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Thyrotropin-releasing hormone (TRH) is an important endocrine agent that

regulates the function of cells in the anterior pituitary and the central and

peripheral nervous systems. By controlling the synthesis and release of thyroid

hormones, TRH affects many physiological functions, including energy

homeostasis. This hormone exerts its effects through G protein-coupled

TRH receptors, which signal primarily through Gq/11 but may also utilize

other G protein classes under certain conditions. Because of the potential

therapeutic benefit, considerable attention has been devoted to the synthesis of

new TRH analogs that may have some advantageous properties compared with

TRH. In this context, it may be interesting to consider the phenomenon of

biased agonism and signaling at the TRH receptor. This possibility is supported

by some recent findings. Although knowledge about the mechanisms of TRH

receptor-mediated signaling has increased steadily over the past decades, there

are still many unanswered questions, particularly about the molecular details of

post-receptor signaling. In this review, we summarize what has been learned to

date about TRH receptor-mediated signaling, including some previously

undiscussed information, and point to future directions in TRH research that

may offer new insights into the molecular mechanisms of TRH receptor-

triggered actions and possible ways to modulate TRH receptor-mediated

signaling.
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Introduction

Thyrotropin-releasing hormone (TRH), also termed thyroliberin, is a tripeptide

(pGlu-His-Pro-NH2) hormone primarily involved in regulating pituitary function. Its

main role is to maintain thyroid hormone homeostasis through regulation of thyroid-

stimulating hormone secretion (Hoermann et al., 2015). However, TRH may cause

different non-thyroidal effects as well (Fröhlich and Wahl, 2019). It has been observed

that TRH is involved in the regulation of thermogenesis, feeding behavior and water

intake (Choi et al., 2002), and it can play a role in the pathophysiology of major depression

disorder (Tsuru et al., 2013). TRH as well as TRH receptors (TRH-R) are conserved from

man to bony fish demonstrating the importance of this peptide for all vertebrates

including mammals (Harder et al., 2001a). The widespread distribution of TRH and
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TRH receptors in several non-neuronal tissues suggests

additional important functions for this neuropeptide, well

beyond its classical role within the hypothalamic-pituitary-

thyroid axis (Gary et al., 2003). In fact, TRH has been found

to act as a multifunctional hypophysiotropic factor in vertebrates

(Galas et al., 2009).

TRH signals are transmitted across the plasma membrane by

TRH receptors, which are instrumental in converting

extracellular ligand binding into intracellular signaling events

(Engel and Gershengorn, 2007). TRH receptors belong to the

superfamily of receptors coupled to GTP-binding proteins

(GPCRs), the largest group of transmembrane spanning

proteins in the vertebrate genome. These receptors are

involved in a range of signaling pathways regulated by G

proteins, including phosphoinositide-specific phospholipase C

(PLC), adenylyl cyclase (AC), mitogen-activated protein kinase

(MAPK), and calcium/calmodulin-dependent protein kinase

(CAMK) (Sun et al., 2003). The involvement of certain

intracellular signaling cascades triggered by TRH receptors

may depend on the concrete experimental conditions. Among

other molecules also β-arrestins as key regulators of GPCR

signaling and trafficking can distinctively participate in both

TRH receptor-initiated signal transmission and desensitization.

This review will summarize current knowledge about TRH

receptors and the molecular basis of signaling processes regulated

by these receptors. Special attention will be focused on potential

cytoprotective and neuroprotective effects of TRH and its analogs

and the molecular mechanisms underlying these beneficial

effects. Understanding the physiological role of TRH receptors

and uncovering the molecular mechanisms of signal

transduction processes regulated by these receptors represent

an important basis for specific and effective pharmacological

modulation of this complex signaling system.

Thyrotropin-releasing hormone
receptors

Thyrotropin-releasing hormone receptors are divided into

three subtypes, TRH-R1, TRH-R2, and TRH-R3. In humans,

there is only one type of TRH-R, which is designated TRH-R1.

Several other species of mammals including rodents express a

second type of the receptor, TRH-R2. TRH-R3 is together with

TRH-R1 expressed in birds. Despite the fact that both TRH-R1

and TRH-R2 stimulate the same signaling pathway, they are

distributed differently in the brain and peripheral tissues (Sun

et al., 2003). In general, TRH-R1 is thought to be mainly involved

in regulating neuroendocrine responses, whereas TRH-R2

mainly mediates neurotransmitter effects (Monga et al., 2008).

Thus, these receptor subtypes might have distinct biological

functions. However, a study by Thirunarayanan et al. (2013)

revealed that the TRH-R agonist taltirelin exerts its effects in the

mouse central nervous system primarily through TRH-R1. These

data suggest that the specific involvement of TRH-R subtypes is

likely to be highly dependent on the type of agonist and the

experimental model. Previous studies have shown that TRH-R1

and TRH-R2 have similar binding affinity for TRH and both

stimulate the phosphoinositide/calcium signaling pathway. By

way of comparison with TRH-R1, TRH-R2 was found to be more

rapidly internalized and greatly downregulated after TRH

binding (O’Dowd et al., 2000). Additionally, TRH-R2 exhibits

a higher basal (ligand-independent) signaling activity than TRH-

R1 (Wang and Gershengorn, 1999). The function and tissue

distribution of TRH-R3 was recently investigated in chicken (Li

et al., 2020). The tissue distribution and amino acid sequences of

TRH-R1, TRH-R2, and TRH-R3 were previously compared in a

teleost fish, medaka. The nucleotide and amino acid sequences of

the different subtypes of TRH-R in medaka are 44%–60% and

48%–66% identical, respectively (Mekuchi et al., 2011).

Structure and activation of the
thyrotropin-releasing hormone receptor

TRH-R is a member of the rhodopsin/β-adrenergic receptor
subfamily of GPCRs (Kakarala and Jamil, 2014). The cDNA

encoding pituitary TRH-R was originally isolated from mice

(Straub et al., 1990). Then, human TRH-R was cloned (Duthie

et al., 1993). Although the crystal structure of TRH-R has not yet

been solved, its spatial organization is predictable. It has an

extracellular amino terminus, typical seven transmembrane

domains (TM), three extracellular loops (EL1, 2, and 3) with

several extracellular glycosylation sites and disulphide bond

between the first and second EL, three intracellular loops (IL1,

2 and 3), and a cytoplasmic carboxyl tail. Schematic amino acid

sequence structure and topology of TRH-R is depicted in

Figure 1. Analysis of TRH-R expression in GH3 cells revealed

two molecularly distinct receptor splice variants which differ in

the presence or absence of a 52-amino acid segment in the

C-terminal tail of TRH-R but not in the signaling

characteristics (de la Peña et al., 1992). Upon TRH binding,

both short and long isoforms of TRH-R stimulate formation of

IP3 through Gq/11α protein and release of Ca2+ from intracellular

stores (Lee et al., 1995).

Recently, the 3D structural models for TRH-R subtypes were

predicted from amino acid sequences and provided in the

AlphaFold database (Jumper et al., 2021; Varadi et al., 2021).

Comparison of the 3D structures of rat TRH-R1 (Figure 1C), rat

TRH-R2 (Figure 1D), and chicken TRH-R3 (Figure 1E) revealed

several differences in IL3, the extracellular N-terminus, and the

cytoplasmic C-terminal tail. First, the α-helical structure of the

transmembrane domain TM5 in rat TRH-R2 continues to the

edge of IL3, resulting in IL3 being shorter than in rat TRH-R1

and chicken TRH-R3. Second, the N-terminal and C-terminal

tails of rat TRH-R2 are shorter than those of rat TRH-R1 and

chicken TRH-R3. Third, the N-terminal tails of rat TRH-R2 and
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chicken TRH-R3 are more structured near the TM1 than those of

rat TRH-R1. Compared with chicken TRH-R3, the C-terminal

tails of both rat TRH-R subtypes contain long α-helices that have
different orientations due to different lengths and structures of

the turns at the beginning of the C-terminal tail.

The extracellular loops of TRH-R are fundamental for the

initial interactions with a ligand. It has been proposed that

Asn289 and Ser290 of EL3 of rat TRH-R? ensure hydrogen

bond interactions with the N-terminal part of the TRH

molecule (Han and Tashjian, 1995a). However, Tyr188,

Tyr192, Phe196, and Phe199 from EL2 and the upper part of

the fifth transmembrane helix of TRH-R? cloned from GH4C1 rat

pituitary cells are also important for interaction with the histidine

residue of TRH (Han and Tashjian, 1995b). Besides that, direct

binding contacts between pyroGlu of TRH and two residues

(Tyr106 and Asn110) in TM3 of mouse TRH-R? were described

(Perlman et al., 1994a; Perlman et al., 1994b). Subsequently, two

additional direct contact sites between TRH and mouse TRH-R?

were revealed: interaction between Tyr282 in TM6 and His of

TRH, and interaction between Arg306 in TM7 and ProNH2 of

the ligand (Perlman et al., 1996). Molecular models of the mouse

TRH-R? binding pocket were used to describe known

interactions but also to identify other groups that are

potentially involved in binding the ligand (Laakkonen et al.,

1996). Residues that bind TRH form “entry channel” to the TM

binding pocket (Perlman et al., 1997). Interestingly, it was shown

FIGURE 1
Structural models of TRH receptor. Shown is schematic two-dimensional topology (A) and ribbon model of rat TRH-R1 with amino acid
residues possibly involved in TRH binding (B) and three-dimensional (3D) models of TRH-R1 (C), TRH-R2 (D) and TRH-R3 (E). TRH-R is an integral
membrane protein containing seven membrane-spanning helices with an extracellular N-terminus and an intracellular C-terminus. The
transmembrane helices are connected by three extracellular and three intracellular loops. Asn3 and Asn10 are glycosylated (“sugar trees” on the
N-terminus). Cys98 in the first andCys179 in the second extracellular loop are linked by a disulphide bond. Twenty C-terminal amino acids (in red) are
missing in the short form of TRH-R. Residues 335-337 (CNC) and phosphorylatable residues in the C-terminal region and IC3 loop are denoted by the
one-letter code; those already shown to by critical for desensitization/internalization of the receptor are highlighted in yellow. C, Cys; N, Asn; S, Ser;
T, Thre; Y, Tyr; -S-S- disulphide interaction. 3D structural models for rat TRH-R1 with UniProt ID Q01717 (C), rat TRH-R2 with UniProt ID
Q9QWW3 (D), and chicken TRH-R3with UniProt ID A0A4P9IVJ2 (E)were provided by the AlphaFold Database (https://alphafold.ebi.ac.uk). The color
scheme represents the model confidence. AlphaFold produces a per-residue confidence score (pLDDT) between 0 and 100. The colors dark blue,
light blue, yellow, and orange represent very high (pLDDT > 90), medium (90 > pLDDT > 70), low (70 > pLDDT > 50), and very low (pLDDT < 50)
confidence, respectively. Some regions below 50 pLDDT may be unstructured in isolation. The figure was created by BioRender.
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that the disulphide interaction between extracellular cysteines

Cys98 in EL1 and Cys179 in EL2 of rat and mouse TRH-R? is not

involved in receptor activation but is essential for preservation of

the correct and high affinity conformation of the receptor

(Perlman et al., 1995; Cook et al., 1996). Despite the fact that

the conformational states of TRH-R1 and TRH-R2 are similar

after TRH binding, surprisingly, optimized models of mouse

TRH-R indicate that Trp279 mediates the direct interaction

between TRH and TRH-R2 but not TRH-R1 (Deflorian et al.,

2008). Recently, TRH and its analog taltirelin were reported to

differ in their interactions with some residues of the human

TRH-R binding pocket (Yang et al., 2022). According to this

study, the hydrogen bonds linking TRH to Tyr192 and

Asn289 from the TRH-R binding pocket are stronger and the

binding pocket is narrower than in the case of taltirelin. Upon

binding of TRH or taltirelin, different conformational changes

also occur in TM6 and TM7 (Yang et al., 2022). These structural

changes may be responsible for the lower signaling potency but

higher intrinsic efficacy of taltirelin compared to TRH, as

taltirelin acts as a superagonist at human TRH-R

(Thirunarayanan et al., 2012).

It is known that the C-terminal tail of TRH-R plays an

important role in interactions with β-arrestin as well as in the

process of receptor internalization. β-Arrestin binds to

phosphorylated sites in the C-terminus of TRH-R. Receptor

desensitization and internalization seem to be dependent on

phosphorylation of specific phosphosites in the receptor tail.

A study from 1993 demonstrated that amino acids (AA) 335-

337 in the C-terminus of mouse TRH-R are important for ligand

driven receptor internalization (Nussenzveig et al., 1993a). The

same AA sequence also appears to be important for sequestration

of functionally uncoupled TRH-R and to play a role in the

prevention of constitutive internalization (Petrou et al., 1997).

In 2001, the C-terminal tail of rat TRH-R1 was studied in detail

to determine which parts of the C-terminus are involved in these

processes (Drmota and Milligan, 2000; Groarke et al., 2001).

Jones and coworkers defined a region in the carboxyl tail of TRH-

R1 from GH3 cells that binds β-arrestin in response to binding of

an agonist that is critical for desensitization and internalization of

the TRH receptor (Jones et al., 2007). TRH stimulates

phosphorylation between AA 355-365 and 371-391, and

phosphorylation of Thr365 was found to be critical for β-
arrestin recruitment and subsequent desensitization and

internalization of rat TRH-R1 (Jones and Hinkle, 2008). The

rate of phosphorylation and dephosphorylation was found to

depend not on the C-terminal sequence of the TRH-R1 but

rather on regions outside the cytoplasmic tail (Gehret and

Hinkle, 2010).

Because mutations in some GPCRs have been shown to be

involved in pathological conditions in humans (Fukami et al.,

2018), TRH-R was examined for the presence of mutations in

various pituitary adenomas (Dong et al., 1996; Faccenda et al.,

1996). Surprisingly, an intact DNA coding sequence of TRH-R

was detected in all human pituitary adenomas examined (Dong

et al., 1996; Faccenda et al., 1996), making it possible that some

other components of the TRH-R signaling pathway are involved

in pituitary tumorigenesis. In contrast, two different inherited

mutations in the TRH-R gene were found in a patient suffering

from hypothyroidism, resulting in decreased or even absent

biological function were found in a patient suffering from

hypothyroidism (Collu et al., 1997). One of the mutations was

located at position 49, resulting in replacement of arginine

(CGA) with a stop codon (TGA) at peptide position 17 in the

maternal allele. A mutation of the paternal allele consists of a

deletion of nucleotide positions 343 to 351 and the replacement

of alanine (GCC) by threonine (ACC) at position 352 (Collu

et al., 1997). There are other examples of mutant TRH-R

associated with hypothyroidism (Bonomi et al., 2009;

Koulouri et al., 2016; García et al., 2017). Another patient

(Collu et al., 1997) was diagnosed with a homozygous

nonsense mutation at position 17 (R17X) similar to that

mentioned above (Bonomi et al., 2009). A point mutation at

proline 81 (P81R) in TM2 of TRH-R or an I131T mutation at a

highly conserved hydrophobic position in IL2 have also been

associated in hypothyroidism (Koulouri et al., 2016).

GPCR-mediated signaling has been shown to be modulated

by posttranslational modifications of a receptor, such as

glycosylation, phosphorylation, and palmitoylation

(Patwardhan et al., 2021). No detailed information is available

on TRH-R glycosylation, but phosphorylation of this receptor

has been studied quite extensively. It was found that dimerization

of rat TRH-R1 enhances agonist-dependent receptor

phosphorylation (Song et al., 2007) and that phosphorylation

of the rat TRH-R plays an important role in subcellular

trafficking of the receptor (Jones and Hinkle, 2009). A study

examining the role of cysteine residues on the carboxyl tail of

mouse TRH-R1 and their palmitoylation revealed that a single

palmitoylation site in the proximal carboxyl tail is sufficient to

constrain the receptor in an inactive conformation (Du et al.,

2005). Interestingly, the long isoform of rat TRH-R can be

posttranslationally modified by ubiquitination, which allows

degradation of misfolded, newly synthesized receptors but is

not required for proper signal transduction or receptor

internalization (Cook et al., 2003).

Thyrotropin-releasing hormone receptor
desensitization and internalization

Early on, TRH-R, similar to other GPCRs, was found to be

rapidly phosphorylated and desensitized after binding of an

agonist (Anderson et al., 1995; Jones et al., 2007).

Phosphorylation is carried out by a family of Ser/Thr protein

kinases, the G protein-coupled receptor kinases (GRKs). In the

case of rat TRH-R, it is mainly GRK2 that binds exclusively to

and inhibits Gq/11-coupled receptors (Heximer et al., 1997). The

Frontiers in Cell and Developmental Biology frontiersin.org04

Trubacova et al. 10.3389/fcell.2022.981452

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.981452


interaction of GRK2 with the Gqα subunit can be enhanced by

tyrosine phosphorylation by c-Src kinase (Mariggio et al., 2006).

However, GPCRs can also be phosphorylated by other kinases

such as protein kinase (PKA) or protein kinase C (PKC). While

there is no information on the involvement of PKA in the

desensitization of TRH-R, the possible role of PKC in the

desensitization of the receptor was described by Grimberg

et al. (1999) in AtT20 pituitary cells. The phosphorylated

receptor attracts β-arrestin to the plasma membrane, where it

disrupts interaction between the receptor and its cognate G

protein, thereby terminating signal transduction. TRH-R with

the bound agonist is then internalized along with β-arrestin via

clathrin-coated vesicles and either recycled or degraded as

mentioned above (Figure 2). It has been found that

internalized mouse TRH-R? can return to the membrane

within 20 min after removal of the agonist (Ashworth et al.,

1995). Interestingly, a study performed with rat TRH-R fused to a

Timer protein showed that a substantial fraction of internalized

TRH-R2 is not recycled even after several hours, but rather the

plasma membrane is replenished with new receptors from the

intracellular pool (Cook and Hinkle, 2004b). This finding was

basically confirmed by further experiments on different model

cells (Jones and Hinkle, 2009). Prolonged agonist treatment may

lead to subcellular redistribution not only of TRH-R but also of

its cognate G proteins. However, rat TRH-R1 and Gq/11α are

internalized and redistributed on different time scales in response

to agonist stimulation (Drmota et al., 1998a; Drmota et al., 1999).

In contrast to the long isoform of rat TRH-R1, internalization,

trafficking, and downregulation proceed much slower for the Gq/

11α subunits (Drmota et al., 1998b). It was also observed that both

Gqα and G11α are comparably downregulated after cell exposure

to TRH (Kim et al., 1994). Another study demonstrated that not

only Gα but also Gβ proteins were redistributed and

downregulated in response to TRH (Svoboda et al., 1996).

Interestingly, prolonged treatment of cells with TRH led to

marked translocation of Gq/11α from detergent-insensitive

membrane domains to the bulk membrane phase (Pesanova

et al., 1999), although rat TRH-R1 is predominantly not

localized in lipid rafts (Rudajev et al., 2005). The possible role

of membrane rafts in TRH-R-mediated signaling remains

unclear.

The molecular mechanisms underlying desensitization,

trafficking, and resensitization of TRH-R have been the

subject of intense investigation, particularly in the late 1990s

and early 21st century (Drmota et al., 1998a; Yu and Hinkle,

1998; Zaltsman et al., 2000; Cook and Hinkle, 2004b; Jones and

FIGURE 2
Intracellular trafficking of TRH receptor subtypes. The activation of TRH-R with TRH results in dissociation of Gα and Gβγ and an increase in
intracellular calcium. Receptor is then desensitized through phosphorylation by GRK2 and β-arrestin binding. In this way, coupling between the
receptor, G protein and effector is abolished and signaling terminated. β-Arrestin functions as an adaptor protein which recruits proteins from the
endocyticmachinery (i.e., clathrin, AP-2 and others). Subsequently, receptor is sequestered via clathrin-coated vesicles. Internalized TRH-R can
then undergo two different processes depending on the receptor subtype and interaction with β-arrestin. TRH-R2, belonging to class A receptors,
dissociates from β-arrestin immediately upon internalization. TRH is removed and receptor is dephosphorylated by protein phosphatase (PP). TRH-
R2 is then recycled and targeted to the plasma membrane. On the other hand, TRH-R1 which belongs to the class B receptors, forms stable
complexes with β-arrestin in endocytic vesicles and can either be degraded or slowly recycled to the plasma membrane. The figure was created by
BioRender.
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Hinkle, 2009). It was found that stimulation by agonists results in

internalization of rat TRH-R via clathrin-coated pits and that,

after endocytosis, vesicles containing phosphorylated receptors

fuse with rab5-positive vesicles, which form early sorting

endosomes rich in rab5 and rab4. Interestingly,

dephosphorylated TRH-Rs accumulate in rab4-positive, rab5-

negative recycling endosomes, but the mechanisms responsible

for this sorting are not yet known. It appears that protein

phosphatase 1 is involved in dephosphorylation of the

receptor but the details of how the enzyme is targeted to the

receptor remain unclear (Hinkle et al., 2012). There is some

evidence that phosphorylation/dephosphorylation of proteins

interacting with Rab4 or Rab5, depending on the amount of

cellular β-arrestin2, may underlie, at least in part, the

development of endocytic processes triggered by agonist

stimulation of rat TRH-R (Drastichova et al., 2022).

In general, TRH-R-mediated signaling is markedly

desensitized after TRH treatment. Importantly, the IP3
response to TRH shows homologous desensitization, whereas

the Ca2+ response shows heterologous desensitization. This can

be explained by the fact that depletion of intracellular Ca2+ pools

prevents the response to other stimuli (Yu and Hinkle, 1998). It

has been observed that the magnitude of the Ca2+ response

depends not only on the expression level of the receptor but

also on Gq/11α, which may strongly influence the process of

desensitization (Novotny et al., 1999; Ostasov et al., 2008).

Interestingly, significantly lower sensitivity to TRH stimulation

was observed in cells after cholesterol depletion, suggesting that

the intact structure of plasmamembranes is crucial for functional

coupling between the long isoform of rat TRH-R1 and Gq/11α
(Ostasov et al., 2007; Brejchova et al., 2015).

Extremely important molecules that modulate signal

transduction and trafficking of many GPCRs and are required

for receptor internalization, are β-arrestins. β-Arrestins are

cytosolic proteins that were originally identified as proteins

that stop signal transduction by binding to receptors. It is

now clear that the role of β-arrestins is more complex, as they

can also regulate GPCR trafficking and cellular signal

transduction. There are two subtypes of β-arrestins, β-
arrestin1 and β-arrestin2, which are ubiquitously expressed

(Tian et al., 2014). After recruitment to the phosphorylated

receptor, they serve as adaptors to link the receptor to

components of the endocytic machinery, such as clathrin and

adaptor protein 2 (AP-2). The amount of cellular β-arrestin2
appears to be a key factor determining the phosphorylation

pattern of the AP-2 α subunit or some proteins interacting

with the AP-2 complex (Drastichova et al., 2022). β-Arrestins
also function as scaffolding signaling adaptors. They can recruit

Src kinases to receptors (Luttrell et al., 1999) and assemble

components of MAPK cascades such as Raf-1, MEK1, and

ERK1/2 to promote signal transduction (Luttrell et al., 2001;

Coffa et al., 2011; Cassier et al., 2017). They can bind a wide range

of other proteins and are translocated to the nucleus, where they

regulate gene expression (Kang et al., 2005; Rosano et al., 2013).

β-Arrestins are critical for regulating TRH-R function and play

an important role in receptor desensitization (Groarke et al.,

2001; Jones and Hinkle, 2005). The intracellular C-tail domain of

rat TRH-R has been identified as important for β-arrestin-
dependent receptor internalization (Hanyaloglu et al., 2001).

Interestingly, rat TRH-R subtypes have been shown to be

differentially regulated by β-arrestin1 and β-arrestin2 and the

interactions of TRH-R with β-arrestin can be altered by the

formation of receptor hetero-oligomers (Hanyaloglu et al., 2002).

Experiments on mouse embryonic fibroblasts lacking Gq/11α
have shown that these G proteins are not necessary for agonist-

induced mouse TRH-R internalization but are required for

triggering Ca2+ response (Yu and Hinkle, 1999). In addition,

these authors used a truncated TRH receptor lacking potential

phosphorylation sites in the cytoplasmic C-terminus, and they

found that such a receptor is able to transduce signals but does

not internalize or causemembrane localization of β-arrestin (Yu and
Hinkle, 1999). These results demonstrate that calcium signaling by

mouse TRH-R requires coupling to Gq/11α, but TRH-dependent
binding of β-arrestin and sequestration do not.

Rather unexpectedly, it was observed in two independent

studies that prolonged treatment of cells with TRH can lead to an

upregulation of the number of rat TRH-R1. A significant increase

in receptor protein and its subcellular redistribution was

detectable after only 5 h (Drmota et al., 1999), and it was

more pronounced after 48 h of treatment (Cook and Hinkle,

2004a). The increased TRH-R1 expression could only be partially

attributed to changes in receptor mRNA, which increased only

slightly. TRH-R1 upregulation was mimicked by phorbol ester

and blocked by agents that inhibit PKC and the calcium response,

and the number of TRH-R1 was slowly reversible after hormone

withdrawal. It appears that TRH increases the number of

receptors by a complex mechanism that requires signal

transduction but not endocytosis of the receptors (Cook and

Hinkle, 2004a). It was also found that long-term treatment of

cells with TRH can alter the expression of several proteins

(Drastichova et al., 2010). A similar finding was noted

previously using gene array technology in pancreatic beta

cells, where TRH significantly stimulated several groups of

genes, including GPCRs, cell cycle regulators, protein turnover

factors, growth factors and those involved in insulin secretion,

endoplasmic reticulum traffic mechanisms, and DNA

recombination (Luo and Yano, 2005). Thus, prolonged

activation of TRH-R can have a number of consequences, in

addition to desensitization of the receptor.

Molecular complexes of the thyrotropin-
releasing hormone receptor

Homo- and heterodimerization of GPCRs or tight

interactions with other cellular proteins is a common
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phenomenon that has important implications for the

regulation of cellular processes (Dijkman et al., 2018).

Many types of receptors occur as dimers because in this

state they possess high-affinity binding sites for interaction

with ligands. It has been observed that TRH receptors can

form homo- and hetero-oligomers in living cells. The

formation of TRH-R1–TRH-R2 hetero-oligomers may affect

the kinetics of receptor internalization. Rat TRH-R2 has been

found to be internalized more slowly than TRH-R1

(Hanyaloglu et al., 2002). TRH-R subtypes are also divided

into two classes depending on the type of β-arrestin they

preferentially use for internalization and whether or not they

internalize with bound β-arrestin (Figure 2). TRH-R1, which

belongs to class B receptors, uses both β-arrestins equally and
internalizes with β-arrestin via clathrin-coated vesicles. TRH-

R2 binds preferentially to β-arrestin2, which dissociates from

the receptor after its internalization, and thus belongs to the

class A receptors (Hanyaloglu et al., 2002). Homo- and hetero-

oligomerization of TRH-Rs can affect their trafficking and

represents a possible mechanism for the differential cellular

responses elicited by agonist stimulation. The differences in

signaling and internalization of TRH-R1 and TRH-R2 may be

important for the engagement of these receptor subtypes in

mammalian physiology (O’Dowd et al., 2000).

The existence of homomeric TRH-R complexes was first

demonstrated by bioluminescence resonance energy transfer

(BRET) method using the construct of rat TRH-R1 with

bioluminescent enzyme (Kroeger et al., 2001). This study,

which focused on regulated dimerization of the rat TRH-R1,

revealed that dimerization of this receptor is probably

insufficient to stimulate downstream signaling pathways.

On the other hand, dimeric forms of TRH-R1 may play a

role in agonist-induced receptor internalization and

endocytosis (Song and Hinkle, 2005). It has been reported

that stimulation with TRH increases the formation of rat

TRH-R1 dimers (Zhu et al., 2002). Dimerization of rat TRH-

R1 enhances its phosphorylation, and receptor dimerization

may therefore have a significant effect on the efficacy and

duration of signal transduction (Song et al., 2007).

In 1993, it was proposed that TRH-R can form complexes

with agonists, G proteins, and probably phospholipase C after

agonist stimulation by an agonist using mouse pituitary TRH-R

(Nussenzveig et al., 1993b). Subsequently, Petrou and Tashjian

(1998) investigated the hypothesis that Gqα and G11α need not

dissociate from receptors during internalization at the plasma

membrane, and they confirmed that TRH-R and the G11α
subunit are internalized together in clathrin-coated vesicles in

GH4C1 cells. Later studies based on the use of clear native

polyacrylamide gel electrophoresis revealed the presence of

preassembled complexes of rat TRH-R1 and Gq/11α
(Drastichova and Novotny, 2012a). Treatment with TRH

resulted in the dissociation of high-molecular-weight

complexes of Gq/11α, the formation of low-molecular-weight

complexes containing Gq/11α, and the concomitant

translocation of this protein to the cytosol (Drastichova and

Novotny, 2012b). In this context, it is worth noting that TRH

receptors can signal persistently under appropriate conditions

and that sustained signaling correlates with G protein and

receptor levels. It has been suggested that persistent signaling

by TRH receptors occurs when sufficient levels of agonist/

receptor/G protein complexes are present and that TRH-R2

forms and maintains these complexes more efficiently than

TRH-R1 (Boutin et al., 2012). It is reasonable to speculate

that the formation of complexes of TRH-R, G proteins, and

possibly other components such as G protein regulatory proteins

and adaptors may be important for receptor-mediated signal

transduction in both conventional and unconventional ways. It

has been shown that the presence or absence of different

interacting partners of human TRH-R can strongly influence

the mobility of the receptor in the plasma membrane, further

supporting the notion of the existence of receptor complexes

(Moravcova et al., 2018). Further studies are needed to elucidate

the role of TRH-R complexes and other participants in TRH

receptor-mediated signaling.

Thyrotropin-releasing hormone
receptor-mediated signaling

TRH exerts its biological responses via TRH-R, a

transmembrane receptor found predominantly in the

thyrotropic cells of the anterior pituitary, but has also

been detected in other cell types (Gershengorn and

Osman, 1996; Mellado et al., 1999; Minakhina et al.,

2020). TRH-R is classically coupled to Gq/11 proteins, and

its activation by an agonist leads to stimulation of PLCβ. This
enzyme catalyzes the hydrolysis of phosphatidylinositol-4,5-

bisphosphate (PI(4,5)P2) to IP3 and DAG. These 2 s

messengers initiate the mobilization of calcium from the

cell’s internal stores and the activation of PKC, respectively.

Intracellular calcium and PKC then trigger a number of

cellular responses, including activation of MAP kinase

signaling cascades or regulation of ion channels (Hinkle

et al., 2012; Kanasaki et al., 2015; Joseph-Bravo et al.,

2016). Interestingly, activation of TRH-R can control

intracellular Ca2+ concentration in at least three different

ways (Figure 3). First, it mobilizes IP3-sensitive intracellular

calcium stores, resulting in an initial rapid increase in

intracellular Ca2+ concentration (Nelson and Hinkle,

1994a). Second, it stimulates the Ca2+ pump, which helps

to terminate the initial Ca2+ spike and shunts calcium ions

out of the cytosol (Nelson and Hinkle, 1994b). Finally,

activation of TRH-R may also affect the influx of Ca2+

from the extracellular environment that is responsible for

the sustained second phase of the Ca2+ response, which

appears to be mediated by PLC (Gollasch et al., 1993;
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Nelson and Hinkle, 1994a). From a recent study, the main

source of cytosolic Ca2+ after TRH treatment is the

endoplasmic reticulum (Rojo-Ruiz et al., 2021).

Nevertheless, TRH-R turned out to be able to activate more than

one second messenger system under certain circumstances. In

addition to the Gq/11-regulated PLC pathway, TRH-R may also

activate AC through direct interaction with the stimulatory Gs

protein (Paulssen et al., 1992a; Johansen et al., 2001b). In addition,

there is some evidence from experiments with GH3 cells that TRH-R

can couple to the inhibitoryGi proteins that do not cause activation of

AC (Paulssen et al., 1992a). Another study found that Gsα inXenopus
oocytes canmost likely couple the long isoform of rat TRH-R to PLC

activation and subsequent IP3 formation andCa2+-mediated response

(de la Peña et al., 1995). Prolactin release has been reported to be

driven by TRH-R, which is functionally linked to Gsα in lactotrophs

(Kineman et al., 1996), and the same interaction was found in GH4C1

rat pituitary tumor cells (Gordeladze et al., 1988). In addition to its

direct stimulatory effects on Gs, TRH stimulated the formation of

3′,5′cyclic adenosine monophosphate (cAMP) in GH4C1 prolactin-

producing cells, thereby activating cAMP-dependent PKA (Gautvik

et al., 1977). The effects of TRH on the increase in activity of ACwere

also found in the anterior pituitary of the rat (Brozmanova et al.,

1980). Furthermore, there are some data from GH3 cells suggesting

that TRH and other hormones from the hypothalamus likely

modulate levels of G proteins, thereby favoring appropriate

signaling (Paulssen et al., 1992b; Paulssen R. H. et al., 1992). G13α
and Gβγ have also been shown to contribute importantly to TRH-R-

mediated effects in GH3 cells (Miranda et al., 2005). The interplay of

secondmessenger systems and cross-talk between hormone signaling

systems is of great importance in the cellular response to extracellular

signals. The effects of TRH on AC or even cyclic nucleotide

phosphodiesterases remain controversial, as some studies refuted

these effects (Hinkle and Tashjian, 1977) and there are no recent

studies addressing this question. Activated TRH-R is likely to trigger

different effector systems that may elicit different responses in

different cells. The specific experimental conditions and the type

of cells/tissues are likely to be themost important factors determining

the specific molecular mechanism involved in TRH receptor-

mediated signaling. Further studies of post-receptor signaling

mechanisms are desirable to unravel the details at themolecular level.

Regulation of thyrotropin-releasing
hormone receptor-mediated signaling

The process of signal transduction from GPCRs to their

cognate G proteins and downstream targets is modulated by a

number of different factors. Among them, plasma membrane

FIGURE 3
Regulation of calcium release by TRH receptor. At first, TRH acting through the G protein coupled TRH-R activates the cleavage of PIP2 into IP3
and DAG. IP3 then triggers calcium release from intracellular stores 1). After that, calcium pumps drive Ca2+ away from the cytosol 2). Plasma
membrane-bound calcium channels are responsible for the second phase of calcium release from the extracellular space 3). Na+/Ca2+ exchanger
removes calcium from cells. The figure was created by BioRender.
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composition, various posttranslational modifications, and

interactions with regulatory proteins are the most important

and most frequently studied. As mentioned above, the

engagement of specific intracellular pathways and the outcome

of TRH-R-mediated signaling may also depend on cell type.

There are four families of heterotrimeric G proteins classified

by their α subunits (Gsα, Gi/oα, Gq/11α, and G12/13α) that regulate
specific downstream effectors and trigger specific pathways

through a variety of membrane-bound receptors. Besides that,

Gβγ dimers also contribute to the regulation of various effectors.

Previous studies have shown that TRH-R is quite promiscuous,

coupling predominantly to Gq/11 but also interacting with Gs and

Gi proteins in GH3 cells (Paulssen et al., 1992a; Johansen et al.,

2001b; Boutin et al., 2012). Binding of a ligand to TRH-R results

in an exchange of GDP for GTP at the Gα subunit. Subsequently,
Gα dissociates from the Gβγ dimer and both interact with various

downstream effectors such as PLCs, AC, phosphodiesterases,

protein kinases, or ion channels that trigger various signaling

pathways. The Gα subunit is then desensitized by its intrinsic

GTPase activity, which inactivates its function and thus regulates

the duration of the signal. The GTPase activity of the Gα subunit

remains active for only a short period of time and is accelerated

by regulators of G protein signaling (RGS) that function as

GTPase activating proteins (GAPs) (Stewart and Fisher, 2015).

Therefore, RGS proteins determine the extent and duration of

cellular responses initiated by many GPCRs, including TRH-R.

In addition to the 20 canonical mammalian RGS proteins that act

as functional GAPs, there are nearly 20 other proteins that carry

nonfunctional RGS homology domains, which often mediate

interaction with GPCRs or Gα subunits. RGS4, which inhibits

signaling through other receptors coupling to Gq/11 proteins in

different ways, was found to inhibit TRH-stimulated signaling

through mouse TRH-R1 and TRH-R2 to a similar extent.

Interestingly, other RGS proteins tested had no effect on

TRH-R-mediated signaling (Harder et al., 2001b). Modulation

of TRH-R-mediated signaling by RGS4 appears to be an

important mechanism for regulating receptor activity.

G protein-coupled receptor kinases (GRKs) are other

proteins that possess the RGS domain. There are seven GRKs

(GRK 1-7) (Komolov and Benovic, 2018). GRKs are soluble

proteins and therefore use different mechanisms to get close to

the vicinity of membrane-bound GPCRs and G proteins. Some of

them are prenylated, others are palmitoylated or are bound via

Gβγ. These enzymes preferentially phosphorylate receptors

occupied by an agonist. GRK2, a typical GPCR kinase,

consists of 689 amino acid residues and three domain

structures—N-terminal (catalytic) and C-terminal domains. It

interacts exclusively with members of the Gq/11α protein family.

It binds directly to activated Gqα subunits, inhibiting the

activation of downstream effectors. In addition to its function

in desensitizing receptors, GRK2 additionally regulate signal

transduction by binding to the Gqα subunit (Sallese et al.,

2000). The binding site for interaction with Gq/11α appears to

be located in the amino-terminal domain of GRK2, the domain

that shares homology with the RGS proteins. However, the actual

binding site of GRK2 differs from the binding sites of other RGS

proteins because it involves the COOH-terminus of its α5 helix

and not other parts of the RH domain that other RGS proteins

use (Sterne-Marr et al., 2003). Besides that GRK2 has been shown

to discriminate between members of the Gq/11α class (Day et al.,

2003). And as mentioned above, c-Src-mediated

phosphorylation of GRK2 enhances its interaction with Gqα
(Mariggio et al., 2006). GRK2 is one of the kinases that can

be selectively regulated by free Gβγ subunits and membrane

phospholipids. A thorough mutational analysis of the GRK2 PH

domain revealed that the interaction between GRK2, Gβγ
proteins, and negatively charged membrane phospholipids is

essential for appropriate phosphorylation of the receptor.

Experimental evidence suggests that downstream kinases such

as PKC play at most a minor role in agonist-induced

phosphorylation of TRH-R and suggests that receptor

phosphorylation is primarily mediated by GRK2 (Jones and

Hinkle, 2005; Jones et al., 2007; Gehret et al., 2010). As

indicated above, GRK2-mediated phosphorylation of TRH-R

is important not only for receptor desensitization but also for

potential hetero-oligomerization of the receptor and thus may

modulate specific cellular responses to agonist stimulation.

Effectors of thyrotropin-releasing
hormone receptor-mediated signaling

After activation of TRH-R, cognate G proteins and β-
arrestins regulate the function of various effector molecules,

which may lead to different cellular and physiological

responses. Besides PLC and AC, TRH-R appears to be able to

affect the function of MAPKs or phosphatidylinosil-3 kinase

(PI3K)/Akt and Ca2+/calmodulin (CaM)-dependent kinases

(CAMK). Activation of the PLC/PKC pathway and possibly

the AC/PKA pathway by TRH-R has been frequently

described in different animal and cellular models (Paulssen

et al., 1992b; Nussenzveig et al., 1993b; Johansen et al., 2001a;

Lei et al., 2001). Interestingly, both PKC and PKA appear to be

independently critical for the effects on glycogen synthase kinase-

3β (GSK-3β) mediated by TRH-R in rat hippocampal neurons

(Luo and Stopa, 2004). Endocrine secretion of TSH in rat

pituitary cells has been found to be controlled by CREB

phosphorylation via the activity of CaMKII and CaMKIV,

both of which are phosphorylated upon TRH stimulation

(Altobelli et al., 2021). Much less is known about the

involvement of other potential effectors of TRH-R.

Mitogen-activated protein kinases are evolutionarily

conserved serine/threonine-specific protein kinases that are

activated by a wide range of stimuli and regulate processes

such as cell proliferation, cell differentiation, or apoptosis. The

MAPKs are terminal kinases of cascades consisting of three
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sequentially activated protein kinases (Keshet and Seger, 2010).

They can be divided into three major families in mammals:

extracellular-signal-regulated kinases (ERKs), Jun amino-

terminal kinases (JNKs), and stress-activated protein kinases

(p38/SAPKs). The mode of activation of MAPKs depends on

cell type and receptor equipment. Upon activation, Gq/11α-
coupled receptors trigger various signals involved in the

control and regulation of all major members of the MAPK

signaling pathways. To increase signaling efficiency between

successive kinases in the cascade, increase signal fidelity by

restricting cross-talk between two parallel kinase cascades, and

target MAPKs to specific subcellular locations, MAPKs bind to

scaffold proteins. One of the most representative scaffold

molecule is β-arrestin, which can serve as a GPCR-regulated

scaffold for MAPK activation. Interestingly, in addition to

serving as downstream effectors, MAPKs can also act as

negative regulators of GPCRs. Two phosphosites (Ser14 and

Thr276) in β-arrestin were found to be critical for ERK1/2-

triggered intracellular sequestration of the receptor (Paradis

et al., 2015). Furthermore, it was shown that MAPK can

phosphorylate a specific region in β-arrestin2 (Thr178) after

internalization of the receptor complex of the receptor with β-
arrestin2 in endosomes. This phosphorylation then drives

signaling of the Raf-MEK-ERK1/2 cascade and plays a role in

the endosomal trafficking and signaling of GPCRs (Khoury et al.,

2014). There is some evidence that TRH-R may also affect the

MAPK cascades, particularly the ERK/MAPK signaling pathway.

TRH was observed to be able to stimulate MAPK activity in rat

anterior pituitary cells in either a PKC-dependent or PKC-

independent manner (Ohmichi et al., 1994a), and subsequent

study unravelled the possible role of Gβγ in PKC-independent

activation of ERK1/2 by TRH in COS-7 cells transfected with rat

TRH-R (Palomero et al., 1998). TRH-induced activation of

MAPK was shown to stimulate prolactin synthesis and

secretion in GH3 cells (Kanda et al., 1994; Kanasaki et al.,

1999). In the same cell model, TRH was found to affect the

prolactin promoter through activation of PKC and influx of Ca2+

from L-type Ca2+ channels, leading to induction ofMAPK (Wang

and Maurer, 1999). Interestingly, TRH-R-mediated activation of

the MAPK pathway in pituitary cells could be inhibited by

dopamine D2 receptors through Gi3 or Go proteins, suggesting

the ability of these proteins to inhibit MAPK through C-Raf and

B-Raf-dependent inhibition of ERK1/2 kinase (Ohmichi et al.,

1994b; Banihashemi and Albert, 2002). Smith et al. (2001)

demonstrated, using mouse TRH-R that activation of ERK1/

2 by TRH requires clathrin-dependent receptor endocytosis and

PKC but is insensitive to pertussis toxin and does not require Ras

or PI3K. Interestingly, TRH-induced tyrosine phosphorylation of

the epidermal growth factor (EGF) receptor appears to be

important for the complete activation of ERK1/2 by TRH in

GH3 cells (Wang et al., 2000). These data support the notion of a

close cooperation between TRH-R- and EGF receptor-mediated

signaling systems. There is some evidence that PI3K/Akt may

also be involved in TRH-R-mediated signaling (Jaworska-Feil

et al., 2010; Sosa et al., 2012). However, the exact mechanism of

how TRH-R may recruit the PI3K/Akt signalling pathway has

not yet been described. Figure 4 summarizes several ways in

which TRH-R may regulate MAPK signaling pathways via G

proteins and β-arrestin.
There is ample evidence that TRH-R-mediated signaling

is involved in the regulation of various ion channels. Besides

triggering Ca2+ release from intracellular stores through IP3-

sensitive Ca2+ channels, TRH-R may also affect several other

ion channels. Interestingly, Gollash et al. reported that TRH-

induced Ca2+ release from internal stores is followed by a

phase of sustained Ca2+ influx through voltage-dependent

Ca2+ channels stimulated by the concerted action of Gi2 (and

Gi3) as well as PKC in GH3 cells (Gollasch et al., 1993).

However, the major signaling component involved in the

action of TRH-R on ion channels appears to be Gq/11

proteins. Importantly, the effect of TRH-R agonists must

be not only stimulatory but also inhibitory. TRH has been

found to inhibit two-pore domain K+ channels via Gq/11

proteins in rat hippocampus (Deng et al., 2006). TRH-

mediated inhibition of the resting K+ conductance was

independent of PLC, CAMKII or MAPK activity,

suggesting direct coupling of Gq/11α to potassium-selective

leak channels. It was observed that TRH can also strongly

inhibit G protein-coupled inwardly rectifying K+ (GIRK)

channels and that this inhibition relies on Gqα and PLC

(Lei et al., 2001; Rojas et al., 2008). Several authors reported

that activation of rat TRH-R may affect the function of

voltage-activated, ether-a-go-go-related potassium

channels (ERG), probably via ERK1/2 and ribosomal

S6 kinase (RSK) and possibly Rho kinases (Barros et al.,

1998; Storey et al., 2002; Carretero et al., 2012; Carretero

et al., 2015). In this context, it is interesting to note that Gq/11

protein does not appear to be involved in TRH-induced

inhibition of endogenous ERG currents in rat pituitary

cells and that Gs (or a Gs-like protein), G13 and Gβγ may

participate in modulating these currents triggered by TRH

(Miranda et al., 2005). There are some indications that rat

TRH-R can modulate the function of NMDA ion channels

(Kharkevich et al., 1991; Kinoshita et al., 1998). Interestingly,

modulation of neuronal Na+ channels by TRH-R agonists has

also been demonstrated in guinea pig septal neurons (López-

Barneo et al., 1990). Besides modulating the function of

nonselective cation channels, rat TRH-R appears to be

able to affect electrogenic Na+/Ca2+ exchange (Parmentier

et al., 2009). Interestingly, a recent study using mouse

anterior pituitary cells has shown that transient receptor

potential channel C and Orai1 may play an important role in

the Ca2+ response triggered by TRH-R (Núñez et al., 2019).

The effects of TRH-R activation on ion channel function are

of great physiological importance, as these channels play a

crucial role in modulating cell excitability.
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An interesting topic of current molecular pharmacology

research is the phenomenon of biased agonism, which has

been well demonstrated at GPCRs. Different agonists can

activate different signaling pathways via a one type of

receptor because they stabilize different receptor

conformations after binding (Kenakin, 2011). Intriguingly,

not only do different agonists trigger different signal

transduction pathways, but even a single agonist can

initiate different signaling pathways via GPCRs. Biased

receptor functionality is explained by the fact that each

receptor can form many different specific conformations

(active states) to which the agonist can bind (Franco et al.,

2018). Importantly, biased responses can be elicited by biased

ligands, biased receptors, or system bias, all of which can lead

to preferential signaling through G proteins or β-arrestins
(Smith et al., 2018). Biased agonism has been studied at

several GPCRs, including Gq/11-coupled receptors

(Sanchez-Fernandez et al., 2013; Cabana et al., 2015;

Mancini et al., 2015; Janovick et al., 2017; Teixeira et al.,

2017). However, TRH-R has not received much attention in

this regard. Our recent study in GH1 rat pituitary cells

indicated possible biased TRH-R signaling induced by

TRH and its analog taltirelin (Drastichova et al., 2022).

This finding was confirmed by different phosphorylation

patterns induced by these two ligands, and β-arrestin2 was

found to play a key role in determining phosphorylation

events after rat TRH-R activation. Extensive changes

observed in many phosphosignaling pathways involving

signal transduction via small GTPases, MAPK, Ser/Thr-

and Tyr-protein kinases, Wnt/β-catenin, and members of

the Hippo pathway suggest a previously unrecognized, wide-

ranging impact of THR-R-initiated signaling. Future studies

FIGURE 4
Schematic illustration of two distinct modes of regulation of MAPK cascades triggered by TRH receptor. Activity of ERK is controlled by both G
protein and/or β-arrestin-mediated pathways. Activation of receptor molecule by an agonist can lead to different signalling outputs depending on
the cell type and signalling molecule supply. Basically, (A) TRH signals through the canonical Gq/11α–PLCβ–PKC pathway which can directly activate
the first protein kinase from the MAPK cascade (cRaf1). Activated ERK then translocate to the cell nucleus. TRH may possibly activate other G
proteins (lighter part) and further regulates gene transcription or cell cycle progression by phosphorylation of transcription factors. (B) β-Arrestin (β-
Arr1 and β-Arr2) terminates G protein signaling by desensitization of TRH-R. Simultaneously it can function as scaffold activating another pool of ERK
kinase which, afterwards, phosphorylates different substrates. The figure was created by BioRender.
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should pay more attention to TRH-R-mediated biased

responses, which may help to provide better insights into

the specific effects of different TRH-R ligands.

Thyrotropin-releasing hormone
receptor ligands and their
pharmacological importance

TRH is the simplest hypothalamic hormone, a tripeptide

composed of derivatives of the amino acids glutamate, histidine

and proline. In particular, TRH is known to regulate the

hypothalamic-pituitary-thyroid (HPT) axis, which plays a

critical role in development, growth, and cell metabolism

(Joseph-Bravo et al., 2015). TRH is secreted in a rhythmic

pattern and controls the release and production of thyroid-

stimulating hormone (TSH), which controls iodine

accumulation and thyroid hormone secretion (Nillni, 2010).

Thyroid hormones affect a variety of biochemical reactions

involved in the regulation of energy metabolism (Daimon

et al., 2013). TRH stimulates the release of prolactin and

growth hormone, among others (Galas et al., 2009; Kanasaki

et al., 2015). Inappropriate changes in the secretion of these

hormones may be associated with pathophysiological situations

such as acromegaly, renal failure, liver disease, cancer, diabetes

mellitus, anorexia and bulimia, schizophrenia or depression

(Zarate et al., 1986; Harvey, 1990; Ohbu et al., 1995; Freeman

et al., 2000). In addition to its involvement in controlling the

HPT axis, TRH may also act as a neurotransmitter or

neuromodulator in the CNS and periphery. The effects of

TRH on the CNS are far-reaching and may offer tremendous

therapeutic potential. TRH has been reported to be involved in

the regulation of emotional states (Sun et al., 2009). Another

study confirmed its possible role in modulating anxiety states

(Gutierrez-Mariscal et al., 2008). TRHmay play a role in memory

formation (Molchan et al., 1990; Zarif et al., 2016; Watanave

et al., 2018) and other behavioral processes (Arnold et al., 1991;

Hara et al., 2009). There is growing evidence that TRH can be

implicated in neurodegenerative diseases of aging, such as

Alzheimer’s disease and Parkinson’s disease (Daimon et al.,

2013; Mohammadi et al., 2021). In the past, this agent has

been used to treat traumatic brain/spinal cord injuries

(Hashimoto and Fukuda, 1990; Pitts et al., 1995) and certain

CNS disorders, including epilepsy (Przewłocka et al., 1997;

Tanaka et al., 1998) and amyotrophic lateral sclerosis

(Caroscio et al., 1986). Because of its antidepressant and anti-

suicidal properties, it is thought to prevent suicidal behavior

(Marangell et al., 1997). However, the clinical use of TRH for the

treatment of psychiatric or neurological disorders is currently

rather limited. In addition to its multiple effects on the CNS,

TRH may also have other physiological effects. Of particular

interest is the inotropic effect of TRH, which has been described

in rats with ischemic cardiomyopathy (Jin et al., 2004). However,

the potential clinical utility of TRH is rather limited because of its

short half-life, low lipophilicity (low CNS and intestinal

permeability) and some undesirable endocrine side effects.

Therefore, great efforts are being made to find new analogs of

TRH with better pharmacokinetic and pharmacodynamic

parameters (Khomane et al., 2011). Taltirelin seems to be very

promising in this regard and could have a positive effect on the

treatment of various neurological disorders, e.g., obstructive sleep

apnea (Liu et al., 2020).

TRHmimetics have been shown to be useful in the treatment

of spinocerebellar degeneration (Shimizu et al., 2020; Ijiro et al.,

2022), amyotrophic lateral sclerosis (Hawley et al., 1987), spinal

muscular atrophy (Kat o et al., 2009), prolonged disturbance of

consciousness due to aneurysmal subarachnoid hemorrhage

(Shibata et al., 2019), Parkinson’s disease (Zheng et al., 2018a;

Zheng et al., 2018b), epilepsy (Rajput et al., 2009; Sah et al., 2011),

psychiatric disorders with underlying inflammatory processes

(Kamath, 2012), and possibly depression (Duval et al., 2021). The

effects of TRH and its analogs on the CNS are usually achieved in

cooperation with the modulatory effects of neurotransmitters

such as glutamate, dopamine, norepinephrine, acetylcholine,

serotonin, or GABA. The close association of TRH-R-

mediated effects with dopaminergic and cholinergic signaling

appears to be crucial in the potential use of TRH and its analogs

for the treatment of neurodegenerative diseases. Some of the

functions of TRH in the context of pathological aging and

neurodegeneration, and the potential of TRH and TRH

mimetics for the treatment of neurodegenerative diseases have

been discussed elsewhere (Daimon et al., 2013; Kelly et al., 2015).

There is growing preclinical evidence that activation of TRH-

R can protect cells from a variety of deleterious influences. There

are some indications that TRH and its analogs may have certain

neuroprotective effects (Faden et al., 2005a; Faden et al., 2005b;

Veronesi et al., 2007; Jantas et al., 2009; Zheng et al., 2018b), but

the exact mechanism of these beneficial effects is not yet fully

understood. One possible explanation for the in vivo

neuroprotective effects of TRH likely involves several factors,

including inhibition of the effects of glutamate, endogenous

opioids, platelet activating factor, or leukotrienes, among

others, which have a role in neurodegenerative damage. TRH

may be able to help restore cellular bioenergetics and increase

blood flow to the brain (Faden et al., 2005a). The neuroprotective

action of TRH and its analogs against damage induced by various

excitotoxic, necrotic, or apoptotic agents in primary cortical

neurons appears to be independent of caspase-3 and does not

involve pro-survival (PI3K/Akt and MAPK/ERK1/2) and pro-

apoptotic (GSK-3β and JNK) signaling pathways (Jantas et al.,

2009). Additionally, the data from these experiments suggest a

possible involvement of calpain inhibition in TRH-R-mediated

neuroprotective effects in the glutamate model of neuronal cell

death. Interestingly, TRH receptor-mediated signaling need not

directly exert cytoprotective effects on cells affected by agonist

stimulation. It was reported that the TRH analog cerulein acts in
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the CNS to protect against acute pancreatitis through vagal and

nitric oxide-dependent pathways (Yoneda et al., 2005). Similarly,

central TRH may apparently play an important role in central

vagal regulation of gastric cytoprotective mechanisms (Taché

and Yoneda, 1993) and hepatic cytoprotection (Yoneda et al.,

2003).

Possible antiapoptotic effects of TRH have also been

reported. They were observed in both cellular and animal

models (Drastichova et al., 2010; Koo et al., 2011; Luo et al.,

2013). The mechanism of neuroprotective and antiapoptotic

properties of TRH and its analogs might involve induction of

ERK1/2 (Kanasaki et al., 2000), the PI3K/Akt pathway and Bcl-2

(Jaworska-Feil et al., 2010) and/or inhibition of monoamine

oxidase B (Zheng et al., 2018b). On the other hand, the role

of TRH in inducing apoptosis in pancreatic beta cell precursors

has also been described (Mulla et al., 2009). Thus, the effects of

TRH are likely to depend on the particular cell type and

experimental conditions or physiological context.

Conclusion and future directions

TRH is known to exert both neuroendocrine and

extrahypothalamic effects, which are of great importance for

the normal functioning of all vertebrates. Intensive research in

recent decades yielded numerous publications on the

biochemistry of TRH receptor-mediated signaling, as well as

on the physiology, pharmacology, and potential therapeutic

effects of TRH and its analogs. Most of the pioneering studies

on the molecular mechanisms of TRH-R signaling have been

conducted in the 1990s and the first decade of the 21st century.

Although the basic principles of TRH-R-mediated signaling are

known, there are still many unresolved issues. The role of di-

and/or oligomerization of the receptor and the formation of

protein complexes of TRH-R with other signaling partners

should be further investigated in future studies to describe

more precisely the molecular mechanisms of TRH-R-mediated

signal transduction. The principles governing TRH-R trafficking

are not well understood, and it is unclear how phosphorylated

and dephosphorylated receptors are sorted in endosomes. TRH-

R was originally considered to be a prototypical “calcium-

mobilizing” GPCR. However, the signaling pathways triggered

by TRH-R have proven to be more complex than anticipated. In

addition to its interaction with different classes of G proteins,

TRH-R apparently can also transduce signals through its diverse

β-arrestin interactions in ways not yet fully recognized.

Activation of TRH-R can apparently initiate various

intracellular signaling pathways and lead to different

responses depending on the cell type and specific

experimental conditions. Some recent data suggest that biased

agonism should be taken into consideration when characterizing

TRH-R function and post-receptor signaling. These findings may

open new avenues for the development of novel TRH analogs

capable of controlling specific aspects of receptor function and

potentially useful for therapeutic purposes. Research into the

fundamental principles of TRH-R-mediated signaling deserves

continued attention because of the important role this signaling

system plays in maintaining a normal state of health. In the long

term, these efforts are likely to have significant translational

value, as the medical use of TRH and related drugs appears

rational and warranted.
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