
TRANSLATIONAL RESEARCH
Corre

Schoo

Massa
8The fi

Recei

Novem

464
Association of Pathological Fibrosis With

Renal Survival Using Deep Neural Networks
Vijaya B. Kolachalama1,2,3,8, Priyamvada Singh4,8, Christopher Q. Lin5, Dan Mun6,

Mostafa E. Belghasem7, Joel M. Henderson7, Jean M. Francis4, David J. Salant4 and

Vipul C. Chitalia2,4

1Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston,

Massachusetts, USA; 2Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, USA;
3Hariri Institute for Computing and Computational Science & Engineering, Boston University, Boston, MA, USA; 4Renal

Section, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA; 5College of

Engineering, Boston University, Boston, Massachusetts, USA; 6College of Health & Rehabilitation Sciences: Sargent College,

Boston University, Boston, Massachusetts, USA; and 7Department of Pathology and Laboratory Medicine, Boston University

School of Medicine, Boston, Massachusetts, USA
Introduction: Chronic kidney damage is routinely assessed semiquantitatively by scoring the amount of

fibrosis and tubular atrophy in a renal biopsy sample. Although image digitization and morphometric

techniques can better quantify the extent of histologic damage, we need more widely applicable ways to

stratify kidney disease severity.

Methods: We leveraged a deep learning architecture to better associate patient-specific histologic images

with clinical phenotypes (training classes) including chronic kidney disease (CKD) stage, serum creatinine,

and nephrotic-range proteinuria at the time of biopsy, and 1-, 3-, and 5-year renal survival. Trichrome-

stained images processed from renal biopsy samples were collected on 171 patients treated at the Bos-

ton Medical Center from 2009 to 2012. Six convolutional neural network (CNN) models were trained using

these images as inputs and the training classes as outputs, respectively. For comparison, we also trained

separate classifiers using the pathologist-estimated fibrosis score (PEFS) as input and the training classes

as outputs, respectively.

Results: CNN models outperformed PEFS across the classification tasks. Specifically, the CNN model pre-

dicted the CKD stage more accurately than the PEFS model (k ¼ 0.519 vs. 0.051). For creatinine models, the

area under curve (AUC) was 0.912 (CNN) versus 0.840 (PEFS). For proteinuriamodels, AUCwas 0.867 (CNN)

versus 0.702 (PEFS). AUC values for the CNN models for 1-, 3-, and 5-year renal survival were 0.878, 0.875,

and 0.904, respectively, whereas the AUC values for PEFSmodel were 0.811, 0.800, and 0.786, respectively.

Conclusion: The study demonstrates a proof of principle that deep learning can be applied to routine renal

biopsy images.
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F
rom self-driving cars to face recognition, artificial
intelligence and machine learning (ML) algorithms

are being widely applied to enhance human endeavors.
Over the last few years, the scientific community has
witnessed a rapid increase in the adoption of cutting-
edge data analytic tools such as ML to address several
questions in clinical medicine.1–6 ML techniques give
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computers the ability to integrate discrete sets of data
in an agnostic manner to find hidden insights and to
generate a disease-specific fingerprint. These tools are
now being rapidly adopted in several specialties as un-
biased, self-learning approaches for pathologic assess-
ment. Such a framework can leverage hundreds to
thousands of images as inputs and allow for objective
quantification, followed by their association with
several clinical outcomes of interest. ML techniques
also have the potential to uncover several nonintuitive
features that may be clinically relevant and hypothesis
generating, as demonstrated in other disease scenarios.7

Although the trained eyes of expert pathologists are
able to gauge the severity of disease and to detect
Kidney International Reports (2018) 3, 464–475
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nuances of histopathology with remarkable accuracy,
such expertise is not available in all locations, especially
at a global level. Moreover, there is an urgent need to
standardize the quantification of pathological disease
severity, such that the efficacy of therapies established in
clinical trials can be applied to treat patientswith equally
severe disease in routine practice. The tools to do this are
at hand in the form of digitized images of pathology
sections prepared with routine stains and ML algo-
rithms. Such methods have already been tested and
shown to be reliable for the analysis ofmalignancies such
as cancer.7–17 The application of deep learning frame-
works, such as convolutional neural networks (CNN) for
object recognition tasks, is proving to be especially
valuable for classification of several diseases.8–29

To test the feasibility of applyingML technology to the
analysis of routinely obtained kidney biopsy samples, we
performed a proof-of-principle study on kidney biopsy
sample sections with various amounts of interstitial
fibrosis as revealedwithMasson trichrome stain (Figure 1).
Using an established CNN that relies on pixel density of
digitized images,30 we analyzed the ability of the ML
technique toquantify the severity ofdisease as determined
by several clinical laboratory measures and renal survival
(Supplementary Figure S1). CNN model performance was
then compared with that of the models generated, using
the amount of fibrosis reported by an expert neph-
ropathologist as the sole input and corresponding labo-
ratory measures and renal survival as the outputs.

METHODS

Data Collection

A retrospective analysis of renal biopsy findings was
performed on patients treated at the Boston Medical
a b c
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Figure 1. Sample interstitial fibrosis cases from the patient cohort. The
interstitial fibrosis observed within renal biopsy samples at different mag
was 5% to 10% for (a), 20% for (b), 30% for (c), 50% for (d), and 85% for
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Center (BMC) between January 2009 and December
2012. Reports from all follow-up visits between 2009
and 2016 for these patients were also reviewed. All
patient data were collected under protocol H-32289,
which was reviewed and approved by the Institutional
Review Board at Boston University Medical Campus.
More than 300 biopsy samples were processed at BMC,
of which 171 biopsy slides were available for subse-
quent imaging. These biopsy samples were obtained
from adult patients who had 1 or more native or renal
allograft biopsies, independent of the indication for the
biopsy procedure. The only criterion for inclusion was
the availability of pathological slides and accompa-
nying clinical data. Several demographic and clinical
features (including estimated glomerular filtration rate
[eGFR], baseline creatinine, nephrotic-range protein-
uria, etc.) were collected on these patients at the time of
biopsy (Table 1). The 4-parameter Chronic Kidney
Disease Epidemiology Collaboration (CKD-EPI) formula
was used to calculate eGFR. A detailed chart review of
the patients’ electronic medical record was used to es-
timate 1-, 3-, and 5-year renal survival (see
Supplementary Material for details of clinical data
collection). Renal survival was measured as the time
from the day of biopsy until the patient had 1 of the
following events: initiation of dialysis, renal transplant,
or all-cause mortality.

Imaging

Kidney biopsy samples were obtained in the form of in-
dividual trichrome-stained slides. Each selected core was
imaged at �40, �100, and �200 magnifications using a
Nikon Eclipse TE2000 microscope (Melville, NY; http://
www.bumc.bu.edu/busm/research/cores/). For �40
d e

t 3           Patient 4 Patient 5

trichrome-stained images demonstrate the variability and extent of
nifications. The in-house nephropathologist�derived fibrosis score
(e).
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Table 1. Characteristics of study populationa

Characteristic Value Units

Number of patients 171 —

Age, median (range) 52 (19�86) yr

% Male 59.6 %

Number of patients per race/ethnicity
(white, black, Hispanic, other)

46, 79, 24, 22 —

BMI, median (range) 28.94 (15 �56.2) kg/m2

Native kidney biopsy samples 110

Creatinine, median (range) 2.31 (0.54�13.29) mg/dl

eGFR, median (range) 30 (5�163) ml/min per 1.73 m2

Proteinuria, median (range) 1.79 (0.03�20.5) g/g

Interstitial fibrosis, median (range) 30 (0�90) %

% Patients with 1-yr renal survival 79.1 %

% Patients with 3-yr renal survival 58.9 %

% Patients with 5-yr renal survival 39.3 %

BMI, body mass index; eGFR, estimated glomerular filtration rate.
aA team of nephrologists performed a detailed chart review to extract demographic, bi-
opsy, and other clinical data from patients who underwent treatment for chronic kidney
disease at the Boston Medical Center between 2009 and 2012. The task also included
detailed chart review of follow-up reports between 2009 and 2016 for these patients.
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magnifications, images were generated with a special
consideration to cover the entirety of the sample. This
usually resulted in a minimum of 3 images and a
maximum of 14 images, with the majority of the samples
requiring 6 images to fully capture the full length of the
core. For�100 and�200 magnifications, about 5 images
per magnification were taken sequentially from 1 end of
the sample to the other, with almost no overlapping re-
gions between images. All of the images were manually
focused using the NIS-Elements AR software (Nikon,
Tokyo, Japan) that was installed on the computer con-
nected to the microscope.

Model Training

We used Google’s Inception v3 architecture pretrained
on millions of images with 1000 object classes by
incorporating minor changes to fine-tune the frame-
work and to associate trichrome image features with
the clinical phenotypes29,30 (Figure 2a). Specifically, we
removed the final classification layer from the network
and retrained it with our dataset using the training
classes defined based on the problem of interest (i.e.,
CKD stage, serum creatinine, and nephrotic-range
proteinuria at the time of biopsy, and 1-, 3-, and
5-year renal survival). We then performed fine-tuning
of the parameters at all layers. During training, we
resized each image to 299 � 299 pixels to make it
compatible with the original dimensions of the Incep-
tion v3 network architecture and leveraged the image
features learned by the ImageNet pretrained network.30

This procedure, known as transfer learning, is optimal,
given the amount of data available.

Our deep neural network was trained using back-
propagation.31 Using the framework of transfer
learning, we first trained only the top layers that were
466
randomly initialized by freezing all the convolutional
layers. We then trained the model using our data for
several epochs with the early stopping criteria that
monitored the validation loss. We used “rmsprop”
with a decay of 0.9, momentum of 0.9, and epsilon of
0.1, along with the use of L1, L2 hybrid regularizers
(0.01, 0.01). After the top layers were trained, we
performed fine-tuning of the convolutional layers by
freezing the bottom (N) layers and training the
remaining top layers. Sensitivity analysis was
performed to identify the optimal layer (N) for each
problem under consideration (Supplementary
Figure S2a and b). We then recompiled the
model for the above modifications to take into effect.
For this task, we used stochastic gradient descent
with a learning rate of 0.001 with momentum of 0.9,
and L1 and L2 regularizers (0.01, 0.01). We finally
trained the model again by fine-tuning the top blocks
alongside the top dense layers. We used Google’s
TensorFlow (https://www.tensorflow.org) back-end to
train, validate, and test our network.

During training, imageswere augmented by factors of
10 or 100, depending on the problem of interest. Each
image was rotated randomly between 0� and 180�,
randomly shifted in the horizontal and vertical di-
rections, shifted the channels, sheared, and zoomed, all
by a scale of 0.1. Images were also flipped vertically and
horizontally, with a probability of 0.5. All these aspects
are part of a well-known strategy called data augmen-
tation.32–37

The first modeling task was a multilabel classifica-
tion problem in which the resized trichrome images
were used as the input and the eGFR-based CKD stage
(stages 1�5) defined using the Kidney Disease Out-
comes Quality Initiative (KDOQI) guidelines at the
time of biopsy was used as the output (Figure 2b). The
rest of the tasks were binary classification problems in
which the resized trichrome images remained as the
input, and binarized values of baseline creatinine
>1.3 mg/dl for men and >1.1 mg/dl for women)
and nephrotic-range proteinuria (>3.5 g/d), as well as
1-, 3-, and 5-year renal survival values served as
outputs, respectively (Figure 2b).

Training and testing of all the models were per-
formed on a 14-core 2.4 GHz Intel Xeon E5-2680v4
processor with Broadwell CPU architecture and an
NVIDIA Tesla P100 GPU card with 12 GB of memory
that is located on the Boston University’s Shared
Computing Cluster (https://www.bu.edu/tech/support/
research/computing-resources/scc/).

Performance Metrics

For the binary classification problems (gender-
specific high/low creatinine, presence or absence of
Kidney International Reports (2018) 3, 464–475
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Figure 2. Deep neural network model. (a) Our classification technique is based on using a transfer learning approach on Google Inception V3
convolutional neural network (CNN) architecture pretrained on the ImageNet dataset (1.28 million images over 1000 generic object classes) and
fine-tuned on our dataset (see Methods). Inception v3 CNN architecture reprinted with permission from the Google blog “Train Your Own Image
Classifier With Inception in TensorFlow” (https://research.googleblog.com/2016/03/train-your-own-image-classifier-with.html). (b) Using the
dataset containing trichrome-stained images from the patients as inputs, several models were constructed with different output classes
(chronic kidney disease stage based on estimated glomerular filtration rate [eGFR], binarized serum creatinine and proteinuria, as well as 1-, 3-,
and 5-year renal survival). (c) Visualization of filters generated during training. Only 144 of the 256 filters used at the first pooling layer are
shown.
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nephrotic-range proteinuria, and 1-, 3- and 5-year renal
survival), the performance of the deep neural network
was computed using the c-statistic or area under curve
(AUC) computed on the receiver operating characteristic
(ROC) curve. We also computed F1 score as a measure of
model accuracy that considers both the precision and
recall of a test. It is defined as follows:

F1 ¼ 2 � TP=ð2 � TPþ FPþ FNÞ: (Equation 1)

Here, TP denotes true-positive values, and FP and
FN denote false-positive and false-negative cases,
respectively (see Supplementary data for more details).

We also computed Matthews correlation coefficient
(MCC),38 which is a balanced measure of quality for
Kidney International Reports (2018) 3, 464–475
dataset classes of different sizes of a binary classifier
and defined as follows:

MCC ¼ ½ðTP � TNÞ � ðFP � FNÞ�=½ðTPþ FPÞ

�ðTPþ FNÞ � ðTNþ FPÞ � ðTNþ FNÞ�0:5:
(Equation 2)

Here, TN denotes true negative values. For the
multilabel classification problem (i.e., prediction of eGFR-
based CKD stage), model accuracy and Cohen’s k score
were computed.39–41 The k statistic measures interrater
agreement for categorical items.Note that accuracy of 1 is a
perfect score, and that a k score of 1 indicates perfect
agreement between the true and predicted labels.
467
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RESULTS

Patient Population

Since this was a retrospective study, we had the
advantage of carefully curating all the digital images as
well as extracting corresponding baseline characteris-
tics and clinical phenotypes for each patient. The
baseline characteristics are representative of a popula-
tion of patients attended to at a nephrology service at a
teaching hospital (Table 1). About 60% patients were
male, and about 46% of the overall population was
African American. The majority of patients had hy-
pertension (w84%) and cardiovascular disease
(w75%), and about 43% had diabetes. About 64% of
the biopsies were from native kidneys, and the
remainder were from transplanted kidneys. About
82% of patients had CKD stage 3 to 5 based on the
eGFR using the CKD-EPI formula; 6% had stage 2 CKD,
and the rest had stage 1 CKD. About 35% of patients
had nephrotic-range proteinuria (>3.5 g/d).

Imaging

Light microscopy images of Masson trichrome�stained
sections were captured at 3 different magnifications
(�40, �100, and �200) and processed in NIS-Elements
AR software (Nikon) (Figure 1). In total, we processed
kidney biopsy from 171 patients, which resulted in
2255 unique images that were saved in 16-bit TIFF
format. These images were then converted to 8-bit
red�green�blue (RGB) color images in TIFF format,
resized, and subsequently used for training the deep
neural network (Figure 2).

Performance Metrics

We developed 6 independent CNN models to better
associate information derived from the trichrome im-
ages with the clinical phenotypes (CKD stage based on
eGFR, creatinine, and nephrotic-range proteinuria, all
at the time of biopsy) and renal survival (Figure 2b).
For each classification task, we also developed a model
to associate pathologist-derived fibrosis score (PEFS)
with the output class of interest that served as the
baseline for comparison.

For each task, a detailed set of sensitivity analysis
was performed, including the layer selection for fine-
tuning as well as the impact of batch size on model
performance. The CNN model with the best cross-
validated performance was selected. For the eGFR
model, model accuracy and k values were computed.42

For the binary classification models, area under the
curve (AUC or c-statistic), F1 score (Equation 1 in the
Methods), and Matthews correlation coefficient (MCC)
(Equation 2 in the Methods) were computed
(Supplementary Figure S3). Note that the F1 score is a
widely used metric in the ML community, as it
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considers both the precision and the recall of a test,
and thus it can be viewed as a weighted average of
precision and recall. However, the F1 score does not
take the true negatives into account, and therefore
composite metrics such as MCC can be considered as
more robust measures of performance. In essence, MCC
is a correlation coefficient between the observed and
predicted binary classifications and a balanced measure
that can be used even if the classes are of different
sizes.38

Nephropathologist Model Based on Fibrosis

Score

Our first goal was to develop baseline models by which
to compare the performance of the CNN models.
Because PEFS was the input, a linear discriminant
classifier was used to associate this score with the
respective output class labels (CKD stage, serum
creatinine, etc.). Model results indicated that the per-
formance of the pathologist model was remarkably
good, considering that only a single scalar value
derived from detailed visual assessment by the neph-
ropathologist was used as the input feature
(Figures 3–5). This result underscores the notion that
fibrosis score as such is an important predictor of
clinical phenotypes including renal survival.

Also, choosing a different learning algorithm for the
classification task of associating PEFS with a clinical
phenotype did not alter our overall inferences related
to the comparison with the CNN model performance.
We used 3 different algorithms—linear discriminant
analysis, Naïve Bayes, and support vector machine
classifiers—to build several classifiers with PEFS as the
input and different clinical phenotypes (serum creati-
nine and proteinuria at the time of biopsy as well as 1-,
3-, and 5-year renal survival) as the outputs, respec-
tively. Model training, followed by validation on test
data that had not been used for training, resulted
in similar performances of the binary classifier
(Supplementary Figure S4).

CNN Model for Prediction of Clinical

Phenotypes at the Time of Biopsy

Our next task was to evaluate the predictive capability
of the CNN model. The CNN models developed using
the transfer learning approach outperformed the
models derived using PEFS on all the classification
tasks. Three separate CNN models were trained to
associate the images with the stage of kidney disease at
the time that the biopsy procedure was performed. The
first model was related to predicting CKD stage based
on eGFR at the time of biopsy, and our deep
learning model resulted in a superior performance
(k ¼ 0.519 [CNN model] vs. k ¼ 0.051 [pathologist])
Kidney International Reports (2018) 3, 464–475
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Figure 3. Predictive model of estimated glomerular filtration rate (eGFR) at the time of biopsy. (a) Distribution of eGFR values across the patient
cohort. The histogram frequency corresponds to the number of images. (b) A multilabel linear discriminant classifier was trained on the data
with pathologist-derived fibrosis as the input and eGFR-based chronic kidney disease (CKD) stage (stages 1�5) at the time of biopsy as the
output. Image data were randomly split such that 70% of the data (n ¼ 1512) were reserved for model training and the remaining for testing (n ¼
648). “True label” denotes the CKD stage derived from calculated eGFR values at the time of biopsy, whereas “Predicted label” indicates the
model assessment of the CKD stage. (c) Fine-tuned convolutional neural network (CNN) model was used to predict on test image data (n ¼ 677)
not used for training. Performances of the pathologist (b) and the CNN (c) models are shown in the form of confusion matrices. (d) A k score
was computed by comparing model-derived output values with the clinically reported values of eGFR. The CNN model accuracy and k score
indicate the superior performance of the CNN model in comparison to the pathologist model.
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(Figure 3b�d). The CNN architecture resulted in su-
perior performance even for models constructed using
images processed at only a single magnification. For
example, we trained a separate CNN model using im-
ages taken at �100 magnification and predicted on test
data of �100 images not used for training. For com-
parison purposes, we extracted PEFS from the clinical
biopsy reports for these images, and constructed a
classifier using linear discriminant analysis. Even for
this case, the CNN model outperformed the model
derived using PEFS (Supplementary Figure S5).

CNN models used for the binary classification tasks
of predicting clinical phenotypes such as gender-
specific high/low value of creatinine as well as
nephrotic-range proteinuria also outperformed the
performance of the models constructed using PEFS.
Specifically, for the creatinine CNN model, the c-sta-
tistic (or AUC) was 0.912 versus an AUC of 0.840 for
the model derived using PEFS (Figure 4b). The supe-
riority of the CNN model is exemplified with the help
of other metrics including F1 score (0.918 [pathologist)]
and 0.953 [model]), and MCC value of 0.627 for the
CNN model (Figure 4c). Note that MCC computation for
the case of the pathologist model did not result in a
numeric value because both the false-positive and true-
negative values were 0 (Equation 2). Similarly, the
CNN model predicted the presence of nephrotic-range
proteinuria (AUC 0.867) more accurately than the
model derived using PEFS (AUC 0.702) (Figure 4e).
Other metrics that were computed for this case also
showed the superiority of the CNN model (F1 score:
0.446 [pathologist] vs. 0.720 [CNN model]; MCC: 0.290
[pathologist] vs. 0.573 [CNN model]) (Figure 4f).
Although we recognize that one does not need a kid-
ney biopsy to determine the stage of CKD, serum
Kidney International Reports (2018) 3, 464–475
creatinine level, or presence of nephrotic-range pro-
teinuria, this exercise allowed us to test the CNN
model’s predictive ability against hard numeric (or
categorical) values and to proceed with the task of
testing its prognostic value.

Prognostic Value of the CNN Model

One of the most interesting aspects of leveraging the
CNN model architecture was to evaluate its ability to
train the biopsy images for prognostic purposes. Spe-
cifically, we trained independent CNN models for 3
binary classification tasks focused on predicting 1-, 3-,
and 5-year renal survival, respectively. All patients
who underwent a kidney biopsy and were followed up
respectively for 1, 3, and 5 years after the biopsy were
included in the study. Specifically, kidney biopsy data
as well as 1-year renal survival information were
available on 158 patients (2050 images), followed by
biopsy data and 3-year survival available on 146 pa-
tients (1900 images), and finally biopsy data and 5-year
survival information available on 117 patients (1517
images). All 3 models resulted in better performance
than the respective models developed using the PEFS
alone. Specifically, the AUC values for the CNN model
for 1-, 3-, and 5-year renal survival were 0.878, 0.875,
and 0.904, respectively (Figure 5a�c), whereas the AUC
values of the model developed using PEFS for 1-, 3-,
and 5-year renal survival were 0.811, 0.800, and 0.786,
respectively (Figure 5a�c). Similarly, other metrics
such as F1 score and MCC computed for these models
also confirmed the superiority of the CNN model over
the classification model generated using PEFS
(Figure 5d�f). Thus, the CNN architecture accurately
reflects the stage of kidney disease as well as renal
survival.
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Figure 4. Predictive models of creatinine and nephrotic-range proteinuria at the time of biopsy. (a) Distribution of creatinine values across the
patient cohort. The histogram frequency corresponds to the number of images. Color to a set of bars within the histogram was assigned based
on the Kidney Disease Outcomes Quality Initiative (KDOQI) guideline�driven cutoff values for high and low creatinine. (b) A binary linear
discriminant (BLD) classifier was trained using 70% of the image data (n ¼ 1545), with pathologist-derived fibrosis value as the input and
baseline creatinine value at the time of biopsy as the output. Model predictions were performed on the remaining 30% of the data (n ¼ 662), and
a receiver operating characteristic (ROC) curve was generated. (c) Both F1 score and Matthews correlation coefficient (MCC) computed using
models’ performances on test data indicate superior performance of the convolutional neural network (CNN) model. (d) Distribution of pro-
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value for nephrotic-range proteinuria (g/d). (e) A similar BLD classifier was trained using 70% of the image data (n ¼ 1512), with the pathologist-
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30% of the data (n ¼ 648), and an ROC curve was generated. (f) Both the F1 score and the MCC computed using models’ performances on test
data indicate superior performance of the CNN model in comparison to the pathologist model.
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DISCUSSION

Renal biopsy is an invasive and yet an invaluable
procedure for the diagnosis, prognosis, and treatment
of patients with kidney disease.43 Detailed histologic
processing of biopsy samples yields important patho-
logic information, and digitization of these specimens
lends itself to the possibility of using computer-based
technologies for better quantification. In this study,
we chose to apply ML technology to the analysis of
interstitial fibrosis, a common manifestation of a wide
variety of kidney diseases and a prognostic indicator of
chronic kidney disease progression in humans.44–47 An
important strength of the study is that the ML tech-
nology was applied to trichrome-stained histologic
470
images of routine kidney biopsy samples without any
special processing or manipulation other than digital
scanning, which allowed us to directly compare the
results of the ML analysis with those derived from the
clinical pathological report on the same specimens.
Although our results demonstrating the utility of ML
are limited to the analysis of interstitial fibrosis, the
developed ML framework can be extended to associate
other complex renal pathologies with several clinical
phenotypes.

Deep learning algorithms such as CNN, powered by
advances in hardware as well as software and well-
curated datasets, have recently been shown to exceed
human performance in visual object recognition
tasks.31 Although there is an increasing focus on
Kidney International Reports (2018) 3, 464–475
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Figure 5. Predictive models of 1-, 3-, and 5-year renal survival. Three separate binary linear discriminant classifiers were trained using 70% of
the image data, with pathologist-derived fibrosis value as the input and 1-, 3-, and 5-year renal survival values computed from the clinical
reports as the outputs, respectively. The convolutional neural network (CNN) framework was also used to train separate models with the 3
outputs. Predictions of the models were performed on the remaining 30% of the data, denoted as “n” for each case. Receiver operating
characteristic curves comparing the pathologist model with the CNN model were generated for each case ([a] 1-year, [b] 3-year, and [c] 5-year
renal survival) respectively. F1 score and Matthews correlation coefficient (MCC) values computed for each case ([d] 1-year, [e] 3-year, and [f]
5-year renal survival) on the test data also indicate superior performance of the CNN model.
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developing these approaches using several modalities
of data, such as audio, text, and video, our work
focused specifically on image-based classification. The
CNN architecture has been shown to be optimal for
these tasks, whereas other deep learning methods can
be used for applications above and beyond visual ob-
ject recognition.31 Moreover, we are witnessing an
increasing interest in image-based classification of a
clinical phenotype using deep learning, and it has been
shown to be extremely effective in several clinical
disciplines such as dermatology, radiology, and
oncology.7–9,13,15–18,20,21,23,25,28,29,48–51 To the best of
our knowledge, no body of work related to applica-
tions of deep learning in nephropathology has been
published to date. In this article, we have outlined the
development of a CNN that at least matches the per-
formance of a skilled nephropathologist’s ability to
Kidney International Reports (2018) 3, 464–475
quantify the extent of kidney fibrosis as it relates to 6
key classification tasks: determination of CKD stage
based on eGFR, baseline serum creatinine and
nephrotic-range proteinuria at the time of biopsy, as
well as 1-, 3-, and 5-year renal survival. Although the
case with eGFR as the output was modeled as a multi-
label classification task (CKD stages; 5 labels), the rest
were modeled as binary classification tasks.

As part of routine clinical workflow, the expert
nephropathologist carefully reviews the trichrome
stain�based histological images and assigns a grade of
renal fibrosis. Typically, the grading is discrete and
ranges from 0 to 100, with 0 assigned to no detectable
fibrosis and 100 assigned to the biopsy with complete
fibrosis. Such a derived grading process resulting in a
single scalar value has shown to have remarkable
clinical utility.43,46,47 This was confirmed in this study
471
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by the models that we developed using the pathological
grading as the input and the output classes derived
from a detailed chart review of the clinical reports
spanning more than several years (Figures 3–5).

To evaluate the performance of the CNN model on
the same biopsy samples, we performed a computer-
based analysis of the digitized biopsy images and
related the findings to the outcomes of interest. This
task resulted in a dataset comprising 171 patients with
2255 images that were subsequently used for model
training. As shown in Figures 3 to 5, training and
testing on these images, followed by predictions on test
data, demonstrated superior CNN model performance
in comparison to the linear discriminant classifier
trained using the pathologist-derived fibrosis score
(Supplementary Table S1).

Superiority of the CNN model can be attributed to
several factors. First, the concept of transfer learning
has boosted the use of CNN models for classification
tasks with smaller datasets, as they have begun to
single-handedly disconnect the presumed link between
larger dataset size and high model accuracy. This is
because we can use pretrained CNN models with fea-
tures that were already learned, using millions of im-
ages with different object classes, and that produced
outstanding results exceeding human performance.29

Moreover, transfer learning usually results in faster
training times than required for constructing a new
CNN from scratch, as there is no need to estimate all the
parameters in a pretrained CNN. Despite these advan-
tages, we still used a rigorous cross-validation strategy
of splitting the dataset into 2 portions and validating
our CNN model using the test data that were not used
for model training. The transfer learning approach
turned out to be very effective, given the number of
trichrome images that were generated from 171 pa-
tients. Also, to make the most of this dataset, we per-
formed “data augmentation” whereby each image was
subjected to random transformations and then fed into
the CNN model as multiple images for training.31

Moreover, the process of introducing additional vari-
ability/noise over that which could possibly be con-
tained within the original images has been shown to
limit model overfitting and to increase model general-
izability.31–37

The second reason that explains the superior CNN
performance is related to the deep neural network ar-
chitecture itself. Using operators such as convolution,
activation, and pooling (or subsampling), training a
CNN model involves performing these operations
multiple times in a systematic fashion to transform
pixel-level information to high-level features of the
input image. These features are then used to perform
the classification task using fully connected layers
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along with training the model using another process
called backpropagation, a method that is widely used
in the ML community to train artificial neural net-
works.31 Therefore, the CNN model training is in stark
contrast to the pathologist model training that was
done using a single value (fibrosis score) as an input
feature along with corresponding output classes. This
aspect underscores the value of leveraging a computer
algorithm such as CNN to capture pixel-level information
derived from the whole image and to associate it with
an outcome of interest but not a fibrosis score per se.

Even though the CNN model outperformed on all the
classification tasks, the model derived using PEFS was a
close second. This was especially the case with the
creatinine, proteinuria, and survival models, as the
performances were almost comparable, with the CNN
model slightly outperforming the PEFS model each
time. However, for predicting the CKD stage, the CNN
model resulted in a much better accuracy (Figure 3 and
Supplementary Figure S5). One possible explanation is
that predicting the CKD stage is a multilabel classifi-
cation problem with 5 different outcomes, whereas all
the other cases are binary classification problems with
only 2 different outcomes. Because the PEFS model has
only a single scalar value for training, one could argue
that CNN model training that involves fine-tuning of
several parameters is more suitable for tackling both
binary and multilabel classification problems.

Accurate prediction of renal survival and other
clinical phenotypes can inform therapeutic interven-
tional strategies. CNN model architectures are begin-
ning to address this aspect with a high level of success,
and therefore one can envision the utility of these tools
within the daily clinical workflow. A strength of this
study is that it demonstrates the ability of an ML al-
gorithm applied to digital images of routinely prepared
kidney biopsy slides to assess the severity of pathology
and its relationship with clinical measures with accu-
racy at least equivalent to that of an experienced
nephropathologist without the need for labor-intensive
morphometric analysis by a skilled observer. Although
similar accuracy can be achieved, as recently docu-
mented, by meticulous scoring of pathological ele-
ments,43 such methods are not applicable to routine
anatomic pathology.

If the CNN architecture is embedded in the form of
software application (or “app”) within a mobile device
or an easily accessible computer, then predictions
based on the digitized histologic images can be derived.
Using our data as an example, a potential clinical
workflow could involve the pathology clinic receiving
a kidney biopsy sample, and processing it using tri-
chrome or other staining protocol, followed by sample
digitization into a red�green�blue (RGB) color image.
Kidney International Reports (2018) 3, 464–475
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If this color image were directly fed into the app con-
taining the trained CNN model installed on the pa-
thologist’s computer, then predictions of 1-, 3-, and 5-
year renal survival could be produced as outputs of the
model instantaneously. These predictions would pro-
vide added value to the biopsy findings and, along
with other clinical assessments, would enable a more
precise care management and follow-up strategy on the
biopsied patient. This technology could become all the
more useful in areas where nephropathology expertise
is not readily available, so a general pathologist could
directly interpret these images using the app and could
prepare the clinical reports accordingly to facilitate
care management. For all these cases, prospective
validation is needed in order for the app to be
considered as a clinical tool. One could imagine
designing a prospective study in which the app driven
by the CNN model predicts the outcome (such as 5-year
renal survival) immediately after kidney biopsy is
performed on a patient. We can then track the patient
over time and check whether the model prediction
validates with the actual time of renal survival.

The ML algorithms clearly have limitations and
provide incremental value rather than replacing the
human factor. We acknowledge that a nephropatholo-
gist’s clinical impression and diagnosis is based on
contextual factors above and beyond visual and path-
ologic inspection of a lesion in isolation. Nevertheless,
the ability to classify histologic images using a com-
puter with the accuracy of an experienced neph-
ropathologist has the potential to affect renal practice,
especially in resource-limited settings.

Another limitation of our study is that we did not
consider the possible impact of treatment on renal
survival. For example, it is possible that treatment
with immunosuppressive drugs might have altered the
course and influenced renal survival, which of course,
could not have been predicted by ML analysis at the
time of the original biopsy. In other words, renal
survival might have been better in such cases than our
ML model would have predicted. Despite that, the
model was remarkably good at predicting survival,
and one can only assume that the extent of kidney
fibrosis is a major determinant of outcome regardless of
treatment. Thus the value of the ML analysis in such
cases would be to exclude cases in which treatment
would be futile and in which the risks would outweigh
the benefits.

Our work relied only on images derived using the
Masson trichrome stain, as it has long been used
as a standard for quantifying fibrosis not only in renal
but in other organ pathologies. Some pathologists,
however, rely on other protocols such as Sirius Red
Kidney International Reports (2018) 3, 464–475
staining, and recent work in this area has demonstrated
staining protocol�specific accuracies in terms of
quantifying fibrosis.51 The CNN model described here
could likely be applied equally well to images gener-
ated with Sirius Red or other staining protocols,
including periodic acid�Schiff. One could also imagine
extending the CNN architecture to model image data
derived directly from whole slide imaging. The whole
slide imaging�derived images are typically of higher-
bit graphics (w16 bits), and thus require special
handling and pre-processing even before they can be
used for model construction.43

Although we performed extensive studies to iden-
tify the best batch size, learning rate, augmentation
factor, and CNN layers for network fine-tuning of im-
ages stained to highlight fibrosis, this technology lends
itself to the analysis of several other parameters such as
glomerular sclerosis and immunohistochemistry of in-
flammatory cell infiltrates or specific cell types or
components. Furthermore, the CNN framework allows
for the development of glomerular disease�specific
models to evaluate focal segmental glomerulosclerosis
and chronic allograft nephropathy, and possibly to
identify more accurately those cases in which immu-
nosuppressive therapy is likely to be futile because of
the extent of kidney damage.

In conclusion, in this study, we demonstrated the
effectiveness of using deep learning architecture in
nephropathology, a technique that enabled us to
associate trichrome-stained histologic images obtained
at the time of biopsy with several clinical phenotypes.
Using a single CNN architecture trained on these im-
ages, we compared the CNN performance with that of
an experienced nephropathologist by testing the model
across 6 classification tasks: CKD stage based on eGFR,
high/low creatinine and nephrotic-range proteinuria at
time-zero biopsy, as well as 1-, 3-, and 5-year renal
survival. This rapid, scalable method can be deployable
in the form of software at the point of care, and holds
the potential for substantial clinical impact, including
augmenting clinical decision making for nephrologists.
This framework can also be adapted to other organ-
specific pathologies focused on evaluating fibrosis, as
well as image datasets developed using other histo-
logical staining protocols. Further validation of the
models across different clinical practices and image
datasets is necessary to validate this technique across
the full distribution and spectrum of lesions encoun-
tered in a typical pathology service.
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