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Altered protease and antiprotease balance
during a COPD exacerbation contributes to
mucus obstruction
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Abstract

Background: Proteases have been shown to degrade airway mucin proteins and to damage the epithelium impairing
mucociliary clearance. There are increased proteases in the COPD airway but changes in protease-antiprotease balance
and mucin degradation have not been investigated during the course of a COPD exacerbation. We hypothesized
that increased protease levels would lead to mucin degradation in acute COPD exacerbations.

Methods: We measured neutrophil elastase (NE) and alpha 1 protease inhibitor (A1-PI) levels using immunoblotting, and
conducted protease inhibitor studies, zymograms, elastin substrate assays and cigarette smoke condensate experiments
to evaluate the stability of the gel-forming mucins, MUC5AC and MUC5B, before and 5–6 weeks after an acute pulmonary
exacerbation of COPD (n = 9 subjects).

Results: Unexpectedly, mucin concentration and mucin stability were highest at the start of the exacerbation and
restored to baseline after 6 weeks. Consistent with these data, immunoblots and zymograms confirmed decreased NE
concentration and activity and increased A1-PI at the start of the exacerbation. After recovery there was an increase in
NE activity and a decrease in A1-PI levels. In vitro, protease inhibitor studies demonstrated that serine proteases
played a key role in mucin degradation. Mucin stability was further enhanced upon treating with cigarette smoke
condensate (CSC).

Conclusion: There appears to be rapid consumption of secreted proteases due to an increase in antiproteases, at
the start of a COPD exacerbation. This leads to increased mucin gel stability which may be important in trapping
and clearing infectious and inflammatory mediators, but this may also contribute acutely to mucus retention.

Keywords: COPD, Mucin, Proteases, Alpha-1-protease inhibitor, Neutrophil elastase, Cigarette smoke,
Hypersecretion
Introduction
Proteases play a major role in bacterial entrapment [5],
pathogen phagocytosis [16], mucin hypersecretion and
mucociliary clearance [9]. In COPD there is a deficiency
and decreased activity of anti-proteases [21, 30], contribut-
ing to emphysema [1] and mucus hypersecretion [4]. This
protease and anti-protease imbalance has been suggested
to result from neutrophil infiltration in the lung [3, 28].
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These neutrophils release proteases including neutrophil
elastase (NE), cathepsin-G (CG), and proteinase 3 (PR3).
Mucins are linearly linked core proteins encoded by

mucin (MUC) genes. The principal airway gel-forming
mucins are MUC5AC and MUC5B [24]. Several lines of
evidence show that mucus is hypersecreted in COPD [30].
Studies performed on surgically isolated lung tissues from
COPD patients have shown that mucus containing inflam-
matory exudate accumulates in small airways and is asso-
ciated with disease progression [11]. In biopsies from
COPD patients with severe lung disease, mucus occupies
about 15 % of the total luminal area of small airways;
whereas, in “healthy” smokers, it is limited to less than
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5 % of the luminal area [13]. The amount of small airway
mucus is strongly associated with mortality in patients
with COPD [12]. We have shown that increased secretion
of serine proteases in cystic fibrosis (CF) can degrade the
gel-forming mucins during the time of transport from per-
ipheral airways to central airways [9]. However the effect
of serine proteases on mucin in COPD subjects has not
been well characterized.
In this study, we investigated the role of proteases and

anti-proteases on COPD mucin stability and degradation
during the course of an infectious and inflammatory
exacerbation of COPD. As in subjects with CF, we hy-
pothesized that that there would be an acute increase
in proteases during exacerbation leading to mucin
degradation.

Methods
Subject details and sample collection
Nine subjects were included in the study, with a mean
age of 59.9 years. They had been hospitalized or evaluated
in the outpatient clinic of the Department of Pulmonary
Medicine, Philipps-University Marburg, because of an acute
pulmonary exacerbation of COPD defined by the Anthoni-
sen criteria of increased dyspnea and cough, increased spu-
tum volume and change in sputum color [2]. Subjects were
included if they had at least 2 of symptoms with an onset
within 7 days before the start of the study. We included
only subjects in GOLD group II or III (FEV1/VC < 70 %,
FEV1 30–80 %) [31]. Criteria for exclusion were signs of
bacterial infection with fever >38.5 °C, CRP-elevation >
30 mg/L or procalcitonin elevation > 5 μg/L, suspected or
known pneumonia with infiltrate on chest x-ray, Pseudo-
monas aeruginosa in sputum cultures, pre-admission anti-
biotic treatment, or suspected or known asthma. At the
first day of the reported pulmonary exacerbation symp-
toms, sputum was collected. All subjects were followed up
5–6 weeks after the onset of the exacerbation and another
sputum sample was collected (Table 1). At visit 1 the sub-
jects were grouped as “COPD with exacerbation” and after
5–6 weeks (visit 2) as “COPD without exacerbation”. All
subjects were treated with oral steroids (40 mg once daily)
for total of 10 days, and inhalation therapy with long-acting
muscarinic antagonists and short- and long-acting
beta2-agonists. Five of the 9 subjects were current
smokers and 4 were former smokers. Antibiotic treat-
ment was not necessary for any of the subjects and all
Table 1 Study summary

Time Procedures

Visit 1 day 1; week 1 (within 7 days
after start of exacerbation)

Sputum collection, pulmonary
function test, chest x-ray, blood
sample, physical examination

Visit 2 days 40–46, week 5–6 Sputum collection, pulmonary
function test, blood sample
of them recovered from the exacerbation within the ob-
served time. Clinical characteristics and demographics
of the COPD subjects are given in Table 2. Sputum collec-
tion was approved by the Philipps-University Marburg
Institutional Review Board.

Control mucus collection
As a control group we collected mucus coating the
endotracheal tubes (ETT) of subjects who had no lung
disease and required non-thoracic surgery under general
anesthesia. When the subject was extubated, the ETT
was removed from the airway and mucus was removed
by gently scraping the ETT [25, 26]. Collected ETT
mucus was placed in a small O-ring container to prevent
dehydration, labeled as to date of collection with no sub-
ject identifiers, and sent to Philipps-University Marburg
on dry ice. ETT mucus collection was approved by the
Virginia Commonwealth University Institutional Review
Board and signed consent, and assent when appropriate,
was obtained.

Protease inhibitors and antibodies
NE and cathepsin G were purchased from Merck Chemical,
Nottingham, UK. Serine protease inhibitors diisopropyl
fluorophosphates (DFP), phenylmethyl sulfonyl fluoride
(PMSF), and 1-chloro-3-tosylamido-7-amino-2-heptanone
HCl (TLCK), metalloprotease (EDTA and GM6001) and
cysteine proteases (leupeptin and E64) were purchased
from Sigma (Saint Louis, MO). Alpha-1 protease inhibitor
(A1-PI) was obtained as Prolastin® (Grifols Therapeutics
Inc. Frankfurt, Germany) and was used at a final concentra-
tion of 0.3 μg/mL. DFP (final concentration 2 mM); PMSF
(final concentration 2 mM); TLCK (final concentration
10 mM); EDTA (final concentration 100 mM); E64 (final
concentration 500 ng/mL) or Merck Chemical (Notting-
ham, UK): GM6001 (final concentration 40 μM) and leu-
peptin (final concentration 40 μM) were used. Polyclonal
anti-MUC5AC and anti-MUC5B antibodies were generated
as previously described [10]. The antibodies were character-
ized and specificity was ascertained by pre-absorption
studies using increasing concentrations of the antigenic
peptides [25]. Specificity of these antibodies was verified
using immunoblotting against MUC5AC and MUC5B
from whole cell lysates, secretions from normal human
tracheobronchial epithelial (NHBE) cells (passage 2)
(Clonetics Corp., La Jolla, CA, USA), and human mucus.
The blots were analyzed with antisera for MUC5AC and
MUC5B and the pre-immune sera of the same rabbit. We
found one well-defined band of high molecular weight with
the antisera. To increase the specificity of the antibodies
and reduce nonspecific binding, affinity purification of the
antipeptide antibody was performed from the whole serum
using the immobilized amino acid sequences of interest
(SulfoLink-Kit, Pierce). An internal control for mucin was



Table 2 Demographic data of the COPD patients included the study

subject age Pack
years

smoking status chest x-ray
(infiltrations?)

CRP in
mg/l

leucocytes in G/l
(normal: 4.3–10)

Procalcitonin
in μg/l

FEV1
(%)

VC
(%)

FEV1/
VC (%)

color of sputum

01 51 80 current smoker Visit 1 no <5 6.24 * 49 95 47 clear

Visit 2 <5 7.05 * 58 94 55 clear

02 61 80 former smoker Visit 1 no <5 8.28 0.22 63 95 66 clear/slightly yellow

Visit 2 14 8.14 0.17 67 95 70 clear

03 74 20 former smoker Visit 1 unkown 31 7.25 * 67 95 70 clear

Visit 2 18 6.64 * 81 95 75 clear

04 67 20 former smoker Visit 1 no 11 10.7 <0.1 48 89 53 clear/slightly yellow

Visit 2 * * * 42 98 43 clear

05 65 30 former smoker Visit 1 no 18 3.92 <0.1 68 98 69 clear

Visit 2 <5 5.21 <0.1 95 98 97 clear

06 52 50 current smoker Visit 1 no 11 13 * 32 93 34 clear

Visit 2 <5 9.15 * 74 98 75 clear

07 57 35 current smoker Visit 1 no <5 5.89 * 37 91 41 clear

Visit 2 * * * 58 90 64 clear

08 50 50 current smoker Visit 1 no 14 15.3 <0.1 36 93 39 clear

Visit 2 24 15.3 <0.1 51 92 55 clear

09 62 70 current smoker Visit 1 no 7 8.5 * 56 89 63 clear/slightly yellow

Visit 2 <5 6.15 * 67 89 75 clear

*Data not collected
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collected from a voluminous sputum sample from a single
patient undergoing lung transplantation for non-CF bron-
chiectasis [10]. Mucin signals obtained from COPD sputum
and normal controls were normalized to this internal
control, which was set to 100 %.

Agarose wet western blotting for MUC5AC and MUC5B
Sputum and internal control samples were diluted 1:10
with PBS and denatured using Laemmli buffer (125 mM
Tris pH 6.8; 4 % SDS; 20 % glycerol; 0.001 % bromophe-
nol blue, 20 mM DTT) and separated using 1 % agarose
gels (15 × 15 cm), prepared in running buffer (25 mM
Tris, 250 mM glycine, 0.1 % SDS). Electrophoresis was
performed in a horizontal gel apparatus at 60 V at room
temperature for the first 30 min, and then voltage was
set to 100 V for the rest of the time. To identify small
proteins that remained in the gel, the gel was stopped
when the dye front was 2/3 of the distance from the
wells. Proteins were transferred to nitrocellulose mem-
branes using vertical wet electroblotting apparatus, LKB
bromma at (300 mA) for 3 h at 4 °C. Membranes were
blocked with 10 % nonfat skimmed milk in PBS for 1 h
and subsequently incubated with primary antibodies
(1:100 MUC5AC and 1:100 MUC5B) for 18 h in 1 %
nonfat skimmed milk in PBS at 4 °C. Blots were washed
3 times in PBS for 10 min, and incubated with the sec-
ondary HRP-labeled goat-anti-rabbit antibody (1:1000)
(Jackson-Immuno) in 1 % nonfat skimmed milk in PBS
for 1 h. Blots were washed in PBS for 10 min 3 times
and developed using the Pico-Developer-Kit (Pierce).
Exposures were taken on CL-XPosure film (Pierce) at
equal exposure times. The films were scanned and band
intensities were determined by densitometry using NIH
Image software (http://rsbweb.nih.gov/nih-image/).

SDS PAGE western blotting for alpha-1-protease inhibitor
(A1-PI) NE
Sputum and internal control samples were diluted
(1:100 for A1-PI and 1:20 for NE) with PBS and homog-
enized using a syringe. As a positive control, human A1-PI
(Prolastin®) and a control subject sample known to contain
NE were used. Upon denaturation, the samples were sepa-
rated by SDS-PAGE (7.5 % for A1-PI and 10 % for HNE)
before blotting onto PVDF membranes. The membranes
were blocked with 5 % nonfat skimmed milk in TBST for
1 h at room temperature and incubated with primary anti-
bodies anti- A1-PI (Sigma Aldrich) HNE- (Abcam) over
night at 4 °C. Membranes were washed three times in
TBST for 15 min, and incubated with the HRP-labeled sec-
ondary antibodies dissolved in TBST containing 5 % milk,
for 1 h at room temperature. Membranes were developed
using ImmunoCruz Luminol agent (Santa Cruz). Exposures
were taken on CL-XPosure film (Pierce) at equal exposure
times. The film was scanned and band densities were deter-
mined by densitometry using NIH Image software (http://
rsbweb.nih.gov/nih-image/).
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Analyzing NE activity with specific substrates
To analyze free NE activity in the sputum we used the
substrate N-Methoxysucuccinyl -ALA-ALA-PRO -VAL
P-Nitroanilide (Sigma Aldrich, Saint Louis, MO). Ac-
cording to the manufacturer, the substrate is specifically
hydrolyzed by HNE and cannot be hydrolyzed by
cathepsin G. To get comparable results, we used a test
volume set at 1000 μL, consisting of 900 μL substrate
solution and 5 μL of patient sputum samples with added
buffer, adding the enzymatically active compound at last.
The test solution was thoroughly mixed and the analysis
was started immediately. As an internal control we used
triplets of each sample in dilution steps of 1:10, 1:20 and
1:40 in PBS. As an external control 3 μL of purified NE
(Calbiochem ®, product no. 324681) was used. The deg-
radation of the substrate was analyzed at a wavelength of
410 nm over 30 min in a Nicolet Evolution 100 UV–vis
Spectrophotometer. The results were documented via
VISIONlife™ software.

Analysis of protease activity using zymograms
NOVEX 4–16 % zymogram blue casein gels (Life Tech-
nologies) were used to detect NE enzymatic activity in
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Fig. 1 Sputum collection and mucin quantification from COPD subjects. Q
a Sputum was collected at the start of an exacerbation of COPD (COPD-ex
same subjects. Results were compared to mucin concentration in mucus fr
as mean density of individual samples related to the internal control (=100
(t-Test, p < 0.05); # = significant to “control” (Mann Whitney test, p < 0.05)
sputum samples. Mucin samples were homogenized using
a sterile Filtropur syringe filter (0.20 μm pore size). Equal
volumes of homogenized sputum samples were loaded on a
gel and separated using electrophoresis at 125 V for 2 h.
The gel was run in Tris/glycine SDS running buffer under
nondenaturing conditions. The separated proteins were
renatured using a buffer containing a non-ionic detergent
(Novex® Zymogram Renaturing Buffer). Gels were washed
twice for 15 min in PBS and equilibrated using a developing
buffer (Novex® Zymogram Developing Buffer) containing
divalent metal cations for 30 min as described in the manu-
facturer’s protocol. The gel was then incubated at 37 °C for
20 h in fresh developing buffer for enhanced digestion.
Enzymatic activity was visualized as a clear band against a
dark background of stained casein. ETT mucus from
healthy subjects was used as a positive control. The gels
were scanned using a Canon ScanLide 50 scanner and
activity was measured by quantification of digested area
using Image-J densitometry software.

Preparation of cigarette smoke condensate (CSC)
Cigarettes were smoked in a smoking chamber for 5 min
and smoke was suctioned using a vacuum pump into a
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Falcon tube containing 37 °C pre-warmed 10 mL PBS.
Care was taken to maintain constant temperature (37 °C)
and continuous stirring to allow the smoke to dissolve fully
in PBS. One cigarette in 10 mL PBS is referred to as
CSC10, which was considered to be 10 %.

Inhibition of NE-activity by CSC
Inhibition studies of NE were performed spectrophoto-
metrically using specific NE-substrate (Merck Chemicals)
as described in the manufacturer protocols (Elastin). Differ-
ent concentrations of CSC (CSC5, CSC10) were used to
inhibit pure NE (final concentration 0.33 μg/ml). Activity of
NE was measured at 410 nm.

Data analysis
All analyses were performed at least in triplicate. Results
are presented as mean values ± standard error. The
mucin concentration of the sputum samples was nor-
mally distributed within all groups (Skewness < ± 2). The
mucin concentration is shown as % to an internal con-
trol. To compare sputum samples from the same group
(COPD week 1 and week 5–6) we used the paired t-Test.
To compare sputum samples of the different groups we
used the Mann–Whitney U-Test. After post hoc correc-
tion for multiple comparisons, a probability of p < 0.05
A

0

50

100

%
H

N
E

co
nc

en
tra

tio
n

to
co

nt
r o

l

C W1 W5

HNE25 kDa

C W1 W5

004

W1 W5 W1

Protease 
activity

Sample number

C

Fig. 2 Altered NE and A1-PI in COPD sputum samples. a Representative we
the course of exacerbation. C = Control, W1 =week 1, W5 =week 5–6. To com
and compared to an internal control sputum sample, which was set to 100 %
007) C = control; W1 =week 1 and W5=week 5–6. To compare the results gr
an internal control sputum sample, which was set to 100. c Analysis of sp
COPD subjects with an acute exacerbation within the first week (COPD-e
week 5–6) n = 3
was considered significant. All analyses were performed by
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Descriptive statistics were used to summarize subject
demographics.

Results
Increase in mucins concentration before exacerbation
Sputa were collected at the onset of a COPD exacerbation
and 5–6 weeks later and compared with ETT mucus
obtained from healthy subjects. Mucin stability in samples
was analyzed in vitro after incubation at 37 °C for 24 h. In
comparison to ETT mucus, there was a 5-fold increase in
MUC5AC and 2-fold increase in MUC5B at the start of an
exacerbation. Five to 6 weeks later, MUC5AC was about
3-fold higher in comparison to ETT control mucus or
2-fold lower than at the start of the exacerbation. MUC5B
concentration decreased to ETT mucin levels at 5–6 weeks
(Fig 1a, b). Results obtained from immunoblot densitom-
etry showed about a 40 % degradation of sputa from COPD
patients at 5–6 weeks with almost no degradation seen at
the start of an exacerbation. These observations suggest
that there was dramatically (and unexpectedly) increased
antiprotease activity or decreased NE activity at the start of
the exacerbation, but by week 5, protease and antiprotease
activity returns to baseline.
B

0

50

100

150

200

250

%
of

pr
ol

as
t i n

C W1 W5

A1AT52 kDa

C W1 W5

008005

W5 W1 W5

100

MW (kDa)

70

55

40

35

25

stern blot analysis for NE from 3 COPD subjects (003, 005, 007) during
pare the results graphically western blots were analyzed by densitometry
. b Representative western blot for A1-PI from 3 COPD subjects (003, 005,
aphically western blots were analyzed by densitometry and compared to
utum protease activity by zymogram. Sputum was obtained from 3
x; week 1) and from the same subjects 5–6 weeks later (COPD-follow;



Chillappagari et al. Respiratory Research  (2015) 16:85 Page 6 of 9
A1-PI and free NE concentration in sputum
In order to understand the reasons for increased mucin
stability at the start of an exacerbation, we quantified
NE and A1-PI in sputum samples using an immunoblot
and found that the NE concentration in the sputum of
the COPD patients at the onset was 3.5 times lower than
at 5–6 weeks after the onset of the exacerbation (Fig 2a).
Additionally, we analyzed nonspecific protease activity in
sputa from 3 subjects with COPD at the start of an
exacerbation and compared it to sputa from the same
subjects 5–6 weeks later using zymograms (Fig. 2c).
Dornase alfa was added to the sputum to release prote-
ases trapped in DNA. The strongest signal for nonspe-
cific enzyme activity was detected only in the sputum
samples obtained 5–6 weeks after the onset. We found
that A1-PI concentration in the sputum of the COPD
patients at the beginning of the exacerbation was 3 times
higher when compared with sputum 5–6 weeks after the
onset of the exacerbation (Fig. 2b). Thus at the start of a
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Increase in A1-PI at the start of an exacerbation inhibits
mucin degradation
To verify the role of non-specific proteases in COPD
mucin degradation 5–6 weeks after the onset of an ex-
acerbation, we incubated the mucus with different protease
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with the protease inhibitors DFP, PMSF and TLCK inhib-
ited mucin degradation. However, incubation with the
metalloprotease inhibitors, EDTA and GM6001, and
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not inhibit the mucin degradation (Fig. 3a). We also
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after exacerbation, with and without A1-PI and inhib-
ited the degradation of MUC5AC to just 6 % (SEM ± 9)
and MUC5B to 11 % (SEM ± 3) of the native mucin
concentration (Fig. 3b).
Inaccessibility of NE decreases mucin degradation
Serial dilutions of mucus identified that a 1:60 to 1:100
dilution of mucus is most effective for measuring prote-
ase activity (Fig. 4a). We then incubated COPD sputum
from the start of an exacerbation at dilutions of 1:60 and
1:80 with synthetic proteases, NE 0.02 mg/mL, and ca-
thepsin G 100μU/μL and incubated at 37 °C for 6 h.
Both MUC5AC and MUC5B mucins were degraded by
NE and cathepsin G in a concentration dependent man-
ner (Fig. 4b).
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Cigarette smoke condensate (CSC) decreases mucin
degradation and inhibits protease activity
To analyze the role of CSC on mucin degradation,
COPD sputum was incubated with different CSC con-
centrations (5–40 %) for 0, 24 and 36 h. COPD sputa
without CSC, MUC5AC and MUC5B mucins were sig-
nificantly degraded after 24 and 36 h. A dose dependent
inhibition of mucin degradation was observed with
COPD sputum incubated with increasing concentrations
of CSC (Fig. 5a). To elucidate the role of CSC in inhibit-
ing mucin degradation, we incubated HNE (0.33 μg/mL)
with different concentrations (5–10 %) of CSC and ana-
lyzed the activity of NE using a HNE specific substrate
(5-methoxy-Ala-Ala-Pro-Val). To conclude, CSC directly
interfered with protease activity in a dose dependent
manner (Fig. 5b).
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Discussion
We had anticipated that with an acute exacerbation of
COPD, there would be increased inflammation and
increased proteases with subsequent degradation of
mucins, Thus we were surprised to discover that at the
start of a COPD exacerbation there was consistently de-
creased proteases, increased anti-proteases, and increased
mucin stability. A possible explanation for this is that
although we evaluated subjects and collected sputa at the
start of symptoms of an exacerbation, it is likely that the
inciting infection and inflammation had been present for
several days. These data might reflect the natural host im-
mune response to decrease the initially observed increased
protease activity. Although this is entirely speculative, it
would explain these paradoxical results.
One consequence of inhibiting mucin degradation

might be increased mucus obstruction, which is considered
a hallmark of a COPD exacerbation. It has been reported
that persons with COPD have increased mucus synthesis
and secretion, and decreased mucus clearance [19, 20, 22].
We have reported that in CF sputum, serine proteases
degrade mucins after secretion [9]. Bacterial or host
inflammatory cell proteases in CF sputum may further
contribute to mucin degradation [23]. Delayed mucin
degradation in COPD could well be caused by this
protease-anti protease imbalance. We report a 5-fold
increase in MUC5AC and a 2 fold increase in MUC5B
at the onset of symptoms and even 5–6 weeks later,
MUC5AC was 3 times greater in COPD sputa com-
pared to mucus from healthy controls (Fig. 1a, b).
COPD is an inflammatory disease of small airways with

increased neutrophil infiltration and NE [14, 30]. Studies
performed by other groups suggested that in mucoid
COPD sputum no NE was found (NE nM 0.0) [8, 27].
These observations are similar to our findings, where little
or no NE activity was observed in mucoid sputa of COPD
subjects at the onset of an exacerbation (Fig. 2a, c). In CF,
sputum NE is predominantly bound by DNA and this
inhibits proteolytic activity [17]. Much of the DNA in CF
sputum originates from neutrophil extracellular traps
(NETs). It is speculated that NE-NET formations are reser-
voirs of active proteases for a possible later release [6]. In
CF and COPD sputa the DNA concentration is higher
than in normal airway secretions, therefore this NE
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that is bound to DNA is not available for mucin deg-
radation [9, 10, 18]. A1-PI is increased during infection and
inflammation and its primary role is to inhibit NE. Consist-
ent with our results (Fig. 2b), during an acute exacerbation
of COPD, A1-PI is elevated in sputum [29], serum [7] and
in exhaled breath condensate [15]. We did not detect
increased NE concentrations or protease activity during an
acute COPD exacerbation, which is in agreement with
previous studies [8, 27, 32].
We also show that CSC can inhibit mucin degradation in

a dose dependent manner by inhibiting the activity of NE
(Fig. 5b). Thus tobacco smoke and increased DNA might
contribute to mucus retention in COPD.
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