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ABSTRACT

Cancer genomics has been evolving rapidly, fueled
by the emergence of numerous studies and public
databases through next-generation sequencing tech-
nologies. However, the downstream programs used
to preprocess and analyze data on somatic muta-
tions are scattered in different tools, most of which
require specific input formats. Here, we developed
a user-friendly Python toolkit, MutScape, which pro-
vides a comprehensive pipeline of filtering, combi-
nation, transformation, analysis and visualization for
researchers, to easily explore the cohort-based muta-
tional characterization for studying cancer genomics
when obtaining somatic mutation data. MutScape not
only can preprocess millions of mutation records in
a few minutes, but also offers various analyses si-
multaneously, including driver gene detection, mu-
tational signature, large-scale alteration identifica-
tion and actionable biomarker annotation. Further-
more, MutScape supports somatic variant data in
both variant call format and mutation annotation
format, and leverages caller combination strategies
to quickly eliminate false positives. With only two
simple commands, robust results and publication-
quality images are generated automatically. Herein,
we demonstrate the ability of MutScape to correctly
reproduce known results using breast cancer sam-
ples from The Cancer Genome Atlas. More signifi-
cantly, discovery of novel results in cancer genomic

studies is enabled through the advanced features in
MutScape. MutScape is freely available on GitHub, at
https://github.com/anitalu724/MutScape.

INTRODUCTION

Next-generation sequencing technologies are developing
rapidly, leading to substantial improvements in cancer ge-
nomic research (1). Among these, whole-genome sequenc-
ing (WGS) and whole-exome sequencing (WES) are two
major paradigms that enable researchers to uncover mu-
tational landscapes in the least amount of time. In recent
years, The Cancer Genome Atlas (TCGA), a publicly avail-
able genomics database, has released a large amount of so-
matic mutation data for researchers, leading to improve-
ments in cancer diagnosis, treatment and prevention. With
the sudden augmentation of studies, a surfeit of large-scale
mutation data, comprising single-nucleotide variants and
small insertion/deletions, has been generated for advancing
our understanding of cancer etiology and biology. Those
generated data offer opportunities for several useful anal-
yses, such as significantly mutated gene (SMG) detection
(2) and mutational signatures (3). However, these bioinfor-
matics analyses require complicated statistical approaches.
Additionally, researchers find it difficult to visualize these
diverse and feature-rich data from genomic studies. Even
though several tools and software packages for probing ge-
nomic data have already been developed, distinct formats
of input files still make analysis cumbersome. Tools such as
Maftools (4) offer various analyses in a single R package,
while VIVA (5) supports data processing. However, they
require still other tools to complement their inability to
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filter out false-positive mutations and perform data trans-
formation. Also, these tools accept either mutation annota-
tion format (MAF) or variant call format (VCF) as inputs,
but not both. With the cost reduction of sequencing tech-
nologies, researchers could design more large-scale studies
for hundreds or thousands of cancer patients than past.
Therefore, the growth of sequencing data and the emergence
of various analysis approaches highlight the need for a com-
prehensive, integrated toolkit for efficiently studying cancer
genomics.

To cope with these problems, we developed a useful
Python package, which we named ‘MutScape’. MutScape
provides two modules for preprocessing input data and per-
forming comprehensive analyses and visualizations. This
package is intended for WGS, WES or gene panels. It fa-
cilitates cancer genomic studying and enables researchers
to efficiently perform downstream analysis for cancer co-
horts when obtaining the mutation data from various vari-
ant callers, even for newcomers getting a hang of how these
analyses are. To be user-friendly, it accepts large amounts of
VCF and MAF as input for the data preprocessing module.
With only two simple commands and a single customized
tab-separated values (TSV) file, which records the paths of
the input folders and the criteria used for data preprocess-
ing, MutScape will automatically implement data filtering,
combination and transformation. All preprocessed files are
ultimately combined into a single MAF summary file for
easily performing a multitude of downstream analyses and
a wide variety of visualizations. The analysis module is di-
vided into nine main functions that provide SMG detection
and mutational signature analysis, as well as several other
computational and statistical analyses, such as homolo-
gous recombination deficiency (HRD) score (6) and chro-
mosome instability (CIN) score (7). Moreover, MutScape
can be used to generate multiple high-quality statistical
graphics in order to assist researchers with further explo-
ration. Finally, usage of MutScape is publicly available as
an open-source Python package in the GitHub repository
(https://github.com/anitalu724/MutScape).

MATERIALS AND METHODS

The functions of MutScape are separated into two main
modules (Figure 1): data preprocessing and analysis and vi-
sualization. The specifications for both modules and their
key functions are described below.

Data preprocessing module

Loading data. MutScape can handle a large number of
VCF files or MAF files as input in a single process. For
VCF files as input data, users must submit a limited-format
TSV file, which lists input paths and simple parameters for
data preprocessing. In this package, we can deal with five
TCGA-adopted variant callers and one popular, commer-
cial variant caller––MuSE (8), Mutect2 (9), SomaticSniper
(10), Strelka2 (11), VarScan 2 (12) and DRAGEN (13)––so
that users can choose several callers of VCF files for filtering
and combination. For MAF files as input data, users should
also enter a one-column TSV file, which includes every path
of the MAF files, for downstream analysis and visualiza-
tion.

VCF filtering. The VCF filtering step, which is optional,
provides four types of filters (Supplementary Figure S1).
The filter function named genome interval (GI) is used to
choose specific intervals of chromosomes. Users can enter
a list of genomic positions or specific chromosomal regions
to select the mutations. The caller information (CI) filter is
utilized to sift valid data based on the information in the
VCF file. Users can enter a self-defined criteria list that is
composed of some items from the VCF––the total depth of
reads (DP), allelic depth (AD) of the reference and alter-
native alleles, mutant allele fraction (AF), and tumor and
normal log odds (LOD) scores. We process the data based
on the variant caller for each VCF file. Specifically, the LOD
scores are only calculated and recorded in VCF files of Mu-
tect2. In this step, we exclude the variants that are smaller
than the provided criteria. The so-called PASS (PA) filter is
employed to extract mutations, for which the ‘FILTER’ col-
umn presents ‘PASS’ in the VCF file. To filter false-positive
calls from formalin-fixed paraffin-embedded tissues, the ar-
tifact variant (AV) filter uses the absolute value, defined as

F1R2alt − F2R1alt

F1R2alt + F2R1alt
,

as the threshold that is only for Mutect2 VCF files (14). Mu-
tations with values below the threshold are discarded. Fur-
thermore, users can enter a VCF or TSV file containing the
chromosome, position, reference allele and alternative allele
information from each variant as an accept list or reject list
of variants. MutScape will forcibly retain variants present
in the accept list during data preprocessing, whereas it will
exclude variants recorded in the reject list (Supplementary
Figure S2). All of these filters are simultaneously applied to
the data for the creation of more reliable and robust results.

VCF combination. As a unique feature in MutScape,
the purpose of VCF combination is to combine VCF
files with distinct variant callers from the same sam-
ple. During this step, we merge overlapping mutations
that have identical values in the ‘CHROM’, ‘POS’, ‘REF’
and ‘ALT’ columns of the VCF files. For each mutation
recorded in the combined VCF, we add two extra types
of information––‘CALLS’ and ‘REJECT’––in the ‘INFO’
column. Any variant callers that identified the sequence
data as having a mutation are recorded in the ‘CALLS’ in-
formation. For instance, if a candidate mutation is identified
only by MuSE, the ‘CALLS’ information will be recorded
as ‘MuSE’, whereas if another candidate mutation is de-
tected by both MuSE and Mutect2, the ‘CALLS’ informa-
tion will be recorded as ‘MuSE Mutect2’ (top right in Sup-
plementary Figure S3). In contrast, ‘REJECT’ information
is created to record names of variant callers that the mu-
tation failed to pass. In the input TSV file, the ‘At Least
CALLS’ column states the minimum number of variant
callers, whereas the ‘At Most REJECT’ column mentions
the maximum number of variant callers recorded in RE-
JECT. Using the input TSV file, users can define the thresh-
old of CALLS and REJECT to include in the combined
file (bottom right in Supplementary Figure S3). Moreover,
users should utilize unfiltered VCFs as inputs when employ-
ing the ‘REJECT’ information to filter variants that failed
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Figure 1. Overview of the MutScape toolkit. Block headers define the two available modules, Data preprocessing and Analysis and visualization. Data
preprocessing module: The main workflow starts with a TSV file, which records the input paths of either VCF or MAF files and the criteria of the filtering
and combination strategies. The VCF inputs are transformed to a combined, filtered MAF file, which is the basis of the analysis and visualization module.
Analysis and visualization module: This consists of functions to perform common and advanced analyses in cancer genomics and generate publication-ready
plots and tables (shown in bold). The square brackets indicate the libraries or packages we implemented in MutScape. A simple specification and the related
function (italics) are shown. HRD: homologous recombination deficiency

to pass the threshold. After combination, only one VCF file
will remain for each sample.

VCF to MAF. VCF transformation to MAF is imple-
mented by the vcf2maf utility (https://github.com/mskcc/
vcf2maf), which processes variant annotation and tran-
script prioritization.

MAF filtering. In addition to VCF filtering, MutScape
also includes functions to filter MAF files (Supplemen-
tary Figure S4). Five diverse filters are illustrated as fol-
lows: The GI filter is similar to the one in VCF filtering,
and the usage and input types are all identical. In the CI
filter, users should enter a list with only two values––DP
and AD. The tissue expression (TE) filter is used to exclude
non- or low-expressed gene mutations in the specific tissue.
The usage also supports self-defined criteria and gene ex-
pression data. The population frequency (PF) filter is used
to identify data whose ‘FILTER’ column does not present
‘common variant’, which is annotation by population al-

lele frequency from the ExAC database (15). The hyper-
mutator (HY) filter is a strategy that avoids statistical bias
from hypermutators. If samples have mutation counts larger
than the entered threshold, their data will be removed from
downstream analysis.

Analysis and visualization module

This module simultaneously provides numerous analysis
methods and several plotting functions to produce readable
and publication-quality plots and tables. A comutation (Co-
Mut) plot is generated using the comut Python module (16),
SMGs are detected using the OncodriveCLUST Python
package (17), an estimation plot is produced by Scikit-
learn nonnegative matrix factorization (NMF), Nimfa is
a Python library for NMF, HRD status is evaluated us-
ing the scarHRD R package (18), known cancer genes are
annotated using the Cancer Gene Census database (19)
and known actionable genes are summarized based on
the levels of evidence in the OncoKB database (20). Plots

https://github.com/mskcc/vcf2maf
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generated to demonstrate results from the analysis module,
such as bar charts, heatmaps and donut plots, among oth-
ers, are plotted using matplotlib and the seaborn Python
library.

Tumor mutation burden

Tumor mutation burden (TMB) is defined as the total
number of mutations per megabase (21). The mutational
types included in the TMB statistics are missense muta-
tion, silent mutation, splice site mutation, nonstop muta-
tion, nonsense mutation, frameshift mutation, in-frame mu-
tation and translation start site mutation. The number of
synonymous mutations is the sum of the data that have the
‘silent’ mutation type, while the number of nonsynonymous
mutations includes the rest of the data.

Large-scale genomic events

The evaluations of three large-scale genomic events are de-
scribed below in detail.

Homologous recombination deficiency. A genome
aberration-based scoring system (HRD score) derived
from the unweighted sum of the HRD loss of heterozygos-
ity (HRD LOH) score (22), the telomeric allelic imbalance
(Telomeric AI) (23) and the large-scale state transition
(LST) score (24) is employed to assess the underlying
tumor HRD (6). The HRD LOH score is defined as the
number of LOH events >15 Mb without covering the
whole chromosome. The Telomeric AI score is the number
of regions with allelic imbalance, which extend toward the
telomeric ends of a chromosome without crossing the cen-
tromere. The LST score is the total number of breakpoints
between regions of at least 10 Mb, with a distance between
them <3 Mb. Based on the allele-specific copy numbers
for each region as inputs, the extent of HRD is quantified
using scarHRD (18). A predefined HRD threshold of
≥42 is employed to distinguish the HRD phenotype from
nondeficient tumors (6).

Whole-genome doubling. Patients were considered to have
undergone whole-genome doubling (WGD) if >50% of
their autosomal genome had a major copy number ≥2 (25).

Chromosomal instability. CIN is a broad concept that en-
compasses a wide range of chromosome-level abnormali-
ties. The CIN burden is defined as the proportion of the
genome’s length that is affected by copy number alterations
(CNAs) (7) and is given by

CIN =
∑n

i = 1 ui

L
,

where L is the total length of the autosome and ui represents
the altered length in CNA i .

Example datasets

The datasets for the CoMut plot analysis were obtained
from TCGA breast cancer database (https://www.cancer.

gov/tcga). Only 50 samples were randomly chosen for bet-
ter visualization and they were simulated as 19 patients with
metastatic cancer for the need of the demonstration of Co-
Mut plot analysis. VCF files used to assess the results of
mutational signatures were from a published study (26),
and MutScape accurately reproduced the results in it. The
dataset of 30 paired esophageal adenocarcinoma genomes
before and after neoadjuvant chemotherapy from the pre-
vious study was collected to demonstrate that MutScape
can uncover additional noteworthy findings (27). Simula-
tion datasets for displaying other analysis functions origi-
nated from rearrangement of encrypted clinical data in Tai-
wan. All input data are provided on the GitHub website of
MutScape.

RESULTS

Mutational landscape discovery with the CoMut plot

Since the development of WGS and WES, a large amount
of the mutational landscape has been uncovered and re-
quires a comprehensive visualization to present the analysis
results. Dees et al. had come up with the concept of SMGs,
which describes genes that show a conspicuously higher mu-
tation rate than expected by chance (2). In MutScape, we
provide the function named SigMutatedGeneDetection to
detect SMGs. Additionally, TMB is also a common cancer
hallmark in cancer genomic studies (21). Thus, we offer a
class called TumorMutationBurden to calculate TMB auto-
matically. A general representation of these results is a Co-
Mut plot, which demonstrates mutation status with clinical
and genomic characteristics by sample level.

To demonstrate the performance of MutScape, we used
the mutation data from a TCGA breast cancer cohort (N
= 50) with simulated CNA data (Figure 2). The top bar
chart (Figure 2A) showing the mutational classification was
based on the results of TMB statistics. In these data, we
can see that most of the TMB scores were below 300, while
only a single sample had a higher burden and was classi-
fied as a hypermutator. Generally, samples with high TMB
may be suitable for immunotherapy (21). The mutational
signature bar chart (Figure 2B) shows sample-level relative
proportions of four different signatures. These signatures
represent origins of mutation (see the ‘Mutational signa-
ture analysis’ section for more details). In this subplot, it
is obvious to see that signature 2 has the highest propor-
tion, followed by signature 3. The purity heatmap (Figure
2C) indicates the original sample purity, which tells the va-
lidity and reliability of data. It is clear that most of the
sample purities are high, which promises reliable analyses
of these samples. The oncoprint plot (Figure 2D) indicates
the mutational type-specific genes by sample. These specific
genes are mostly the result of SMG detection or of known
cancer gene annotation. In this cohort, we can see that the
SMGs include MAP3K1, CDH1, TP53 and PIK3CA. No-
tably, the mutated PIK3CA genes in the plot are all mis-
sense mutations. The CoMut plot can also be used to vi-
sualize and summarize CNAs (Figure 2E). This plot clearly
presents the alteration type of distinct genes in each patient.
Candidate genes for this plot are identified using GISTIC2
(28). In this cohort, ERBB2 is the most common CNA. Fur-
thermore, WGD, which involves the duplication of a com-
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Figure 2. CoMut plot generated by the MutScape analysis and visualization module using a TCGA breast cancer dataset. For better visualization, only 50
samples are shown. The CoMut plot illustrates mutational profiles for each sample. (A) The top bar chart displays the mutation burden for each sample.
(B) The stacked bar chart shows the relative proportion of the mutational signatures in each sample. (C) The purity heatmap manifests the degree of purity
for every sample. The darker blue blocks indicate higher purity. (D) The oncoprint plot demonstrates the mutation type of specific significantly mutated
genes for each sample. (E) The copy number alteration heatmap illustrates the alteration type for commonly mutated genes. (F) The WGD plot highlights
samples with a WGD phenotype. (G) The dot plot indicates the relationship between the samples; those from the same patient are linked by a black line
between two dots.

plete set of chromosomes, is a common feature in cancer
genomics. From this plot (Figure 2F), we can observe that
∼40% of samples in these data have WGD. Moreover, our
CoMut plot clearly illustrates whether the samples came
from the same patient using dot-connection labeling (Fig-
ure 2G). This feature is useful for the study of cancer relapse
or metastasis cohorts.

Mutational signature analysis

Somatic mutations are ubiquitous in all human cells, which
accumulate distinct mutational characteristics. For each
cancer, a specific mutational pattern is left behind, namely a
mutational signature. Recently, Alexandrov et al. reported
many more single base substitution (SBS) signatures than
they found in 2013 (3). They also mentioned that such mu-
tagenic events can be recognized by dimensional reduction
techniques such as NMF. To complete this analysis, we im-
plemented a class named MutationalSignature, which con-
tains an estimation method, analysis approaches and mul-
tiple plotting functions to construct a smooth pipeline.

First, we utilized a Python library, Nimfa (29), to esti-
mate the factorization rank, which is the optimal number
of mutational signatures. We further applied these functions
to accurately reproduce the previous results of human adult

stem cell data (26). The estimation result is indicated in Sup-
plementary Figure S5. According to the NMF package (30),
the most common method to determine the optimal factor-
ization rank is to choose the smallest rank for which the
cophenetic correlation coefficient starts decreasing. Thus,
based on the cophenetic correlation metric plot, we deter-
mined three signatures to be the optimal factorization rank
in this dataset.

In order to complete the NMF process, we integrated the
scikit-learn decomposition NMF Python package to handle
the computation of nonnegative matrices. The three identi-
fied substitution signatures perfectly match the results re-
ported by Blokzijl et al. (Figure 3A). Furthermore, to com-
pare the three identified signatures with the COSMIC muta-
tional signature dataset, we computed the cosine similarity
between each pair of signatures (Figure 3B). Based on the
cosine similarity heatmap, we can see that signature 1 was
quite similar to COSMIC SBS1, while signature 2 had high
similarity with COSMIC SBS5. In the COSMIC dataset,
SBS1 and SBS5 are both correlated with the age of the in-
dividual. For a more detailed analysis, we also provide the
heatmap and bar chart of the relative contribution for each
signature so that the mutational activities involved in each
sample are clear (Figure 3C and D). The donut plot indi-
cates the total proportion of the three signatures and shows
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Figure 3. Visualization of mutational signature analysis using data from Blokzijl et al. (26). (A) SBS signature bar chart. The x-axis indicates the con-
ventional 96 mutation type classification, which is based on the six substitution subtypes: C>A, C>G, C>T, T>A, T>C, T>G. The y-axis indicates
the percentage of 96 trinucleotide motifs in the signature. (B) Cosine similarity heatmap between identified signatures (y-axis) and SBS signatures of the
COSMIC database (x-axis). The blocks with darker blue mean higher similarity between the two signatures. (C) The heatmap displays the contribution of
the three signatures to mutations in each sample. The blocks with darker blue signify a greater contribution. (D) The stacked bar chart shows the relative
distribution of the three signatures for each sample. (E) The donut plot displays the proportion of the three signatures in the overall cohort.

that signature 1 is predominant in this cohort. To put it an-
other way, the somatic mutations from these testing data
are mainly caused by aging. Furthermore, MutScape can
also allow users to perform signature refitting to evaluate
the contribution of COSMIC signatures for small cohorts
or individual samples.

Large-scale genomic event analysis

As a benefit of the development of cancer genomics, more
treatments are available to improve the efficacy of therapy.
HRD, which means a defect in DNA double-strand break
repair, can be quantified by the sum of HRD LOH, Telom-
eric AI and LST. The degree of HRD is an important ther-
apeutic biomarker when deciding to use specific treatments.
We provided a class named HRDScore to perform HRD
score analysis. In previous studies, samples whose HRD
score was >42 were eligible to use PARP inhibitors or cis-
platin as treatment (6). Using simulated data, it was ob-
served that ∼24% of samples had the HRD phenotype (Fig-
ure 4A and B).

CIN score means the level of unstable chromosomes in
the sample, expressed as the proportion of abnormal au-
tosomal regions (7), while WGD is a hallmark in can-
cer genomics (25). MutScape implemented a class called
WGDnCIN to display the results of CIN and WGD evalua-
tion. In this simulated cohort, most of the samples exhibited
high CIN scores (Figure 4C). Furthermore, we can see that
28% of the samples had WGD (Figure 4D) during cancer
progression.

Figure 4. Evaluation of HRD, CIN and WGD. (A, B) HRD score analy-
sis. The bar chart displays the HRD score for each sample. HRD score is
the sum of HRD LOH, LST and Telomeric AI. The pie chart states the
proportion of samples, whose HRD scores are ≥42. (C) The bar chart in-
dicates the CIN score for each sample. (D) The pie chart demonstrates the
distribution of WGD status in the cohort.

We further implemented the HCWCompar-
ison function to demonstrate that MutScape
could provide noteworthy findings even from the
previous study, which explored changes of driver al-
terations and clonal evolution following neoadjuvant
chemotherapy in esophageal adenocarcinomas (27). The
WGD phenotype in pretreatment samples showed an
absence after treatment in most good responders (Figure
5A). In case 23, the pretreatment samples with WGD had
no major change after treatment, probably due to failure
to pass through a genetic bottleneck. Similarly, the HRD
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Figure 5. WGD, HRD and CIN in pre- and posttreatment esophageal cancers. Oncoprint showing the (A) WGD status and (B) HRD phenotype defined
as high HRD score (≥42) in pre- and posttreatment tumors. Clinical characteristics and molecular features are indicated with color for each tumor. PathR:
pathological response. Bar chart showing the (C) CIN and (D) HRD score in pre- and posttreatment tumors. HRD score is the sum of HRD LOH, LST,
and Telomeric AI.

phenotype in pretreatment samples was absent in post-
treatment ones under pathological responses (Figure 5B).
Notably, in case 27, the posttreatment samples harbored
the HRD phenotype in our assessment. The previous study
found that this case gained TP53 and CNTNAP5 mutations
after treatment, with the expansion of a minor pretreatment
subclone. Moreover, these findings could also reflect in the
CIN and HRD scores that most good responders, having
evidence of passing through a genetic bottleneck, exhibited
relatively stable genomes after treatment (Figure 5C and
D). In contrast, nonresponders showed relatively varied
mutational profiles compared to good responders in WGD
and HRD assessments.

Actionable biomarker annotation

Since the mainstream of cancer care has gradually become
based on the sequencing of tumors, the analysis of action-
able mutations has become more imperative than ever be-
fore. The precise oncology knowledge base can be a great
auxiliary system when medical personnel are making a di-
agnosis. The database called OncoKB (20) is a precision
oncology knowledge base that contains information for
actionable cancer gene alterations. MutScape includes the
function OncoKBAnnotator to evaluate actionability based
on OncoKB. Results from this function showed that 44.9%
of samples in the TCGA breast cancer cohort have action-
able biomarkers in the OncoKB database (Figure 6A). The
bar chart shows the distribution of biomarkers among the
44.9% of samples. From this bar chart, we can clearly see
that PIK3CA is the most common actionable biomarker in
this cohort (Figure 6B).

DISCUSSION

The dramatic growth of cancer genomic sequencing data
highlights the need for efficient and potent analysis tools.

Figure 6. Actionable biomarker annotation analysis using a TCGA breast
cancer dataset. (A) The pie chart shows the proportion of samples that
have actional biomarkers listed in OncoKB. (B) The bar chart indicates
the proportion of each actionable biomarker in the cohort. The color of
the bar signifies OncoKB therapeutic levels of evidence. Level 1 (green),
FDA-approved biomarker; level 2 (blue), standard care biomarker; level 3
(purple), clinical evidence-supported biomarker; level 4 (dark gray), bio-
logical evidence-supported biomarker.

There are numerous common tools that offer several use-
ful analysis and visualization modules. Maftools (4), for in-
stance, is a widely used R package that provides SMG de-
tection, known cancer gene annotation and mutational sig-
nature analysis. However, its application is limited by its in-
put file format requirements, which hinder its usage due to
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Table 1. Comparison of features for VCF and MAF analysis and visualization tools

Categories Features MutScape Maftools VCFtools MuSiC VIVA

Technical details One-step command � � � � �
Language Python R C++, Perl Perl Julia

Preprocessing Genomic range filter � � � �
Caller information filter � �
PASS filter � � �
Sample selection � �
Tissue expression filter �
File format transformation �
File combination � �

Analysis SMG detection � � �
Known cancer gene annotation � �
Mutation burden statistics � �
Mutational signature � �
Homologous recombination deficiency �
Whole-genome doubling �
Chromosome instability �
Actionable mutation annotation �
Pfam annotation � �

Visualization CoMut plot � �
Cosine similarity heatmap �
SBS signature bar chart � �
Lollipop plot �

SMG, significantly mutated gene; SBS, single base substitution.

the lack of filtering false-positive mutations. Another tool,
VCFtools (31), lacks the function of data transformation,
which is a major limitation, since most of the analyses for
cancer genomics require MAF files as the input format.
VCFtools is also devoid of visualization functions. Other
tools such as MuSiC (2) and VIVA (5) can be used for
visualization and may also handle some analyses. Never-
theless, these tools provide limited capability that must be
complemented by other tools, seriously impeding the effi-
ciency and accuracy of studies in cancer genomics (Table
1). Furthermore, utilizing multiple variant callers can pro-
vide more robust results than using single ones. TCGA, for
example, organized the Multi-Center Mutation Calling in
Multiple Cancers (MC3) project to apply an ensemble of
seven mutation-calling algorithms for robust cross-tumor-
type analyses. However, none of these tools can process
these mutational data from a combination of variant callers,
for example by assessing the intersection/union between
two or more callers.

Here, we describe a user-friendly Python package,
MutScape, which combines well-contrived data preprocess-
ing and a plethora of representative analyses that are com-
monly utilized in cancer genomics. This package is avail-
able for mutation data from WGS, WES or gene pan-
els. MutScape also provides multiple choices for visual-
ization that produce high-quality images for publication.
Along with specially designed strategies for data filter-
ing and combination, users can easily produce more re-
liable and robust results than with the other tools men-
tioned above using only few lines of commands. More-
over, since MutScape skillfully integrates data preprocess-
ing and analysis, it paves the way for complex computa-
tion and statistics approaches for bioinformaticians and will
also substantially boost the efficiency of research in cancer
genomics.

Moreover, the rationale for choices of tools is described
below in detail. Currently, most tools depicting the mu-

tational landscape only plot specific genomic and phe-
notypic data types, such as CoMutPlotter (32), jsComut
(33), Maftools (4) and GenVisR (34). CoMut can visual-
ize various types of genomic data and more complex phe-
notypic information. OncodriveCLUST identifies SMGs
with a bias toward mutation clustering that may com-
plement other methods of detecting SMGs. Furthermore,
only the scarHRD package could assess three HRD-related
biomarkers to calculate the HRD score based on the previ-
ous study. This scoring system was further developed as an
FDA-approved HRD test, namely ‘myChoice CDx’. Also,
the oncokb annotator was directly developed by the On-
coKB team. The MC3 project organized by TCGA em-
ployed the vcf2maf script for VCF annotation and trans-
formation (35).

However, there are three limitations that exist in this
package. The quantification of the extent of HRD and the
assessment of WGD status was based on allele-specific copy
numbers for genome regions, relying on the WGS and WES
data. Users need to provide such information as inputs
through tools developed for performing an allele-specific
copy number analysis. Moreover, this package does not in-
clude germline mutation analysis. Thus, the HRD assess-
ment of MutScape did not consider the BRCA deficiency.
Notably, a previous study showed that the HRD scoring
measurement has the ability beyond BRCA deficiency by
identifying more patients with high sensitivity to PARP in-
hibitors or platinum agents (36). Furthermore, record for-
mats in VCFs were different based on the variant callers,
such as AD and DP information. As we employed the
vcf2maf script for VCF annotation and transformation, we
mainly followed its method, which handled VCFs accord-
ing to variant callers. Thus, MutScape currently supports
VCFs from six commonly used variant callers in the data
preprocessing module. We may also extend the functional-
ity of MutScape for VCFs from more variant callers in the
future.
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In summary, MutScape provides a comprehensive and
easy-to-use pipeline and also exactly reproduced many
known results from published datasets. More significantly,
MutScape is capable of producing novel results via ad-
vanced analyses. In the future, we will work to diversify the
analysis and visualization modules in MutScape by adding
the ability to handle Pfam annotation and GISTIC2 (28)
results, resulting in a comprehensive suite of functions for
omics data analysis.
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