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Objective: This study aimed to explore the value of a radiomic nomogram based on contrast-enhanced computed tomography 
(CECT) for differentiating benign and malignant solid-containing renal masses.
Materials and Methods: A total of 122 patients with pathologically confirmed benign (n=47) or malignant (n=75) solid-containing 
renal masses were enrolled in this study. Radiomic features were extracted from the arterial, venous and delayed phases and further 
analysed by dimensionality reduction and selection. Four mainstream machine learning algorithm training models, namely, support 
vector machine (SVM), k-nearest neighbour (kNN), light gradient boosting (LightGBM) and logistic regression (LR), were con-
structed to determine the best classifier model. Univariate and multivariate analyses were used to determine the best clinical 
characteristics for constructing a clinical model. The radiomic and clinical signatures were integrated to construct a combined radiomic 
nomogram model. Receiver operating characteristic (ROC) curves and the area under the curve (AUC) were used to evaluate the 
performance of the radiomic nomogram, radiomic signature, and clinical model.
Results: Thirteen radiomic features were selected for the development of the radiomic signature. Among the various radiomic models, 
the LR model demonstrated superior predictive efficiency and robustness, yielding an AUC of 0.952 in the training cohort and 0.887 in 
the test cohort. The AUC for the clinical model was 0.854 in the training cohort and 0.747 in the test cohort. Furthermore, the radiomic 
nomogram, which incorporated sex, age, alcohol consumption history, and the radiomic signature, exhibited excellent discriminative 
performance, yielding an AUC of 0.973 in the training cohort and 0.900 in the test cohort.
Conclusion: The radiomic nomogram based on CECT offers a promising and noninvasive approach for distinguishing malignant 
from benign solid renal masses. This tool can be used to guide treatment strategies effectively and can provide valuable insights for 
clinicians.
Keywords: computed tomography, renal neoplasm, radiomics, machine learning

Introduction
Renal masses (RMs) are biologically heterogenous and can be categorized as benign or malignant; based on their 
likelihood of aggressive malignancy, active surveillance and surgery are optional management methods.1 Renal cell 
carcinoma (RCC) is common, and a surgical approach is often necessary; however, benign tumours or those with low 
malignant potential may not require treatment.2–4 Preoperatively misclassified renal masses can lead to unnecessary 
surgery, and data suggest that there is a rapidly increasing trend of overtreatment.5 Refraining from unnecessary surgical 
interventions transcends mere considerations of cost-effectiveness from the perspective of patients.6
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Accurately differentiating malignant from benign RMs before surgery is important for follow-up management. Imaging 
tools such as ultrasound, computed tomography (CT), and magnetic resonance imaging (MRI) are widely used in the 
diagnosis of RMs.7–9 Although each modality has advantages and characteristics, distinguishing malignant from benign RMs 
via conventional imaging methods4 is still challenging. Nuclear medicine, such as single photon emission computed 
tomography/computed tomography (SPECT/CT) and positron emission tomography computed tomography (PET-CT) 
molecular imaging, showed great value in evaluating renal lesions, but there are still some drawbacks to a generalized 
use.10 Transmembrane protein mucin-1 (MUC1) might be utilized in clinical settings as a diagnostic marker for renal 
malignancy,11 however, the guidance of MUC1 for clinical is still deficient. In particular, solid-containing RMs such as 
oncocytomas and lipid-poor angiomyolipomas (AMLs) can be differentiated from RCC.4,6 Among the medical imaging 
modalities, contrast-enhanced CT (CECT) is currently the most commonly used method for evaluating RMs.4

Artificial intelligence (AI) has become a key technology for analysing multi-parametric data, with applications in 
medical imaging, including image acquisition, post-processing, and data mining and modelling.12 Radiomics is 
a promising method that involves the development of algorithms and AI and provides high-throughput extraction of 
quantitative features.13 AI holds great potential to enhance cancer imaging interpretation, inference of tumor genotype 
and biology from radiographic phenotypes, outcome prediction, and evaluation of disease and treatment effects on 
adjacent organs. AI may also automate initial image interpretation and transform clinical workflows in radiographic 
detection, management decisions, and post-intervention monitoring.14,15 Subsequent analysis of these features can 
facilitate clinical decisions, such as improving diagnostic, prognostic and predictive accuracy.13 Machine learning 
represents a subset of artificial intelligence that employs algorithms to iteratively learn from and make predictions on 
data, thereby identifying complex patterns that may elude human cognition.16 Researchers have employed deep learning 
or radiomics approaches to differentiate clear cell renal cell carcinoma (ccRCC) from other benign renal tumors.17–19 

Nevertheless, few studies have examined the use of different machine learning models to analyse CECT images and 
differentiate benign and malignant solids containing RMs.

Herein, different machine learning models were tested, and the best model was combined with a clinical model to 
explore its value in distinguishing benign and malignant solids containing RMs.

Methods
Patients
A total of 122 patients with renal neoplasms diagnosed between December 2019 and December 2022 were retro-
spectively enrolled in our study. The inclusion criteria for patients were as follows: (1) underwent abdominal three-phase 
CECT before surgery, including the arterial phase (20–25 s), venous phase (70–90 s) and delayed phase (180 s); (2) 
patients had no other treatment history, such as chemotherapy or radiotherapy, before CECT; (3) the postoperative 
pathology diagnosis and clinical data were complete; (4) solid components were found in the renal tumours. The 
exclusion criteria were as follows: (1) incomplete three-phase CECT; (2) patients without any solid components in 
renal tumours; (3) patients whose pathology and clinical data were incomplete. A total of 75 patients with malignant 
solid-containing RMs were included in the study, including: Renal clear cell carcinoma (n=58, 77.33%), urothelial 
carcinoma (n=3, 4.00%), chromophobe renal cell carcinoma (n=6, 8.00%), leiomyosarcoma (n=2, 2.67%), papillary renal 
cell carcinoma (n=3, 4.00%), multilocular cystic renal cell carcinoma (n=1, 1.33%), oncocytic papillary renal cell 
carcinoma (n=1, 1.33%), sarcomatous renal cell carcinoma (n=1, 1.33%). A total of 47 patients with benign solid- 
containing RMs were included in the study, including renal angiomyolipoma (n=40, 74.47%), renal oncocytoma (n=7, 
14.89%), perivascular epithelioid cell tumor (n=3, 6.38%), complex renal cyst (n=2, 4.26%). The patients were randomly 
allocated to a training cohort and a test cohort at a 7:3 ratio, and the flowchart of patient selection is shown in Figure 1.

This study was conducted in accordance with the declaration of Helsinki and approved by the Ethics Committee of 
the First People’s Hospital of Yunnan Province (No. KHLL2024-KY008). Due to the study’s methodology was retro-
spective analysis, which did not entail direct patient involvement, the Ethics Committee of the First People’s Hospital of 
Yunnan Province, China, sanctioned the study’s protocol and exempted the requirement for acquiring informed consent 
from participants. All patients’ data was anonymized or maintained with confidentiality.
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Image Data Acquisition and Clinical Data Collection
Siemens drive CT scanners were used, and the scanning parameters were as follows: tube voltage, 120 kV; tube current, 150–200 
mAs; matrix, 512 × 512; section thickness, 1.5 mm; and section interval, 3 mm. The scan area included at least the entire kidneys. 
After the nonenhanced CT scan, three-phase CECT was performed by injecting nonionic iodinated contrast medium (iohexol, 
350 mg/I) at a dose of 1.5 mL/kg and a speed of 3.5 mL/s. CECT images were acquired in the arterial phase (20–25 s), venous 
phase (70–90 s) and delayed phase (180 s). All DICOM format images were transferred to the Neusoft picture archiving and 
communication systems (PACSs). Clinical data, including sex, age, smoking history, drinking history, history of hypertension, 
history of diabetes and tumour shape, were collected simultaneously. Two radiologists with 8 and 6 years of experience in 
abdominal CECT were assessed, and the images were agreed upon. The largest lesion with confirmed pathology was selected for 
subsequent analysis if multiple lesions were present.

Radiomics Analysis of CECT Images
Tumour Segmentation and Feature Extraction
A typical workflow of our study is shown in Figure 2. All DICOM-formatted CT images were saved as a window of 
400 hU and a window of 40 hU. Two radiologists segmented the volume of interest (VOI) manually in the arterial phase, 
venous phase and delayed phase; they were all blinded to the patients’ histopathological results before segmentation. 3D 
Slicer software (version 5.3.0, https://www.slicer.org/) was used, and the tumours were delineated along margins layer-by 

Figure 1 Flowchart for patient selection in our study.
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-layer on cross-sectional CT images. VOIs were saved in NIFIT format for further analysis. Features were extracted by 
using PyRadiomics in Python (https://pyradiomics.readthedocs.io/en/2.1.2/).

In our study, we classified handcrafted features into three main categories: geometry, intensity, and texture, each 
targeting distinct aspects of tumor characteristics. Geometric features provide insights into the tumor’s shape and 
structure, revealing its morphological properties. Intensity features examine the brightness levels of voxels within the 
tumor, offering information on the distribution of intensities. Texture features, derived using methods such as the Gray 
Level Co-occurrence Matrix (GLCM), grey-level dependence matrix (GLDM), Gray Level Run Length Matrix 
(GLRLM), Gray Level Size Zone Matrix (GLSZM), and Neighboring Gray Tone Difference Matrix (NGTDM), capture 
the spatial patterns within the tumor. Together, these feature categories enable a comprehensive analysis of tumor 
characteristics, enhancing our understanding of its underlying properties. Finally, the following radiomic features were 
extracted: shape (n = 42), first order (n = 54), GLCM (n = 72), GLDM (n = 42), GLRLM (n = 48), GLSZM (n = 48), and 
NGTDM (n = 15). All radiomic features and their corresponding significance were derived in accordance with the 
guidelines of the Image Biomarkers Standardization Initiative (IBSI).20

In order to evaluate the reproducibility of radiomic feature extraction, both intra- and interobserver consistency were 
examined using intra- and interclass correlation coefficients (ICC). A set of 40 images was randomly selected for region 
of interest (ROI) segmentation, performed by two radiologists, each with more than six years of experience in abdominal 
image interpretation. The interobserver reliability was evaluated by comparing the results of radiologists A and B, while 
the interobserver consistency was assessed by having radiologist A repeat the segmentation process. Intra- and interclass 
correlation coefficient (ICC) values > 0.8 was regarded as demonstrating strong agreement in feature extraction.

Figure 2 Workflow of the key steps in our study.
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Radiomics Feature Selection Signature Model Development
Z-score normalization was used to reduce the bias of radiomic features. Features were selected by the following steps: (1) 
features with an ICC > 0.8 were identified; (2) Student’s t test or U-test was used to compare the extracted features of two 
groups, and features with P values < 0.05 were maintained for further analysis; and (3) Pearson’s correction coefficients 
were calculated to identify redundant and collinear features, and features with mutual correlation coefficients > 0.9 were 
excluded; and (4) the least absolute shrinkage and selection operator (LASSO) regression model with 10-fold cross- 
validation was used to select optimal features. LASSO regression is a powerful technique for variable selection that 
effectively reduces the dimensionality of the model by eliminating irrelevant predictors, while preserving model 
accuracy. This not only improves the interpretability of the model but also enhances its predictive performance.21

Radiomic models were built from the final selected features. Four mainstream machine learning algorithm training 
models were used to construct the best classifier model: support vector machine (SVM), k-nearest neighbour (kNN), light 
gradient boosting (LightGBM) and logistic regression (LR). SVM is a supervised machine learning model grounded in 
the Vapnik–Chervonenkis (VC) dimension, and it is proficient in making robust predictions.22 kNN is a classification 
method that relies on the proximity to nearby data points. The fundamental concept is rooted in statistical theory, where 
a point is classified by evaluating the weights of its neighbors and assigning it to the category with the highest weight.23 

LightGBM is a fast, scalable, and high-performance gradient boosting framework designed for distributed environments. 
It offers quick training, high accuracy, and excellent scalability, making it ideal for handling large-scale, high- 
dimensional datasets in tasks like regression, classification, and ranking.24 LR model predicts the likelihood of 
a binary dependent variable based on other variables.25 The area under the receiver operating characteristic (ROC) 
curve (AUC) was calculated to compare the diagnostic performance of the two methods. The sensitivity, specificity, 
accuracy, positive predictive value (PPV), and negative predictive value (NPV) were also calculated. The best radiomic 
model was then demonstrated.

Clinical and Combined Model Construction and Validation
Univariate analysis was used to determine the optimal clinical characteristics for differentiating between benign and 
malignant lesions in the training cohort. Parameters with a P value < 0.05 were chosen for the construction of clinical 
models. Odds ratios (ORs) with 95% confidence intervals (CIs) were calculated simultaneously for each characteristic. 
The best radiomic models provided by machine learning were used to construct a combined model with a clinical model. 
The diagnostic performance of the models was assessed with ROCs, including the area under the curve (AUC), accuracy, 
sensitivity, specificity, PPV, and NPV. Decision curve analysis (DCA) was used in the training and test cohorts to 
evaluate the models’ ability to predict tumour differentiation.

Statistical Analysis
All the statistical analyses were performed with Python software (version 3.4; http://www.python.org). Continuous 
variables are expressed as x± s and were compared by Student’s t test. Categorical variables are expressed as numbers 
(n%) and were compared by the chi-square test or Fisher’s exact test. A two-sided P value < 0.05 was considered to 
indicate statistical significance.

Results
Clinical Data
A total of 122 patients were enrolled in our study. The ratio of malignant renal masses in the training cohort and test 
cohort was not significantly different (50/85 vs 25/37, P=0.362). Patients were randomly divided into a training cohort 
(n=85) and a test cohort (n=37). A comparison of the clinical data between the two groups is shown in Table 1. All the 
clinical data were significantly different except for shape in the training cohort (P<0.05). Only age was significantly 
different in the test cohort (P<0.05). Univariate and multivariate analyses showed that sex, age and alcohol consumption 
were independent predictors of malignant masses (Table 2). These three features were further used to construct the 
clinical model.
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Radiomic and Signature Models and Performance
A total of 322 features were extracted from the VOI in three phases. Thirteen features with nonzero coefficients were 
retained after feature downscaling and selection (Figure 3). The ROC curves of the four mainstream machine learning 
algorithm training models (LR, SVM, KNN and LightGBM) in the training cohort and test cohort are shown in Table 3 
and Figure 4. The best radiomic model in the training cohort was SVM (AUC, 0.953 [95% CI, 0.8981–1.0000]; accuracy, 
0.906; sensitivity, 0.900; specificity, 0.914; PPV, 0.937; NPV, 0.865).

Among the various models evaluated, the logistic regression (LR) model exhibited superior performance across all 
cohorts, with an AUC of 0.952 (95% CI, 0.9072–0.9968) for the training cohort and 0.887 (95% CI, 0.7782–0.9951) for 
the test cohort (accuracy, 0.784; sensitivity, 0.720; specificity, 0.917; PPV, 0.947; NPV, 0.611). This consistent high 

Table 1 Clinical Characteristics of the Patients in the Training and Test Cohorts

Characteristics Training Cohort (n=85) Test Cohort (n=37) P value

Benign (n=35) Malignant (n=50) Benign (n=12) Malignant (n=25)

Age# 46.49±11.59 54.24±14.26 0.009* 45.42±13.24 54.36±11.86 0.046*

Gender <0.001* 0.162
Female 26(74.29) 17(34.00) 8(66.67) 9(36.00)

Male 9(25.71) 33(66.00) 4(33.33) 16(64.00)

Smoking 0.049* 0.769
No 30(85.71) 32(64.00) 9(75.00) 16(64.00)

Yes 5(14.29) 18(36.00) 3(25.00) 9(36.00)

Drinking 0.021* 0.249
No 33(94.29) 36(72.00) 12(100.00) 20(80.00)

Yes 2(5.71) 14(28.00) 0 5(20.00)

Hypertension <0.001* 1.000
No 32(91.43) 26(52.00) 9(75.00) 18(72.00)

Yes 3(8.57) 24(48.00) 3(25.00) 7(28.00)

Diabetes 0.047* 1.000
No 34(97.14) 40(80.00) 12(100.00) 25(100.00)

Yes 1(2.86) 10(20.00) 0 0

Shape 0.736 1.000
Regular 21(60.00) 33(66.00) 8(66.67) 16(64.00)

Irregular 14(40.00) 17(34.00) 4(33.33) 9(36.00)

Notes: Unless otherwise indicated, the data are presented as numbers (%). Student’s t test was used for continuous data. Categorical data were 
compared by using the χ2 test or Fisher’s exact test, as possible. #Data are means ± standard deviations. *Data are statistically significant.

Table 2 Univariate and Multivariate Logistic Regression Analyses for Selecting 
Clinical Features for Model Construction

Characteristics Univariate Analysis Multivariate Analysis

OR (95% CI) P value OR (95% CI) P value

Gender 1.429(1.246, 1.639) 0.000* 1.405(1.196, 1.65) 0.001*

Age 1.011(1.005, 1.016) 0.001* 1.009(1.004, 1.014) 0.006*

Smoking 1.246(1.062, 1.461) 0.024* 0.877(0.73, 1.055) 0.242
Drinking 1.419(1.177, 1.713) 0.002* 1.278(1.051, 1.553) 0.039*

Hypertension 1.377(1.182, 1.605) 0.001* 1.205(1.029, 1.411) 0.052

Diabetes 1.382(1.074, 1.779) 0.036* 1.095(0.862, 1.391) 0.529
Shape 0.963(0.826, 1.123) 0.687

Note: *Data are statistically significant. 
Abbreviations: OR, odds ratio; CI, confidence interval.
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performance across different data subsets underscores the robustness and efficacy of the LR model in differentiating 
between the two classes in our study. Furthermore, the LR model’s ability to maintain a relatively high AUC in the test 
cohort, compared to other models, suggests its strong potential for generalizing to unseen data. This makes it a promising 
tool for similar binary classification tasks in future research. Based on these considerations, we selected the LR model for 
further analysis to ensure model stability.

Combined Model Construction and Performance
In the analysis of fused models combining clinical and radiomic modalities, we observe that the radiomics nomogram 
model demonstrates better performance in the test cohort compared to other models. The diagnostic performance and 
ROC curves of the three models are shown in Table 3 and Figure 5. The AUC improved to 0.973 (95% CI, 
0.9388–1.0000) in the training cohort and 0.900 (95% CI, 0.7874–1.0000) in the test cohort (accuracy, 0.865; sensitivity, 
0.880; specificity, 0.833; PPV, 0.917; NPV, 0.769), which was better than that of the clinical or radiomic signature 
models. The DCA and calibration curves for both the training and test cohorts of the three models are shown in Figure 6. 

Figure 3 Feature selection with the least absolute shrinkage and selection operator (LASSO) regression model. (A) The penalization parameter λ was selected with 10-fold 
cross-validation as the minimum criterion in the LASSO model. The vertical lines indicate the optimal value of the LASSO tuning parameter (λ=0.0339). (B) LASSO 
coefficient profile of the radiomic features. The vertical dashed lines indicate 13 radiomic features with nonzero coefficients. (C) The 13 features contributing to radiomic 
features based on CECT images weighted by standardized regression according to the LASSO model were used to differentiate malignant from benign RMs.
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The analysis of these curves indicates that our Combined model offers a notable advantage in terms of net benefit derived 
from predicted probabilities.

Discussion
Solid-containing RMs, including partial fat-containing and completely solid RMs, were ultimately selected for this study. 
RMs with complete fat composition were not included in our study because they are easy to detect and distinguish via 
conventional imaging methods.26 However, some malignant tumours, such as liposarcoma, Wilms tumours and renal cell 
carcinoma (RCC), may contain fat, which leads to challenges in preoperative diagnosis.26 Additionally, AMLs with poor 
fat weight, epithelial cysts or haemorrhagic complications have different appearances, and their imaging manifestations 
may overlap with those of malignant renal tumours.27

Xu Wang9 developed a prediction model using thin-section multidetector CT to distinguish hypervascular ultrasmall 
renal cell carcinoma (≤2 cm) from renal angiomyolipoma with minimal fat in the early stage. However, their study did 
not encompass renal cell carcinoma (RCC) larger than 2 cm or other hypervascular renal tumours, such as renal 
oncocytoma (RO). Due to the shared origin of some benign and malignant renal tumours, they exhibit overlapping 
histologic and imaging characteristics.28 Consequently, distinguishing benign renal tumours from malignant renal 
tumours using conventional enhanced imaging techniques is still challenging.

Radiomics emphasizes that medical images are not only visual representations but also valuable sources of data that 
can be analysed and utilized for improving patient care and outcomes through a deeper understanding of the underlying 
data present.13 Xue-Ying Sun29 compared the performance of machine learning models with that of expert radiologists, 
and their results revealed that radiologic-radiomic machine learning could improve interreader concordance and 
performance, with a high sensitivity of 86.3% and 73.4% and a specificity of 83.3% and 91.7%, respectively, for 
differentiating clear cell RCC and chromophobe RCC from fat-poor AML and RO. C. Erdim30 conducted an analysis of 
texture patterns in CECT images using machine learning algorithms to differentiate malignant RMs from benign RMs. 
Their results showed a high accuracy of 90.5% in distinguishing them via the random forest (RF) algorithm. However, 
they also noted that two sets of patients (one for training and one for testing) are needed for further analysis.30 A recent 
study also showed that enhanced diagnostic accuracy and efficiency are achieved through the utilization of CT texture- 
based machine learning algorithms to differentiate between benign and malignant cystic RMs.31 A study by Cassandre 
Garnier32 also demonstrated the significant value of radiomics models based on CECT in predicting malignant and 
benign renal tumours. All these studies support the potential of machine learning algorithms to help radiologists to 
achieve more accurate diagnostic outcomes.

Table 3 Diagnostic Performance of Different Models for Differentiating Benign and Malignant Solids Containing 
Renal Masses in the Training and Test Cohorts

Model Group Accuracy AUC 95% CI Sensitivity Specificity PPV NPV

LR Training 0.929 0.952 0.9072–0.9968 0.980 0.857 0.907 0.968

Test 0.784 0.887 0.7782–0.9951 0.720 0.917 0.947 0.611

SVM Training 0.906 0.953 0.8981–1.0000 0.900 0.914 0.937 0.865
Test 0.811 0.830 0.6882–0.9718 0.880 0.667 0.846 0.727

KNN Training 0.847 0.941 0.8975–0.9837 0.800 0.914 0.93 0.762

Test 0.757 0.883 0.7819–0.9848 0.640 1 1 0.571
LightGBM Training 0.871 0.915 0.8487–0.9811 0.920 0.824 0.868 0.875

Test 0.838 0.872 0.7577–0.9856 0.880 0.75 0.88 0.75
Clinic model Training 0.824 0.854 0.7696–0.9378 0.800 0.857 0.889 0.75

Test 0.784 0.747 0.5660–0.9274 0.800 0.75 0.87 0.643

Radiomics Nomogram* Training 0.941 0.973 0.9388–1.0000 1.000 0.857 0.909 1.000
Test 0.865 0.900 0.7874–1.0000 0.880 0.833 0.917 0.769

Note: *Represents models were constructed using LR. 
Abbreviations: LR, logistic regression; SVM, support vector machine; KNN, k nearest neighbour; LightGBM, light gradient boosting; AUC, area 
under the curve; CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value.

https://doi.org/10.2147/JMDH.S502210                                                                                                                                                                                                                                                                                                                                                                                                                                             Journal of Multidisciplinary Healthcare 2025:18 428

Qian et al                                                                                                                                                                            

Powered by TCPDF (www.tcpdf.org)



Our study indicated that CECT-based machine learning models demonstrate potential value in differentiating benign and 
malignant solids containing RMs. In our study, we developed a radiomic signature comprising 13 radiomic features that exhibited 
satisfactory predictive ability for distinguishing malignant from benign RM. Among these factors, the original shape flatness 
(OSF) achieves high predictive performance and holds high variable importance in the radiomic model for distinguishing 
malignant from benign RM. This result is similar to the findings reported by Yong Huang,33 where OSF constituted the primary 
factor for the construction of machine learning models to develop personalized treatment decision models for patients with 
inoperable oesophageal cancer. The flatness of an object was quantified by OSF, where higher values indicate a greater degree of 
flatness.33 The grey-level size-zone matrix (GLSZM) and small area low grey-level emphasis (SALGLE) exhibited the most 
negative correlations (Figure 3) in the predictive model. Yusufaly34 also reported that the SALGLE score was strongly negatively 

Figure 4 The receiver operating characteristic (ROC) curves of the LR (A), SVM (B), KNN (C), and LightGBM (D) models in the training and test cohorts. The SVM model 
(B) achieved the highest AUC in the training cohort (0.953, 95% CI: 0.898–1.000), while the LR model (A) demonstrated the highest AUC in the test cohort (0.887, 95% CI: 
0.778–0.995).
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correlated with the outcome of treatment in patients with previously untreated locoregionally advanced cervical cancer according 
to a radiomic model. Other features, including the GLDM, NGTDM, GLRLM and first-order features, have also been used to 
construct radiomic models. Overall, the LR model achieved the best performance, with an AUC of 0.952 in the training cohort and 
0.887 in the test cohort (Table 3, Figure 4).

Univariate and multivariate analyses revealed that sex, age, and alcohol consumption were significant predictors for 
distinguishing between malignant and benign RMs (Table 2). These predictors have the potential to establish both a clinical 
model and a combined model for identification purposes. The combined model of the radiomic signature and clinical features 
achieved better discrimination. This finding is consistent with the findings of N. Nassiri,35 who constructed a CT-based radiomic 
model and achieved good results in distinguishing between malignant and benign RMs. However, they used only the random 
forest (RF) and REAL AdaBoost platforms for model construction, and the REAL AdaBoost model achieved better diagnostic 
performance (AUC of 0.83),35 which is different from our research findings where the LR model was optimal. The incorporation 
of clinical factors into radiomic analysis led to improved performance, with an AUC of 0.973 (95% CI, 0.9388–1.0000) in the 
training cohort and 0.900 (95% CI, 0.7874–1.0000) in the test cohort for the combined features (Table 3, Figure 5). The above 
results suggest that the combination of clinical models and machine learning models can effectively predict malignant and benign 
solids containing RMs.

Our study demonstrates that the nomogram constructed based on clinical and radiomic features has good applicability in 
predicting solid-containing RMs, aiding clinicians in making more accurate decisions in practice and providing personalized risk 
assessments for patients, thus avoiding unnecessary overtreatment. However, it is important to acknowledge that different studies 
may employ varying enhancement scanning protocols and image segmentation methods, which could potentially limit the clinical 
applicability of the study’s findings.36 Furthermore, there remains an opportunity for further integration of radiomic data with 

Figure 5 Receiver operating characteristic (ROC) curves for the clinical signature model, radiomic signature model, and radiomic nomogram model for predicting 
malignancy in the training cohort (A) and test cohort (B). The radiomics nomogram incorporating the clinical signature and radiomics signature (C).
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clinical, genetic, and metabolic data to gain a more comprehensive understanding of renal masses, and to leverage the 
complementary value of each modality in the diagnosis, prognosis, prediction of treatment response, and monitoring of renal 
masses.37

This study has several limitations that should be acknowledged. First, this was a retrospective, single-centre study, the 
relatively small sample size may introduce potential selection bias. Second, the random forest (RF) model was not used in our 
study because RF has poor generalizability when processing small sample cohorts and may overfit.38,39 Third, this study did not 
utilize non-CECT images for analysis, as many RMs cannot be distinguished from normal renal parenchyma on noncontrast 
scans; however, this does not disregard the value of noncontrast scans in the diagnosis of renal tumours. Additionally, we did not 
utilize a separate validation set. Instead, we employed ten-fold cross-validation to assess the model’s performance, ensuring that 
the model was tested on different subsets of the data, thereby reducing the risk of overfitting. The independent test set was used 
solely for the final performance evaluation to simulate the model’s ability to generalize to unseen data. Thus, an external validation 
is essential in future research to improve the reliability of the research findings. These factors may all serve to limit the 
generalizability of the results. It is necessary for future studies to be conducted with larger sample sizes and across multiple 
centers to enhance the reliability and determine the efficacy of machine learning models in distinguishing between malignant and 
benign solid-containing RMs.

Figure 6 Decision curve analysis (DCA) and calibration curves for three models for differentiating benign and malignant solids containing renal masses in the training (A and 
B) and test cohorts (C and D). The graphs show that the combined nomogram has the greatest net benefit for both datasets.
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Conclusion
In summary, this study introduces machine learning models that integrate both radiomic signatures and clinical factors, thereby 
offering a noninvasive and promising approach for the preoperative differentiation of malignant tissue from benign solid tissue 
containing RM. These enhancements may refine the accuracy of clinical decision-making and potentially avert the risks 
associated with unwarranted aggressive surgical treatments. However, it is crucial to highlight the imperative need for external 
validation and multicenter studies to substantially enhance the reliability of the research findings.
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