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The discovery that sclerostin is the defective protein underlying the rare heritable bone
mass disorder, sclerosteosis, ultimately led to development of anti-sclerostin antibodies
as a new treatment for osteoporosis. In the era of large scale GWAS, many additional
genetic signals associated with bone mass and related traits have since been reported.
However, how best to interrogate these signals in order to identify the underlying gene
responsible for these genetic associations, a prerequisite for identifying drug targets for
further treatments, remains a challenge. The resources available for supporting functional
genomics research continues to expand, exemplified by “multi-omics” database
resources, with improved availability of datasets derived from bone tissues. These
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databases provide information about potential molecular mediators such as mRNA
expression, protein expression, and DNA methylation levels, which can be interrogated
to map genetic signals to specific genes based on identification of causal pathways
between the genetic signal and the phenotype being studied. Functional evaluation of
potential causative genes has been facilitated by characterization of the “osteocyte
signature”, by broad phenotyping of knockout mice with deletions of over 7,000 genes,
in which more detailed skeletal phenotyping is currently being undertaken, and by
development of zebrafish as a highly efficient additional in vivo model for functional
studies of the skeleton. Looking to the future, this expanding repertoire of tools offers the
hope of accurately defining the major genetic signals which contribute to osteoporosis.
This may in turn lead to the identification of additional therapeutic targets, and ultimately
new treatments for osteoporosis.
Keywords: genome-wide association study, bone mineral density, mouse model, zebrafish, “omics” data
INTRODUCTION

This perspective article provides a viewpoint on the opportunities
and challenges in functional genomics research in osteoporosis,
synthesizing the content of a recent workshop of invited experts.
This was held to provide a blueprint for research and funding
proposals in this area, with the ultimate aim of translating
discoveries from human genetic studies into new therapies for
patients with osteoporosis.

The Need for New Osteoporosis Therapies
Anti-resorptive drugs are the mainstay of treatment in
osteoporosis. Despite being widely used, adherence rates in the
US (1) and UK (2) are decreasing, and these agents have
several limitations including poor tolerability in the case of
oral bisphosphonates, and risk of rare adverse effects including
osteonecrosis of the jaw and atypical femoral fractures. Anabolic
therapies for osteoporosis may offer certain advantages,
including greater efficacy than some anti-resorptives, and lack
of the adverse effects associated with suppression of bone
resorption. However, currently available anabolic drugs are
costly, and need to be given by injection, limiting their use to a
small fraction of patients with osteoporosis. Thus, there is an
urgent need for a low cost, ideally orally active, anabolic therapy
for osteoporosis.

The Potential of Human Genetic Studies
for Drug Discovery in Osteoporosis
Rare Bone Diseases
The heritable condition of increased bone fragility, Osteogenesis
Imperfecta (OI), was the first bone disorder to have the
underlying genetic mutation identified. Linkage analysis
identified the COLIA1 and COLIA2 genes as candidate loci for
the disease and soon after this, various mutations were identified
in both genes as a common cause of OI (3, 4). Many other
mutations underlying OI have since been identified. Though
most of these affect genes which are involved with post-
translational modifications of type 1 collagen, some affect
n.org 2
osteoblast differentiation and function (5). However, findings
from OI genetics studies are yet to provide tangible opportunities
for developing new osteoporosis treatments.

In contrast, studies of rare bone diseases associated with low
or high bone mass (HBM) have provided the basis for a new
osteoporosis therapy in the form of Romosozumab, following the
discovery that sclerostin – LRP5 regulation of the Wnt signaling
pathway plays a major role in bone biology. Romosozumab is
an anti-sclerostin antibody, which has recently been developed
as anabolic treatment for osteoporosis, and is now widely
available. Sclerostin, encoded by SOST, was initially identified
from the study of patients with the heritable HBM disorder,
sclerosteosis (6). Several other genes underlying HBM have
also been identified, representing possible therapeutic targets
for additional anabolic therapies. These include a recently
identified inactivating mutation in SMAD9, which encodes an
inhibitor of BMP signaling (7). Further analysis of existing case
collections of familial HBM may offer the opportunity to identify
further possible drug targets.

Advances in the understanding of other rare bone diseases
with a genetic component, such as pregnancy associated
osteoporosis (8), might yield targets for new drug design or
re-purposing existing drugs, which if successful might also apply
to treating osteoporosis (9). In considering the pipeline for
similar discoveries, the classification of genetic skeletal disorders
lists 437 genes for 425 different diseases (10). For example,
achondroplasia caused by a mutation in the fibroblast growth
factor receptor 3 gene, a negative regulator of bone growth, now
has an natriuretic peptide receptor 2 (NPR2) agonist (Vosoritide)
developed as treatment (11). Of interest, factors from the C-
type natriuretic peptide signaling pathway have previously been
associated with human stature (12), among which a locus within
the gene encoding NPR3, with which NPR2 complexes, was also
recently identified in a genome wide association study (GWAS)
of extreme high bone mass (13). Rare disorders associated
with impaired osteoclastic bone resorption may also have utility
in treating osteoporosis, exemplified by pycnodysostosis
caused by cathepsin K deficiency (14), for which the inhibitor
February 2021 | Volume 11 | Article 630875
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Odanocatib was developed as a new anti-resorptive treatment
for osteoporosis. In addition, drug-repurposing may provide
novel means of treating rare bone disorders. For example,
palovarotene, a retinoic acid receptor gamma (RAR-g) agonist
developed for use in emphysema, was found to be efficacious
in an animal model of fibrodysplasia ossificans progressiva
(FOP), and is now in phase 3 clinical trials (15). In addition,
Fresolimumab, a human monoclonal antibody directed against
transforming growth factor B2, developed for treating idiopathic
pulmonary fibrosis, is currently being examined to treat OI
(ClinicalTrials.gov identifier NCT03064074).

Genome Wide Association Studies (GWAS)
Many GWAS have been performed for endpoints related to
osteoporosis-related phenotypes, including fractures (16), bone
mineral density (BMD) as measured by DXA (17–19), as well as
estimated by calcaneal ultrasound (eBMD) (20–22). These were
undertaken by the GEnetic Factors for OSteoporosis Consortium
(GEFOS), representing over 30 countries (http://www.gefos.org/).
Whereas BMD represents an overall measure of bone quantity,
GWAS have also been performed of endophenotypes related to
cortical and trabecular bone as measured by peripheral
quantitative computed tomography (pQCT) (23–26), and more
recently high resolution (HR)-pQCT (27). Fracture risk can also
reflect other characteristics such as bone shape and geometry,
which have similarly been examined by GWAS (28, 29). To date,
in contrast to the study of rare monogenic disorders, no GWAS of
common variation in bone phenotypes has led to a new treatment
for osteoporosis. That said, well powered GWAS have only been
available in the relatively recent past, and the above GWAS have
found genome-wide significant variants in genes coding for existing
osteoporosis drug targets, e.g., romosozumab (SOST), denosumab
(RANKL) and raloxifene (ESR1).

GWAS findings can also be helpful in predicting side-effects
arising from the drug target in question having actions outside
the skeleton. For example, a BMD GWAS signal related to SOST
was used to examine potential cardiovascular toxicity of
romosozumab (30). Several open-source data and analytical
platforms, using published and unpublished GWAS summary
datasets, have been developed to interrogate genetic correlations/
causal effects in relation to thousands of traits and diseases,
thereby predicting co-morbidities and extra-skeletal effects using
a hypothesis-free approach. Examples include MR-Base (31), the
polygenic risk score atlas (32), and LD-hub (33). Multiple risk
factors for osteoporosis have also been scrutinized for causal
associations using a Mendelian randomization (MR) framework
(34, 35). For example, the GEFOS GWAS for fracture risk
leveraged the MR approach to demonstrate, that among the
recognized clinical risk factors, BMD is a “causally-related”
determinant of fracture risk implying that targeting to increase
BMD or prevent its loss is likely to be successful in decreasing
fracture risk (16). This MR study also found that genetically-
determined vitamin D levels are not causally related to fracture
risk, supporting conclusions from clinical trials that vitamin D
supplementation in “sufficient” individuals is ineffective in
preventing fractures. Likewise, calcium intake was found to
have no causal effect on fracture risk, suggesting an adverse
Frontiers in Endocrinology | www.frontiersin.org 3
risk/benefit ratio when the associated increased risk of coronary
artery disease is taken into account (36, 37). GWAS findings may
also have potential application as clinical risk prediction tools, as
exemplified by a recent study examining implementation of a
polygenic fracture risk score in combination with FRAX (38).

GWAS have been helpful in predicting the effectiveness of
new drug therapies (39, 40). GWAS have also identified potential
new drug targets in other musculoskeletal conditions. For
example, GWAS in ankylosing spondylitis (AS) and psoriatic
arthritis (PsA) identified IL23R, IL12B, and IL17A as associated
loci, facilitating the development of ustekinumab, an IL12/23
inhibitor used in PsA, and secukinumab, an IL17A inhibitor used
in both AS and PsA (41, 42).

Large well-powered GWAS often yield a multitude of genetic
signals, but a major challenge is to map the association signals to
the causal gene due to the correlated structure of the genome and
to follow up those genetic signals from the point of view of
functional studies. For example, the most recent eBMD GWAS
from the UK Biobank Study, based on the whole cohort of
around 425,000 individuals, identified 1103 independent
association signals mapping to 515 loci (22). Combined with
an earlier eBMD GWAS performed on a subset of the UK
Biobank Study (20), these two studies investigated, and
functionally annotated over 160 mouse lines with deletions of
orthologous genes corresponding to associated GWAS loci,
demonstrating the power of integrating disparate datasets from
human GWAS and animal studies. Nevertheless, little functional
information was obtained in the case of many of the genetic
signals identified, due to lack of an available mouse model. For
example, a signal associated with the SMAD9 locus, described
above, was initially discovered, but not interrogated further, in
the original eBMD GWAS on 150,000 UK participants (20). The
latter GWAS also identified a further signal, B4GALNT3, which
was only later found to influence BMD by altering sclerostin
levels, following a separate GWAS of serum sclerostin (43).
FUNCTIONAL GENOMICS: IN SILICO
STUDIES

As stated above, a major challenge in analyzing outputs of
genetics studies is to identify the gene underlying the genetic
association observed. Several platforms are available to
interrogate outputs from GWAS studies, aiming to identify
causal SNPs and the genes they affect. Different methods are
often applied in parallel to identify potential functional effects
of SNPs, map these to genes and investigate the function of
candidate genes identified in this way. A range of sources of
omic information used for interrogating genetic signals in
relation to skeletal disorders have recently been integrated
within the IFMRS knowledge portal [https://msk.hugeamp.
org/ (44)].

SNP-Based Analyses
Independent signals and lead variants are initially fine mapped
across an identified locus using methods such as FINEMAP (45).
February 2021 | Volume 11 | Article 630875
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Subsequently, identified SNPs are annotated according to
their likelihood of exerting a functional effect. In the case of
monogenic disorders, the underlying genetic variant is expected
to alter protein function, for example as a consequence of a non-
synonymous exon variant. In contrast, in GWAS, the variant is
likely to affect gene expression, for example due to a base change
affecting DNA binding of a transcriptional activating factor
within the promoter region. Several different approaches for
SNP annotation have been developed. For example, ENCODE,
the encyclopedia of DNA elements (https://www.encodeproject.
org/) provides a range of features which can be used to evaluate
potential functional SNPs. Machine learning approaches have
been used to predict functional effects using the most discerning
features from ENCODE and other databases. These algorithms
are trained on disease-causing mutations and assumed neutral
variants, enabling the algorithms to classify SNPs as potentially
deleterious or neutral. In non-coding regions, where most
GWAS SNPs are located, sequence conservation has been
found to be by far the most informative feature (46). However,
such algorithms are not disease-specific, so whether this also
applies to bone related conditions remains to be established.
Besides ENCODE, several other strategies for SNP annotation
have been developed. These include ATAC-seq to study
intersections between SNPs and sites of open chromatin as
previously identified in osteoblast cell lines (22) and mouse
bone tissue (43), and Hi-C to interrogate 3D DNA interactions
as previously characterized in osteoblasts (22).

Gene-Based Analyses
Having identified lead SNP(s), the function of closest protein
coding genes is explored to guide further follow up. Since bone-
specific pathways are thought most likely to underlie skeletal
phenotypes, if a gene is found to be expressed in bone, this is
assumed to increase the likelihood that it underlies a given
osteoporosis genetic association signal. This approach has been
facilitated by description of the “osteocyte signature” (47),
referring to the set of genes expressed preferentially in
osteocytes, which was used to interrogate the genetic signals
identified by Morris et al. (22). As described below, information
from skeletal phenotyping of mouse lines can also help to
identify genes which are likely to underlie genetic association
signals relevant to osteoporosis, as are previous reports that the
gene in question is related to a skeletal disorder in humans. In the
case of genes not previously known to play a role in bone,
methods such as DEPICT can be used to predict function based
on relationships with known pathways (48).

“Omics” Approaches to Map GWAS
Signals to Specific Genes
One approach to mapping genetic signals to specific genes is to
examine causal pathways between the genetic signal and the
phenotype being studied, involving potential molecular
mediators such as mRNA expression, protein expression, and
DNA methylation levels. These molecular quantitative trait loci
(QTLs) are generally classified into cis-acting, where the SNP is
located nearby a gene or site or trans-acting, where the site or
Frontiers in Endocrinology | www.frontiersin.org 4
gene is located more distantly or on another chromosome. Cis-
acting molecular QTLs tend to have larger effect sizes whereas
trans effects have smaller effect sizes and require larger sample
sizes to detect these associations. Large scale initiatives such as
GTEX, eQTLGen (49), Genetics of DNA Methylation
Consortium (GoDMC) (50) and SCALLOP (51) have been
established to identify these small effects that might play a role
in disease etiology.

Co-localization studies across a range of disorders and
phenotypes have been conducted to examine whether
molecular QTLs share genetic variation with GWA signals,
thereby linking a given genetic signal with the function of a
specific gene. Evidence for a number of shared genetic factors
between BMD GWA loci and protein quantitative trait loci
(pQTLs) have been found in blood (52). However, whereas
approaches such as co-localization analyses can be used to
examine shared relationships between a given genetic locus,
phenotype, and intermediary signal, these may not necessarily
represent a causal pathway from the genetic signal to the
phenotype. Approaches such as MR can be used to estimate
causal effects (Figure 1), but require bi-directional analyses to
exclude reverse causation, and in many cases will not exclude
horizontal pleiotropy as an alternative explanation of co-
localization (i.e., the genetic signal influences the phenotype
being studied via an independent pathway to the gene showing
related changes in expression). To improve reliability of MR,
multiple independent genetic variants influencing a molecular
trait can be employed, which should exhibit consistent
causal effects (53). In a recent analysis combining MR and
co-localization analysis to examine GWA with the plasma
proteome, only a minority of associations were found to be
causal, and mainly restricted to cis-associations (52). Similarly,
the GoDMC study estimated the causal relationship between
DNA methylation in blood and 116 complex traits. This study
used multiple cis and trans instruments to evaluate whether the
MR estimates based on the co-localizing signals corresponded
amongst multiple independent methylation quantitative trait loci
(mQTLs). Although many co-localizing putative signals were
found including for BMD traits, the agreement between the
independent mQTLs was very low (50). These results imply that
many of the co-localizing signals were due to horizontal
pleiotropy. Alternatively, other regions or proteins that are
currently not captured by the technology may still have a
causal effect.

There is growing evidence that the same gene expression level
might have many different cis and trans expression quantitative
trait loci (eQTLs) in different cell types and contexts. However,
only a subset of those are active in the disease-relevant cell type
or context and contribute to disease etiology (54). The resources
used to curate eQTLs, pQTLs and mQTLs generally comprise
bulk tissue and exclude bone tissue and cell types. Large scale
QTL datasets derived from blood may still be useful, as
osteoclasts and macrophages/monocytes originate from a
common precursor. That said, the only EWAS study of BMD
performed to date, based on whole blood samples, revealed
negative findings (55). Novel methods to infer cell type specific
February 2021 | Volume 11 | Article 630875
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DNA methylation or gene expression from bulk tissue are
currently being developed (56), which may help to identify
molecular signatures related to osteoporosis phenotypes. To
date, osteoblast, and bone tissue eQTL datasets have only been
generated in small sample sizes. However, these are currently
being expanded upon, and the IFRMS knowledge portal
described above is due to be updated with osteoblast-specific
“omics” data in the near future. Alternatively, to gain an
understanding of whether other cell types or tissues underlie
GWAS signals, functional enrichment analyses across cell-type
specific elements on the GWAS summary statistics can be
performed (57).
FUNCTIONAL GENOMICS:
IN VITRO STUDIES

Modeling the functional impact of osteoporosis in vitro offers a
complementary approach to GWAS and in vivo studies,
validating targets and revealing new modes of action on a
cellular and molecular level. Typically, osteoblast and
osteoclast cultures are employed (or precursor cell populations,
e.g., mesenchymal stem cells, monocytes, respectively) to study
the effect of a specific gene on cell formation and function in
osteoporosis. This is achieved for example, by examining the
cellular effect of gene deletion through CRISPR–Cas9 editing of
candidates identified through human GWAS or in silico studies
(58–60). Similarly, the direct use of bone cell screening assays
Frontiers in Endocrinology | www.frontiersin.org 5
can be used, recording evidence related to growth phenotypes,
live-dead readouts, or bone cell activity and differentiation
which are commonly dysregulated in human osteoporosis.
This includes alkaline phosphatase levels, mineralization
rates, tartrate-resistant acid phosphatase (TRAP) production,
dentine resorption or alterations in key molecular markers
such as Runx2, BMP2, OCN, RANKL, OPG gene expression,
quantified through the use of fluorescent reporter assays, qPCR
or gene array. Combination approaches assessing multiple
readouts simultaneously are being explored to deliver high-
throughput assessments of thousands of potential gene variants
in a single experiment (61).

A major difficulty in modeling human skeletal responses
and disease pathogenesis in vitro centres upon the cellular
heterogeneity of this micro-environment. While bone-forming
osteoblasts and bone-resorbing osteoclasts are most often
targeted in such efforts, the complex multi-cellular bone niche
consists of many more cell types including adipocytes,
osteocytes, fibroblasts, stem cells and a large immune cell
component. Importantly, many cell types have been linked
to the onset and progression of bone disease, including
osteoporosis. More accurate model systems are needed,
capable of mimicking the multicellular bone environment and
where the combined contribution of specific cell types and
impact of genomic alterations can be more fully explored.
Cellular heterogeneity within individual cell populations
is being effectively probed through single cell genomic
approaches, where distinct features captured at the resolution
of individual cells have allowed for a more efficient isolation
FIGURE 1 | Applying a Mendelian randomization (MR) framework to study causal inferences in “omics” data. In conventional MR, a genetic instrument (G) is used as
a proxy for an exposure (X), to study its relationship with a disease outcome (Y). A causal relationship of X on Y exists, if G is related to Y via its effects on X. An
example is the use of genetic polymorphisms related to bone mineral density (BMD) to study the causal relationship between low BMD (X) and fracture risk (Y). When
applied to “omics” data, X represents an intermediate molecular trait (i.e., mRNA, DNA methylation, or protein level) mediating the relationship between genotype (G)
and disease outcome (Y). Since the intermediate trait is gene-specific, finding of a causal relationship is helpful in defining which gene (or regulatory element in the
case of DNA methylation) underlies the association between G and Y. Causal inference using MR relies on the exclusion of horizontal pleiotropy, confounding by
linkage disequilibrium and reverse causality. (i) Causality/vertical pleiotropy: G has a causal effect on intermediate molecular trait X, which in turn has a causal effect
on Y. (ii) Horizontal pleiotropy: G has a causal effect on both X and Y via independent pathways. (iii) Linkage disequilibrium: G has a causal effect on X, but its
relationship with Y is a consequence of linkage disequilibrium with a separate genetic variant causal for Y. (iv) Reverse causality: G has a causal effect on Y which
subsequently alters X.
February 2021 | Volume 11 | Article 630875
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and characterization of cell types within the normal and
osteoporotic bone marrow niche (62, 63).

In vitro studies also allow examination of the impact of
multiple causative genomic targets operating in networks within
bone cell populations, which is only beginning to be explored. A
clearer understanding of the intersecting relationships between
genes, and how this may contribute to a cellular osteoporotic
phenotype is necessary. This may be achieved for example, by
systematically analyzing a defined cellular output (e.g., growth,
alkaline phosphatase) of multiple gene-pair combinations, and
where gene interactions are identified by quantifying the
deviation from the expected phenotype of a single-gene
alteration when combined with a second (64). This allows for
clusters of related genes to be characterized which may act
collectively as a genomic circuit in the prevention of aberrant
bone cell biology or trigger for osteoporosis pathogenesis.
FUNCTIONAL GENOMICS: IN VIVO
STUDIES

Mice
Mice are the most widely used animal model to investigate
the functional role of genes identified in human genetic
studies. The International Mouse Phenotyping Consortium
(IMPC) aims to generate knockout mice harbouring deletions
of all protein-encoding genes in a single C57BL/6N genetic
background. To date, broad phenotyping of knockout mice
with deletions of over 7,000 genes has been completed using
the International Mouse Phenotyping Resource of Standardised
Screens (IMPReSS; www.mousephenotype.org/impress/).
Nevertheless, IMPReSS lacks both in depth and functional
analysis of the skeleton and the IMPC thus collaborates with
the Origins of Bone and Cartilage Disease (OBCD) Programme
(65, 66) and the Bonebase Consortium (67) to undertake bespoke
and detailed skeletal phenotyping.

The OBCD Programme uses digital X-ray microradiography,
micro-CT and biomechanical testing in a rapid-throughput
skeletal phenotyping pipeline to determine 19 parameters of
cortical and trabecular bone structure, mineralization and
strength in knockout mice compared to reference ranges
obtained from >350 wild-type C57BL/6N mice. Knockout
mice with abnormal parameters of both bone structure and
strength (defined as >2 standard deviations away from the
wild-type reference mean) are defined as having an outlier
phenotype. Preliminary analysis of 1,000 knockout mice using
this pipeline indicates approximately 10% display outlier
phenotypes, a percentage that is broadly consistent with the
>500 independent loci associated with eBMD in the recent UK
Biobank GWAS (22). About 50% of mice with outlier
phenotypes have deletions of genes that have not been
functionally annotated to the skeleton and are not known to be
related to human skeletal disease. Integration of large scale
mouse phenotype data with GWAS (20, 22) and other cross-
species multi-”omic” datasets (47) thus provide a rich resource
to identify new genes and mechanisms involved in the
Frontiers in Endocrinology | www.frontiersin.org 6
pathogenesis of osteoporosis and monogenic human skeletal
disorders (65, 68, 69).

Zebrafish
More recently, zebrafish have been developed as an animal
model for functional evaluation of genes linked to the skeleton
(70, 71). As well as showing changes in bone density and
microarchitecture (72), gene deletion can lead to bone fragility
as recognized by the accumulation of fractures in the fin (73–75),
and the ribs (76). Zebrafish have several advantages over mice,
making experiments quicker and less expensive: they are highly
fecund, laying up to 300 eggs a week; phenotypes may be evident
at the larval stage (skeletal elements develop by four days);
embryos develop externally, enabling genetic manipulation
at the single cell stage. In addition, larvae are translucent,
allowing dynamic visualization of skeletal cell behavior, for
which several transgenic reporter lines are available (77, 78).
Embryonic lethality is rare with fish able to survive despite
mutations leading to a complete absence of bone tissue, as they
are supported by water as they swim, which limits loading of
malformed skeletal elements (79). As well as generating
knockouts, the CRISPR/Cas9 system has proven highly
efficient in zebrafish, such that a homozygous null phenotype
is already detected in G0s (mosaics, crispants) in larval and adult
skeleton, therefore allowing rapid screening of candidate genes
(80, 81). In addition, fish scales represent a good model for
performing subsequent organ cultures for drug screening (82).
OBSTACLES AND OPPORTUNITIES

GWAS Data Sets
Several historical obstacles to functional evaluation of genetic
signals related to osteoporosis have now been overcome. For
example, we now have well-powered GWAS, through which
hundreds of genetic loci have been robustly identified. That said,
only relatively small GWAS datasets are available relating to
endophenotypes obtained using methods such as HR-pQCT,
which are helpful in determining the mechanisms by which
genetic pathways influence overall bone strength as reflected by
BMD/eBMD. In addition, genetic studies in osteoporosis have
largely been confined to cross sectional analyses, with only
limited studies examining associations with longitudinal
changes, exemplified by a previous look up of adult GWAS
hits in BMD acquisition in adolescents (83), and a recent GWAS
of pediatric bone accrual (84).

Resources to Support Functional Studies
Osteoblast eQTL datasets based on larger samples are being
generated, which will improve the accuracy of, for example,
co-localization studies. The IFMRS knowledge portal is bringing
together all relevant functional data, making it easier to perform
functional annotation of large gene sets. Functional annotation
has been advanced by characterization of the transcriptome of
different cell types including osteocytes, the generation of over
7,000 knockout mouse lines, and the development of zebrafish as
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a rapid-throughput screening tool. However, although homology
across human/mouse/zebrafish is good, there are still gaps, and
difficulty in accessing bone samples to characterise expression in
human tissue remains a challenge. In addition, it is technically
challenging to obtain single cells from mineralized tissues,
hindering evaluation of bone cell transcriptomics in vivo. A
further limitation is that datasets available for in silico analysis
have an inherent bias because it is only possible to analyze and
interrogate genes that have already been annotated or gene
functions/pathways that are already known. Furthermore, it is
difficult to “quality control” the data that is interrogated. For
example, there are several papers that assign different activities to
PLS3 but no clear function for the protein has yet emerged and it
is still unclear whether its major role is in osteoblasts or
osteoclasts or both (85).

Funding
The funding underpinning many of the resources used to
support functional analyses of genetics data is finite, such as
the IMPC consortium and IFMRS knowledge portal (44). In
addition, given the myriad of tools available, and the range of
scientific disciplines involved, the different research groups
working in this area tend to pursue varying approaches.
Functional follow-up of genetic signals is often performed in
the context of specific projects, with the result that analyses are
time- and resource limited. Funding models are generally in the
form of fellowships, PhD studentships or project grants focussed
on initial data collection; in contrast, it can be relatively difficult
to obtain funding to support functional follow-up studies of
previously collected GWAS data. Nevertheless, given the current
pause in new human data collections due to the COVID-19
pandemic, arguably, greater priority should now be given to
analyzing outputs of previous data collections.
FUTURE DIRECTIONS

Given the success of genetic discovery in delivering new
therapies, including anabolic treatments for osteoporosis,
there is a strong case for harnessing this expanding repertoire
of tools to functionally annotate the array of genetic signals
for osteoporosis-related phenotypes that have already been
identified. However, new strategies need to be developed to
fully integrate multi-”omic” datasets with those relating to
human monogenic and complex diseases, and equivalent
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datasets from zebrafish and mice, and potentially other
species. Furthermore, it will be essential to establish large
collaborative groups of experts with the necessary skillsets to
harness these. Ultimately, a roadmap of functional assessments
needs to be established as a coordinated effort, if the emerging
wealth of genetic discoveries is to be successfully translated
into new therapies for osteoporosis. The Genomics of
Musculoskeletal Traits Translational network (GEMSTONE
www.cost-gemstone.eu/) is a leading example of how
investigators in the field from a range of different disciplines
can come together to coordinate functional evaluation across
genes and pathways, promote interactions between experts from
different fields, and limit duplication of efforts across teams.
Whereas the initial focus of GEMSTONE has been to educate
and disseminate through publications and meetings, a similar
approach is needed to construct an effective, multi-disciplinary,
research collaboration, in order to fully exploit the exciting
opportunities for pursuing functional genomics studies
in osteoporosis.
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GLOSSARY

EWAS epigenome-wide association study
eQTL expression quantitative trait locus; a genetic locus associated with

gene expression (transcript) levels in a particular tissue
GWAS genome wide association study
HR-
pQCT

High resolution peripheral quantitative computed tomography

MicroCT Micro computed tomography
mQTL methylation quantitative trait locus; a genetic locus associated with

DNA methylation levels in a particular tissue
pQCT peripheral quantitative computed tomography
pQTL protein quantitative trait locus; a genetic locus associated with protein

levels in a particular tissue
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