of opposing joint surfaces. Destruction of articular cartilage 

leads to bones rubbing against each other, causing stiffness, pain, and ultimately, loss of movement in 

the joints [9].  

There is currently no cure for OA, and there are no therapies which slow or arrest OA  

progression [6,10]. So far, most treatments primarily focus on the secondary effects of the disease, 

such as relieving pain and improving joint function, but fail to address the evolving and complex 

nature of OA. For example, analgesics and nonsteroidal anti-inflammatory drugs (NSAIDs), which are 

commonly prescribed to OA patients, generally decrease pain and improve function, but have no 

demonstrated beneficial effect on chondroprotection or OA disease prevention and modification [11]. 

Furthermore, long-term use of available pharmacological agents to relieve OA symptoms is associated 

with substantial gastrointestinal, renal, and cardiovascular side effects [11,12]. Given the nature of OA, 

life-long treatment will likely be required to arrest or slow its progression. Consequently, there is an 

urgent need for OA disease-modifying therapies, which in the best case scenario also improve 

symptoms, and are safe for clinical use over long periods of time.  

Nutraceuticals—food or food products that provide medical or health benefits, including the 

prevention and/or treatment of a disease—offer not only a safe alternative to current pharmacologic 

therapies, but may exert disease- and symptom-modification effects in OA [13]. Forty-seven percent of 

adults use non-prescribed alternative medications (including food supplements and nutraceuticals) for 

OA management [14]. Recent studies indicate phytoflavonoids, polyphenols, and bioflavonoids, which 

are natural compounds found in fruits, teas, spices, wine, and vegetables, have shown the most 

potential to modify OA disease and symptoms based on their anti-inflammatory and anti-catabolic 

actions, and protective effects against oxidative stress [15]. In this review, we will summarize the 

clinical effects and potential mechanisms of action of commonly used nutraceuticals for OA treatment. 

We will then focus on nutraceuticals such as phytoflavonoids, polyphenols, and bioflavonoids, which 

have strong in vitro and pre-clinical evidence for treating OA, but are not well studied in clinical trials. 

The review will conclude with a novel nutraceutical-based targeting approach which may be utilized to 

effectively prevent OA initiation or arrest or slow OA progression.  



Int. J. Mol. Sci. 2013, 14 23065 

 

2. Efficacy and Mechanism of Action of Currently Used Nutraceuticals 

Nutritional agents, which offer favorable safety profiles, have long-generated interest for their 

potential in disease modification. Dietary macronutrients, including proteins and amino acids, fatty 

acids (e.g., omega-3), vitamins, and certain minerals not only provide building blocks for biological 

processes, but have the potential to support and influence the structure and function of  

joints [16–18]. For example, increased consumption of Vitamin C, an antioxidant vitamin found in 

many fruits and vegetables, was associated with reduced risk of cartilage loss and OA progression for 

OA patients [19]. Conversely, not eating “healthy foods,” including those that are high in fat and sugar, 

may exacerbate the disease [18,20]. Collectively, ingredients in foods are essential for joint health and 

certain ingredients have a critical impact on altering OA initiation and progression. Nutraceuticals 

including herbal medicines such as Boswellia serrata, Harpogophytum procumbens, Phytodolor, 

Willow bark, and supplements such as Green-lipped mussel, glucosamines, chondroitin, collagen 

hydrolysate, lipids (avocado/soybean unsaponifiables), and essential fatty acids, are used for OA 

(Table 1). In particular, glucosamine and chondroitin sulphate are among the most common 

nutraceuticals used for the treatment of OA. Glucosamine, an aminosaccharide initially isolated from 

the chitin of shellfish, is an important component of glycosaminoglycan chains and the production of 

proteoglycans, a major cartilage extracellular matrix protein [21]. Chondroitin sulphate is a 

glycosaminoglycan used in the synthesis of proteoglycans [22]. Despite the large number of studies 

examining the efficacy of glucosamine, chondroitin sulphate, or the two in combination for the 

treatment of OA, studies tend to show that these drugs result in little improvement compared with 

placebo in both symptomatic and structural outcomes [23–25]. These clinical trial findings may be due 

to the complexity and challenge of OA treatment, in addition to the effectiveness of dose, route of 

administration, and quality of the various products. Furthermore, clearly understanding the mechanism 

of action of glucosamine and chondroitin sulfate may provide better guidance for clinical use.  

Table 1. Clinical efficacy and mechanisms of action of commonly used nutraceuticals for 

osteoarthritis (OA). 

Herbal/Plant-based extracts and medicines 

Nutraceuticals Clinical efficacy  Mechanisms of action 

Boswellia serrata 

Relieved joint pain, reduced 

joint swelling and stiffness, 

increased joint flexion and 

walking distance [26–28] 

Inhibited TNF-α-induced MMP-3 expression 

and protected against IL-1β-induced 

chondrocyte death [29] 

Bromelain  

(pineapple extract) 

Did not significantly relieve 

pain or quality-of-life 

symptoms [30] 

Decreases PGE2 expression [31] 

Caesalpinia Sappan 

extract (CSE) 
Not reported 

Inhibited inflammatory mediators IL-1β, 

iNOS, COX-2 and TNF-α expression in IL-1β 

stimulated primary human chondrocytes [32]. 

CSE also suppressed MMP-1, MMP-3,  

MMP-7, MMP-9 and MMP-13 gene 

expression [33] 
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Table 1. Cont. 

Herbal/Plant-based extracts and medicines 

Nutraceuticals Clinical efficacy  Mechanisms of action 

Capsaicin 

Reduced pain and  

stiffness and increased joint 

function [34–36] 

Agonist for transient receptor potential 

vanilloid 1 (pain receptor); Prolonged 

exposure of capsaicin leads to  

desensitization of this pain pathway [37]  

Cat’s claw 
Reduced OA-associated  

pain [38,39] 

Inhibit lipopolysaccharide (LPS)-induced PGE2 

production and activation of TNF-α [38] 

Chicory root 
Improved pain and relieved 

joint stiffness [40] 

Inhibits production of COX-2, iNOS, TNF-α, 

and NF-κB [41,42] 

Diallyl sulphide  

(garlic extract) 
Not reported 

Inhibited IL-1β-induced expression of MMP-1, 

-3 and -13. Ameliorated OA in rabbit anterior 

cruciate ligament transaction mode and 

reduced MMP-1, -3, -13 [43]; Inhibited 

COX-2 expression induced by IL-1β [44] 

Duhuo Jisheng Tang 

Reduced pain and stiffness 

as well as improved 

physical function in OA 

patients [45] 

Not reported 

Harpogophytum 

procumbens (Devil’s 

claw) 

Alleviates pain in OA 

patients [46–48] 

Inhibited release of TNF-α, IL-1β, IL-6,  

and PGE2 [49] 

Phyllanthus emblica Not reported 

Inhibited hyaluronidase and type II 

collagenase activities in vitro and reduced 

GAG release in cartilage explants from OA 

patients [50]. 

Willow bark 
Reduced OA-related  

pain [51,52] 
Not reported 

Supplements 

Nutraceuticals Clinical efficacy  Mechanisms of action 

Aloe Vera 

Protects against 

gastrointestinal effects of 

NSAIDs [53] 

Not reported 

Avocado/soybean 

unsaponifiables 

Reduced pain in OA patients 

and reduced NSAID 

consumption [54,55] 

Reduced levels of iNOS and MMP-13 [56]. 

Suppressed TNF-α, IL-1β, COX-2, and iNOS 

in LPS-activated chondrocytes [57] 

Calcium Fructoborate Not reported Suppresses IL-1β, IL-6, iNOS in vivo [58] 

Collagen hydrolysates 
Alleviates OA-related  

pain [59,60]  

Stimulate regeneration of type II collagen and 

increases biosynthesis of proteoglycans [59]  

Edible Bird’s nest extract Not reported 

Reduced gene expression of MMP-1, MMP-3, 

IL-1, IL-6, IL-8, COX-2, PGE2, and iNOS 

and increased type II collagen, aggrecan and 

SOX-9 [61] 

Genistein Not reported 
Reduces IL-1β and COX-2 protein synthesis 

in LPS-induced human chondrocytes [62]. 
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Table 1. Cont. 

Herbal/Plant-based extracts and medicines 

Nutraceuticals Clinical efficacy  Mechanisms of action 

Green-Lipped  

Mussel extract 

Improved knee joint pain, 

stiffness and mobility [63] 

Inhibits synthesis of pro-inflammatory 

molecule Leukotriene B4 and production of 

PGE2 [64] 

Lactobacillus casei Not reported  

Decreased TNF-α, IL-6, NF-κB, COX-2, 

MMP-1, -3, -13 and increased IL-4 and  

IL-10 [65] 

Methylsulfonylmethane 

(MSM) 

Improved symptoms  

of pain and physical 

function [66] 

Scavenge hydroxyl free radicals [67]; sulfur 

content rectifies dietary deficiencies of sulfur 

to improve cartilage formation [68] 

Polyunsaturated fatty 

acids (PUFA) 

High levels of N-3 PUFA 

associated with less 

cartilage loss [69] 

N-3 PUFA abolished TNF-α, IL-1β, COX-2, 

MMP-3, -13, ADAMTS5 expression  

in vitro [70] and protected against cartilage 

degradation in OA prone animals [71] 

S-adenosylmethionine 

Reduced OA-related  

pain intensity from  

baseline [72–74]  

Increases proteoglycan synthesis [75] and 

chondrocyte proliferation [76] 

Vitamins 

Nutraceuticals Clinical efficacy  Mechanisms of action 

Niacinamide  

(B-complex vitamins) 

Improved joint  

mobility [77] 
Not reported 

Vitamin C  
Stimulates collagen and proteoglycan 

synthesis [78] 

Vitamin D 

No effect on pain severity 

or MRI-assessed 

quantitative cartilage  

loss [79]; Relieved  

OA-associated joint  

pain [80]  

Not reported 

Vitamin E 

Relieved OA-related pain 

and improved physical 

function [81,82] 

Not reported 

Not reported: based on Pubmed search on 9/15/2013. 

3. Pre-Clinical and Clinical Effects of Phytoflavonoids, Polyphenols, and Bioflavonoids 

Nutraceuticals on OA 

Recent studies suggest that nutraceutical compounds such as phytoflavonoids, polyphenols, and 

bioflavonoids, derived from green tea, pomegranate, ginger, turmeric and rose hips, have shown 

promising preliminary evidence for their chondroprotective effect in OA prevention and treatment 

(Table 2). 
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Table 2. The actions of select phytoflavonoids, polyphenols, and bioflavonoids nutraceuticals 

on arthritis. 

Nutraceutical Clinical effects Preclinical effects  

Green tea Not reported  Lowered arthritis incidence and index score 

in collagen-induced arthritis [83] 

 Decreased inflammatory mediators TNF-α,  

COX-2 [83] 

 Reduced serum levels of IL-17, and 

increased serum levels of IL-10 [84] 

Pomegranate Not reported  Reduced cartilage damage and proteoglycan 

loss in OA mice [85] 

Ginger  No difference between ginger- 

and placebo-treated groups in OA 

patients after 3 weeks [86] 

 Improved pain in OA patients 

after 6 weeks [87] 

Not reported 

Tumeric  Improvement in pain and 

mobility [88] 

Not reported 

Rosehip powder  Reduced OA-associated pain [89] Not reported 

3.1. Green Tea 

Green tea is one of the most commonly consumed beverages in the world and is a rich source of 

polyphenols including epigallocatechin 3-gallate (EGCG) [90]. EGCG has strong anti-oxidant activity, 

up to 25−100 times more potent than Vitamin C and E [91]. The efficacy of EGCG or green tea 

extracts in human arthritis has yet to be tested, but there is strong evidence in small animal studies for 

advancing green tea-based therapies toward clinical application. 

EGCG administered to collagen-induced arthritis mice, an inflammatory model of arthritis, via 

drinking water, lowered arthritis incidence and slowed progression of disease [83]. This disease-modifying 

effect was associated with a decrease in inflammatory mediators TNF-α, COX-2, and lower levels of 

total immunoglobulins (IgG) and type II collagen-specific IgG levels, indicating a reduced inflammatory 

immune response [83]. Daily administration of green tea extracts in drinking water slowed progression 

of arthritis in rat adjuvant-induced arthritis, inhibited serum levels of IL-17, and increased serum levels 

of IL-10 [92]. As cartilage destruction is a hallmark of both OA and RA, and inflammation also plays a 

role in OA, albeit to a lesser extent than in RA, green tea extracts may exert a good potential for OA 

prevention and treatment. 

3.2. Pomegranate 

Pomegranate fruit is used in traditional medicines to treat inflammation and pain in diseases 

including arthritis [90]. Pomegranates are considered to have strong anti-oxidant properties due to their 

high content of soluble polyphenols hydrolyzable tannin and punicalagin [93]. Pomegranate is also 

rich in anthocyanins, a polyphenolic compound that exhibits anti-oxidant and anti-inflammatory 

capabilities [94]. In the mono-iodoacetate OA mouse model, pomegranate juice administered by oral 
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gavage for two weeks significantly reduced cartilage damage and proteoglycan loss, especially in the 

groups receiving the higher doses [85]. This study provides some in vivo evidence that pomegranate 

juice may improve the joint pathology in OA.  

3.3. Ginger 

Ginger is a widely used condiment and has long been prescribed in China and India for conditions 

such as nausea, vomiting, headaches, and arthritis, due to its anti-inflammatory and circulatory 

stimulant effects [95,96]. Ginger is non-toxic and is generally recognized as safe by the United States 

Food and Drug Administration. As an alternative to NSAID therapy for arthritic conditions, ginger has 

shown moderately positive results [97]. A randomized, placebo-controlled, crossover study comparing 

ginger extracts and ibuprofen was performed and the study revealed significant improvement in 

symptoms for both groups before crossover. After the crossover, no difference was noted between the 

ginger- and placebo-treated groups [86]. A randomized, double-blind, placebo-controlled trial also 

studied the effects of ginger and galangal extracts, a spice that is closely related to ginger, in the treatment 

of knee OA. OA patients treated with ginger and galangal extracts showed greater improvement in 

pain compared to the placebo group [87].  

3.4. Tumeric 

Turmeric is a widely used spice and is generally regarded as safe [98]. The major component of 

turmeric is curcumin, which constitutes up to 90% of total curcuminoid content. Although curcumin 

has been demonstrated to exert potent anti-inflammatory effects in vitro, there is no clinical data 

available for the effect of curcumin in OA treatment [19]. However, OA patients treated with a 

formulation containing curcumin exhibited positive results in pain management and mobility 

compared to the placebo control [88].  

3.5. Rosehip Powder 

Rosehip powder is extracted from fruits of the rose plant, and has been used extensively in 

traditional medicine [99]. A meta-analysis of randomized controlled trials (RCTs) showed rosehip 

powder reduced pain and led to reduced use of analgesics in OA patients [89]. A longer-term clinical 

trial comparing different rosehip formulations in patients with knee OA is currently undergoing 

(Clinical trial NCT01430481). 

4. Nutraceuticals for Molecular Targeting of OA 

4.1. Molecules in Pathology of OA Initiation and Progression 

Chondrocytes, the sole cell population within the articular cartilage, are primarily responsible for 

the maintenance of the extracellular matrix [100]. In healthy adult cartilage, chondrocytes are normally 

quiescent. However, in OA, chondrocytes undergo phenotypic alterations, which include abnormal 

proliferation, cell death, senescence, and significant changes in gene expression, such as increased 
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expression of inflammatory cytokines, matrix proteins and proteolytic enzymes [4,101]. Together, 

these lead to a loss of homeostatic balance of the articular cartilage and osteoarthritis. 

In the early stages of OA, many inflammatory mediators are expressed in the cartilage and synovial 

tissue, which contribute to the progression of the disease [102–104]. Increased inflammation is the 

consequence of many factors, including mechanical overloading, joint injury, adipose tissue, and 

cartilage matrix fragments [105,106]. Interleukin (IL)-1β and tumor necrosis factor (TNF)-α are 

considered the most prominent pro-inflammatory cytokines involved in OA [104]. Elevated levels of 

both IL-1β and TNF-α are found in OA joint tissues, including the articular cartilage, subchondral 

bone, synovial fluid and synovium [107]. IL-1β and TNF-α alter the homeostatic balance of 

chondrocytes by suppressing anabolic activity, stimulating catabolic breakdown of the articular 

cartilage, and increasing production of inflammatory mediators and reactive oxygen species (ROS). 

These effects of IL-1β and TNF-α are mediated, at least in part, by members of the mitogen-activated 

protein kinases (MAPK), nuclear factor-kappa (NF-κ) B transcription factors, and certain members of 

the Wnt-β-catenin signaling pathways [108–110]. IL-1β and TNF-α suppress expression of major 

structural components in the articular cartilage, including type II collagen and proteoglycans [111–114]. 

IL-1β and TNF-α also increase expression of proteolytic enzymes which directly cleave the cartilage 

matrix, including matrix metalloproteinases (MMPs)-1, -3, -13, and ADAMTS (a disintegrinlike and 

metalloproteinase with thrombospondin type 1 motifs) [115–117]. Furthermore, IL-1β and TNF-α 

stimulate production of inflammatory mediators prostaglandin E2 (PGE2) and cyclooxygenase 2 

(COX-2), and ROS including nitric oxide (NO) and the superoxide anion [104,118].  

Since the above-mentioned pro-inflammatory cytokines, inflammatory mediators, and proteolytic 

enzymes play critical roles in OA initiation and progression, these molecules have been targeted for 

OA treatment. Treatments against IL-1, such as Anakinra, a modified form of native IL-1Ra, have 

demonstrated chondroprotection in an animal model of OA [119], but its efficacy in human OA has 

not been clearly demonstrated [120]. Clinical trials of anti-TNF therapies are limited, and with mixed 

results [121–123]. Inhibiting the enzymes which directly cleave the cartilage matrix with MMP 

inhibitors have also been pursued as pharmacologic treatments. The use of MMP inhibitors in clinical 

trials, however, have resulted in severe musculoskeletal side effects including joint stiffness, 

inflammation, and pain, possibly due to their lack of specificity. MMPs are required for physiologic 

function in addition to the roles they play in OA [6,124]. Current efforts are now aimed at inhibition of 

specific MMPs, such as MMP-13 [125]. However, targeting only one molecule fails to address the 

broad and multimodal nature of OA, and may not effectively arrest or slow OA progression.  

Recent studies suggest that ROS production induced by oxidative and other stresses may be a mediator 

of OA disease progression [126–128]. Elevated ROS production in conditions such as post-traumatic 

stress and aging may increase chondrocyte senescence and/or cell death [129,130]. Patients with knee 

OA exhibit higher levels of oxidative stress [131], and oxidative stress-induced damage [132]. 

Furthermore, levels of superoxide dismutase antioxidant enzymes are reduced in OA cartilage and joint 

fluid [133,134]. Boosting antioxidant defenses protects cartilage from traumatic impact-induced 

cartilage degradation and reduces OA severity in animal models of OA [135–137]. Upon further 

validation, these most recent progresses highly suggest that targeting altered response regulation 

against oxidative and other stresses should be a major criteria in developing effective  

nutraceutical-based products for OA prevention and treatment.  
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4.2. Molecular Targeting of OA by Nutraceuticals 

The molecular targets of OA can be categorized as inflammatory, oxidative stress, or catabolic. 

These targets provide a significant rational foundation for pursuing nutraceuticals with anti-inflammatory, 

anti-catabolic activity, and anti-stress (i.e., oxidative stress) properties for anti-OA nutraceutical drug 

selection and formulation. Nutraceuticals that have the potential to spontaneously target these aspects 

of OA may be the most druggable for molecular targeting of OA.  

While OA is a complex disease with an unclear etiology and multiple risk factors, recent studies 

suggest the following are critical for OA initiation and disease progression: over activated catabolic 

activity mediated primarily by pro-inflammatory cytokines (i.e., IL-1, TNF-α); deleterious stresses 

such as oxidative stress as well as the defense mechanisms against these stress factors (i.e., oxidative 

stress); proteolytic enzymes which directly degrade the cartilage matrix such as matrix 

metalloproteinases, MMPs and aggrecanses, ADAMTS. 

4.3. Anti-Inflammatory  

Pomegranate extracts exert anti-inflammatory actions by inhibiting the activity of NF-κB, COX-2 

and PGE2 [94,138]. Prodelphinidin—a condensed polymeric tannin that can be found in 

pomegranate—inhibited PGE2 synthesis by down-regulating COX-2 in human chondrocytes [139]. 

Ginger extract has been demonstrated to decrease the IL-1β and LPS-induced production of NO and 

PGE2 in OA cartilage [140]. Furthermore, ginger extract was effective in inhibiting the production of 

TNF-α, PGE2, and COX-2 expression in human synoviocytes by regulating NF-κB activation and 

degradation of its inhibitor IkB-α [141]. It has also been reported to decrease the IL-1β-induced 

expression of TNF-α and TNF-α-induced production of COX-2 in synoviocytes [142]. Resveratrol is a 

polyphenolic phytoalexin present in grapes, berries, and peanuts. Resveratrol suppresses  

NF-κB-dependent pro-inflammatory products, including PGE2 and COX-2 [143,144]. Resveratrol has 

also been shown to inhibit IL-1β-induced apoptosis by inhibiting caspase-3 and downregulating the  

NF-κB pathway in chondrocytes [145]. Epigallocatechin 3-gallate (EGCG), a bioactive polyphenol 

found in green tea, inhibits the production of inflammatory mediators including PGE2, COX-2, and 

NF-κB [146]. By inhibiting the NF-κB pathway, EGCG suppressed IL6, IL-8, and TNF-α in IL-1β 

stimulated human OA chondrocytes [147]. Curcumin inhibited IL-1β-induced NF-κB activation and 

translocation, resulting in reduced expression of NF-κB downstream pro-inflammatory gene  

COX-2 [90]. Curcumin also prevented production of NO, PGE2, IL-6, and IL-8 stimulated by  

IL-1β [96]. Rosehip preparations have anti-inflammatory properties, and have been shown to inhibit 

expression of iNOS and IL-1α, and IL-1β-induced IL-1α and IL-8 in chondrocytes. The combination 

of glucosamine and chondroitin sulfate suppressed gene expression of COX-2 and NF-κB induced by 

IL-1 in cartilage explants, leading to reduced production of NO and PGE2 [148]. One of the 

mechanisms through which glucosamine or chondroitin sulfate exerts anti-inflammation is by 

inhibiting the IL-1β induced NF-κB pathway, resulting in a reduction in the COX-2 synthesis [149].  
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4.4. Anti-Oxidative Stress  

Inflammatory cytokines (e.g., IL-1β and TNF-α) are known to stimulate chondrocytes and 

synoviocytes to produce high levels of oxygen free radicals [150]. Reactive oxygen species (ROS), 

which regulate many signaling pathways and pro-inflammatory cytokine gene activation, are important 

mediators in the pathogenesis of OA [151]. EGCG has been demonstrated to protect chondrocytes and 

other cell types from oxidative stress and ROS-mediated cytotoxicity [151–153]. EGCG  

pre-treatment of cells prevented H2O2-induced activation of MAPKs, suggesting EGCG has the 

potential to inhibit oxidative stress-mediated activation of inflammatory signaling pathways [154,155]. 

EGCG also increases innate antioxidant defenses, including expressions of catalase, superoxide 

dismutase, and glutathione peroxidase [155]. In addition, there is evidence that other nutraceuticals, 

such as ginger, may exert anti-oxidant effects [156]. The phenolic constituent of ginger, [6]-gingerol, 

inhibited LPS-induced iNOS expression and production of NO and other reactive nitrogen species in 

macrophages [157]. One of the components derived from pomegranate, anthocyanin, is a potent 

antioxidant, and has been reported to decrease lipid peroxidation and enhance activities of antioxidants 

catalase, superoxide dismutase, glutathione peroxidase and glutathione reductase in the liver [158,159].  

4.5. Anti-Catabolic/Proteolytic Enzymes 

Cartilage degradation, mainly caused by overactive catabolic activity primarily due to MMPs and 

ADAMTS, has been recognized as a major target for OA prevention and treatment. EGCG has been 

shown to significantly inhibit the expression and activities of proteolytic enzymes, including MMP-1 

and MMP-13, and ADAMTS-1, -4, and -5 in chondrocytes [160,161]. Catabolic activity in other joint 

tissues, including synoviocytes and tendon, can also be suppressed by EGCG. EGCG suppressed  

TNF-α-induced production of MMP-1 and MMP-3 in RA synoviocytes and IL-1β-induced MMP-1, -3 

and -13 expressions in human tendon fibroblasts [162]. Studies have also documented that EGCG 

increases anti-catabolic activity by inducing expression and activity of tissue inhibitors of MMPs 

(TIMP)-1 and -2 in vitro [163,164]. Curcumin exhibits an anti-catabolic effect by inhibiting MMP-3 

and MMP-9 [96,165]. Curcumin also suppressed the release of proteoglycans in equine cartilage 

explants stimulated with IL-1β [166]. In other joint tissues, curcumin inhibited the IL-1β-induced 

production of MMP-1, MMP-9, and MMP-13 in tenocytes [167].  

5. Conclusions 

Nutraceuticals have been demonstrated to effectively suppress over activated inflammation and 

catabolic activity, and oxidative stress-induced deleterious responses. The suppression of inflammation 

and catabolic activity, in particular, are important properties of drugs targeting OA.  

Current pre-clinical and clinical trial data are promising, and show that individual nutraceutical 

compounds exert beneficial effects on OA, such as relieving pain and improving function. Their 

effects on disease modification have not yet been clearly demonstrated, or are still under investigation. 

Based on the effectiveness and actions of these nutraceutical compounds, efficacy of using an 

individual compound to treat a complex and chronic disease with multiple risk factors such as OA, 

may be limited. Future nutraceutical-based approaches may require a combination of compounds, and 
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the selected compounds should: exert active effects on OA targets such as inflammation and 

catabolism, suppress oxidative stress and relieve chronic pain, as well as exerting complementary, 

additive, and/or synergistic anti-arthritic effects with other compounds within the formulation. These 

novel nutraceutical-based compound formulations which “shoot” many of the OA molecular targets 

(Figure 1) may serve as a therapeutic strategy for a new generation of nutraceuticals in OA prevention  

and treatment.  

Figure 1. Molecular OA targeting of select nutraceuticals. Research findings support the 

concept that nutraceuticals can be used in a complementary manner to “shoot” multiple OA 

molecular targets. 
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