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Hematopoietic stem cells (HSC) reside in the bone marrow (BM) within a specialized

micro-environment, the HSC niche, which comprises several cellular constituents. These

include cells of mesenchymal origin, endothelial cells and HSC progeny, such as

megakaryocytes and macrophages. The BM niche and its cell populations ensure the

functional preservation of HSCs. During infection or systemic inflammation, HSCs adapt

to and respond directly to inflammatory stimuli, such as pathogen-derived signals and

elicited cytokines, in a process termed emergency myelopoiesis, which includes HSC

activation, expansion, and enhanced myeloid differentiation. The cell populations of the

niche participate in the regulation of emergency myelopoiesis, in part through secretion

of paracrine factors in response to pro-inflammatory stimuli, thereby indirectly affecting

HSC function. Here, we review the crosstalk between HSCs and cell populations in the

BM niche, specifically focusing on the adaptation of the HSC niche to inflammation and

how this inflammatory adaptation may, in turn, regulate emergency myelopoiesis.
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INTRODUCTION: HSCs AND INFLAMMATION

Hematopoietic stem cells (HSC) have self-renewal capacity and give rise to all mature blood
cells, a process defined as hematopoiesis. The maintenance of the rare HSC population in the
bone marrow (BM) and the preservation of their functional properties is supported by a highly
specializedmicroenvironment inside the BM, the HSC niche (1, 2). Besides extracellular matrix, the
HSC niche (Figure 1) comprises different cell populations, including mesenchymal stromal cells
(MSC), endothelial cells, osteolineage cells as well as progeny of HSCs, such as macrophages and
megakaryocytes (1–3). The niche supports HSCs either via direct adhesive interactions (between
HSCs and the cells or the extracellular matrix of the niche) or through the secretion of factors
that act in a paracrine manner. Such factors with paracrine effects on HSCs include C-X-C motif
chemokine ligand (CXCL)-12, thrombopoietin, transforming growth factor (TGF)-β1 or stem
cell factor (SCF; also called Kit-ligand) (1, 2). The fine regulation of HSCs by the BM niche
microenvironment promotes maintenance of HSC quiescence, which is critical for preservation
of their self-renewal potential (1).
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Hematopoietic stress drives HSCs to exit their quiescent state
and undergo proliferation and lineage differentiation, according
to the demands of the specific hematopoietic stress. In the
case of systemic inflammation or infection, the resulting stress
on hematopoiesis creates a tremendous need for production
of mature myeloid cells, especially neutrophils and monocytes
(3, 4). This vital and pressing response of the BM to infections
or peripheral inflammation is termed emergency myelopoiesis
(5). Hematopoietic stem and progenitor cells (HSPCs) are fully
equipped with pattern-recognition receptors (6), e.g., Toll-like
receptors (TLR), and respond to pathogen-derived products that
reach the BM through the circulation. TLR activation of HSPCs
leads to enhanced proliferation and myeloid cell production (6–
8), thereby promoting mature myeloid cell replenishment in
the course of infection (6). HSCs can also respond to several
growth factors and cytokines released during inflammation by
immune or other cells at inflamed sites or by cells within the
BM microenvironment. For instance, interleukin (IL)-1 or IL-6
act directly on HSCs, driving their proliferation and instructing
their differentiation toward the myeloid lineage (9–11), while
type I interferon [e.g., IFN-α induces the proliferation of HSCs
(12). However, chronic exposure to cytokines may injure HSCs
(9, 12, 13)]. Moreover, HSCs express the receptor for macrophage
colony-stimulating factor (CSF1; also known as M-CSF), CSF1R,
and respond to in vitro M-CSF stimulation with differentiation
toward monocytes (14). The inflammatory adaptation of HSPCs
can also contribute to induction of trained immunity, i.e., a non-
specific memory of previous encounters that promotes enhanced
responses by HSPCs and their progeny to future challenges (3,
15). Specifically, agonists of trained immunity may stimulate the
upregulation of the expression of the common β subunit of the
granulocyte macrophage colony–stimulating factor/interleukin-
3 receptor (CSF2RB), thereby promoting downstream signaling
and leading to enhanced myelopoiesis (10). The direct effects
of pathogen-derived factors, cytokines and growth factors on
HSPCs have been recently reviewed elsewhere (3).

In the context of inflammatory stress, not only HSCs, but also
cell populations that form the HSC niche, sense and respond
to inflammatory stimuli, such as pathogen-derived products,
cytokines or growth factors; this response is crucial for ensuring
the steady replenishment of leukocytes (3–5). The focus of the
present review is the adaptation of the HSC niche cells to
inflammation. Specifically, we review here the role of HSC niche
inflammation in emergency myelopoiesis and in the context of
malignant hematopoiesis.

HSC NICHE AT STEADY-STATE

Under steady-state conditions, the function of the BM niche is
to regulate the maintenance of HSCs. Imaging studies revealed
that HSCs localize in the perivascular space; however, there
are discrepant reports with regards to the localization of HSCs
at the endosteal area around arterioles (endosteal niche) (16)
or around sinusoids (vascular niche) (17). Perivascular cells
of mesenchymal origin are main cellular niche components
(Figure 1) and hence critical regulators of HSC maintenance (1).

The identification of such mesenchymal cell populations relies
on genetically modified mice serving as reporters for different
markers, including Nestin (NES), Kit ligand (KITL), CXCL12,
nerve/glial antigen 2 (NG2) and Leptin receptor (LEP-R) (16, 18–
20). Using Nes-GFP reporter mice, Kunisaki et al. identified
two distinct cell populations of Nes-GFP-positive MSC with
different transcriptional profiles; namely, Nes-GFPbright cells,
which have a peri-arteriolar localization (Figure 1), and Nes-
GFPdim cells, which are rather in the proximity of sinusoids
(16). Furthermore, NG2+ pericytes were found spatially linked
to arterioles, in intimate contact with HSCs, thereby supporting
the quiescence of the latter (16) (Figure 1). Another study by
Acar et al. demonstrated that HSCs are localized in close contact
with LEP-R+ and CXCL12high cells in the peri-sinusoidal area,
rather than the peri-arteriolar area (17) (Figure 1). HSC function
can be modulated by the aforementioned perivascular cells, as
demonstrated by conditional deletion experiments. Deletion of
CXCL12 or KITL from all pericytes, characterized as Nes-GFP+
cells, resulted in depletion of HSCs (21). CXCL12 deletion in
arteriolar NG2+ cells decreased numbers of HSCs and affected
their spatial localization in the BM, whereas deletion of CXCL12
in sinusoidal LEP-R+ cells had no effect (21). In contrast, KITL
released by LEP-R+ sinusoidal cells, but not by NG2+ arteriolar
cells, was important for HSC preservation (21).

Besides perivascular mesenchymal cells, endothelial cells are
also important regulators of HSC function. Arterial rather than
sinusoidal endothelial cells are an important source of KITL
in the BM (22). Moreover, arteriolar endothelial cells together
with CXCL12-abundant reticular cells also release developmental
endothelial locus (DEL)-1 in the HSC niche (23) (Figure 1).
DEL-1 is a glycoprotein that supports HSC proliferation and
myeloid lineage instruction through interactions with β3 integrin
expressed on HSCs (23, 24). The angiocrine factor Jagged-1
is another endothelial cell-derived factor that promotes HSC
maintenance in a Notch-dependent manner and hematopoiesis
in the context of regeneration (25) (Figure 1).

Recent advances in single-cell technologies enabled the
characterization of HSC niche populations at the single-cell
level. Single-cell transcriptomics enabled the identification of
two endothelial, four perivascular, and three osteolineage cell
populations with distinct transcriptional profiles (26). In the
same study, arteriolar perivascular cluster was found to express
Cxcl12, Kitl, whereas sinusoidal LEP-R+ cluster expressed,
besides Cxcl12 and Kitl, Il-7, Il-15, and Csf1 (encoding M-
CSF) (26).

Megakaryocytes also represent a niche component
contributing to the maintenance of HSCs in the BM. HSCs
are localized in proximity to megakaryocytes, and depletion
of megakaryocyte resulted in a significant decrease of HSC
numbers (27), as megakaryocyte-derived CXCL4 promotes
HSC quiescence in the BM (27). Another study confirmed
the spatial association between megakaryocytes and HSCs and
demonstrated that megakaryocytes are an important source of
TGF-β1 in the BM, which also promotes HSC quiescence (28)
(Figure 1). Macrophages also exert functions in the HSC niche.
CD169+ macrophages interact with MSCs in the niche, thereby
regulating the expression of important retention molecules,
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FIGURE 1 | The HSC niche. Under steady state, HSCs reside in the proximity of BM vessels, either arterioles or sinusoids. Several MSC populations, including

Nes-GFPbright, NG2+, LEP-R+ MSCs or CXCL12-abundant reticular (CAR) cells, promote the maintenance of HSCs by releasing factors such as CXCL12 or KITL.

Endothelial cells also support HSCs via the release of Jagged-1 or DEL-1, a factor also produced by CAR cells. Megakaryocytes produce CXCL4 and TGF-β1, which

also promote HSC maintenance in the BM. Additionally, HSCs are equipped with receptors, such as TLRs, interleukin-1 receptor (IL1R), interleukin-6 receptor (IL6R),

IFN-α receptor (IFNAR), CSF1R, CSF2RB, that enable their direct response to inflammatory stimuli.

such as CXCL12 (29). Furthermore, macrophages expressing
α-smooth muscle actin are localized in proximity to HSCs
and support the release of CXCL12 by stromal cells (30). The
circadian regulation of CXCL12 expression by stromal cells,
which in turn influences the release of HSCs from the BM, is
under the control of sympathetic nerve fibers (31).

HSC NICHE ADAPTATION TO
INFLAMMATION

Niche cell populations may regulate the hematopoietic response
to peripheral inflammation or infection, for instance, by releasing
factors that promote myelopoiesis (5, 32, 33) (Figure 2A). Such
a factor is granulocyte colony-stimulating factor (G-CSF), a
central regulator of infection-induced emergency granulopoiesis,
as it exerts a key role in the differentiation of progenitors of
the myeloid lineage to mature granulocytes (5). Endothelial
cells, rather than cells of hematopoietic origin, have been

demonstrated as the main source of G-CSF in the BM niche
during inflammation (33, 34). In the course of LPS-induced
systemic inflammation, TLR4 signaling in endothelial cells was
responsible for increased G-CSF production and consequent
emergency granulopoiesis (33).

Although there are contradictory reports regarding the ability
of G-CSF to induce cell-cycle entry in HSCs (35–37), G-CSF
is well-established as a factor mediating the mobilization of
HSCs. In fact, G-CSF is clinically engaged for inducing HSC
mobilization to peripheral blood in the context of therapeutic
transplantation (38). Moreover, G-CSF contributes to HSC
mobilization during infection. Indeed, systemic infection of mice
with Escherichia coli induces HSC mobilization from the BM and
their accumulation in the spleen (39), in a manner dependent
on TLR4-induced production of G-CSF and on signaling via
nucleotide-binding oligomerization domain (NOD)-containing
proteins; however, TLR4 expressed on HSCs was not required
(39). To promote mobilization of HSCs, G-CSF acts on different
cells in the BM niche, including MSCs, osteolineage cells,
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FIGURE 2 | (A) Adaptation of the HSC niche to inflammation. Upon infection, expression of G-CSF in endothelial cells and of IL-6 in endothelial cells and MSCs is

increased, while the expression of CXCL12 and KITL, which support the maintenance of HSCs in the BM, is downregulated. G-CSF drives myeloid differentiation of

progenitor cells and suppresses the expression of CXCL12 by osteoblasts either directly or through functional changes in macrophages (Mϕ) or granulocytes. In viral

infections, IFN-γ produced by CD8+ T cells acts on MSCs in the BM niche leading to enhanced release of IL-6 by the MSCs. (B) BM niche in myeloid malignancies. In

myeloid malignancies, clonal CD34+ progenitor cells alter their microenvironment through the production of inflammatory mediators, which may affect the vasculature

in the endosteal area of the BM and promote an inflammatory signature in stromal cell populations. The production of cytokines by MSCs as well as by

myeloid-derived suppressor cells (MDSCs) may also support clonal expansion of clonal CD34+ cells and leukemic stem cells (LSCs).

neutrophils and macrophages, (40). Importantly, administration
of G-CSF reduces the expression of the retention molecules, such
as Cxcl12, Spp1 (osteopontin), Kitl, Angpt1 (angiopoietin 1), and
Vcam1 (vascular cell adhesion molecule 1) in BM MSCs (41)
and Cxcl12 in osteolineage cells (42). G-CSF can directly disrupt
osteoblast activity and downregulate the expression of Ccxl12
in these cells (42). Additionally, G-CSF can affect the levels of
CXCL12 in the endosteal niche through indirect mechanisms;
namely, through the depletion of endosteal macrophages (43),
the release of granulocyte-derived proteases (44) or through
signals from sympathetic nervous system that may suppress
osteoblast function (45).

Mature leukocytes can also influence BM microenvironment
during infection, for instance, by releasing reactive oxygen
species (ROS) (46). ROS, released in the extracellular space, act
in a paracrine manner to induce the proliferation of myeloid
progenitors during pathogen-induced emergency myelopoiesis
(46). Furthermore, in the context of BM transplantation, tumor
necrosis factor (TNF) derived from granulocytes acts on bone
marrow endothelial cells promoting vessel and hematopoietic
regeneration (47). Specifically, adoptive transfer of granulocytes
supported the recovery of sinusoids and the reconstitution
of hematopoiesis after transplantation in a TNF-dependent

manner. The effect on vascular regeneration was lost in recipient
mice deficient for TNF receptors, suggesting a direct action
of neutrophil-derived TNF on endothelial cells. Moreover,
TNF acted directly on hematopoietic progenitors, since the
effect of granulocyte transfer was decreased in mice that
were transplanted with hematopoietic cells from TNF receptor-
deficient mice (47).

IFNs may also modulate HSC niche populations during
inflammation. In a model of lymphocytic choriomeningitis virus
(LCMV) infection, IFN-γ indirectly enhances myelopoiesis by
acting on MSCs (48). Specifically, IFN-γ secreted by cytotoxic
CD8+ T cells activates MSCs and stimulates the expression
of IL-6 in the latter, which in turn enhances myelopoiesis
during the viral infection (48). Another study demonstrated
that treatment of mice with IFN-α or polyinosinic:polycytidylic
acid (polyI:C) activates BM endothelial cells and increases
vascularity and vessel permeability (49). Moreover, single-cell
transcriptomic analysis revealed that the administration of
polyI:C and LPS induces gene expression of the chemokines
Ccl5, Ccl6, Ccl19, Cxcl9, Cxcl10, and Cxcl11 in CXCL12-
abundant reticular cells and sinusoidal endothelial cells (32).
Additionally, inflammation induced the expression of Il6 and
downregulated the expression of factors that contribute to
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HSC retention and lymphopoiesis, including Cxcl12, Kitl, and
Il7 (32).

Adhesive interactions within the HSC niche also contribute to
the adaptation of hematopoiesis during inflammation. The αvβ3
integrin is implicated in the effect of IFN-γ on the suppression
of HSC function (50). Engagement and signaling through β3
integrin in HSCs enhances STAT-1 phosphorylation and STAT-
1 dependent gene expression upon IFN-γ administration to
mice, leading to impaired repopulation potential of HSCs (50).
Furthermore, the β3 integrin on HSCs mediates the regulatory
effect of DEL-1 in myelopoiesis (23). DEL-1 expression in
the BM niche was observed in endothelial cells and CXCL12-
abundant reticular cells. The interaction of DEL-1 with β3
integrin promotes HSC proliferation and myeloid priming and
thereby supports the regeneration of both steady-state and
emergency myelopoiesis in response to LPS-induced systemic
inflammation (23). Specifically, mice deficient in DEL-1 have
decreased numbers of myeloid cells in the BM under steady
state and a delayed recovery of myeloid cell populations
after BM transplantation or upon LPS administration (23).
Osteopontin is a ligand for β1 integrins on HSCs (51) and
may also regulate myelopoiesis during inflammation. In a
model of sterile inflammation and during acute fungal infection
with Candida albicans, osteopontin acts on progenitor cells
and suppresses emergency myelopoiesis (52). Taken together,
inflammation alters the function of different cell populations
in the HSC niche, whereas factors deriving from niche cells
modulate the response of HSPCs during inflammation-induced
emergency myelopoiesis.

INFLAMMATION IN THE HSC NICHE
DURING MALIGNANT HEMATOPOIESIS

Myeloid malignancies, such as myelodysplastic syndrome
(MDS), acute myeloid leukemia (AML), and myeloproliferative
neoplasms (MPN), represent clonal diseases of HSCs (53).
Malignant clones bear mutations in regulators of major cell
functions, such as epigenetic modifiers (TET2, ASXL1, EZH2,
DNMT3A, IDH), pre-mRNA splicing machinery (SF3B1, SRSF2,
U2AF1), transcription factors (RUNX1, NPM1, ETV6, GATA2),
tumor suppressors (TP53), cohesion complex proteins (STAG2),
tyrosine kinases (FLT3, JAK2, MPL) and signaling intermediates
thereof (RAS, CBL) (53). Emerging evidence indicates that
inflammation in the BM may contribute to the development and
progression of myeloid malignancies (54) (Figure 2B).

Analysis of a population-based registry revealed that chronic
inflammatory stimulation is a potential triggering factor for
MDS and AML development (55). Changes in both number and
function of different immune cell populations are observed in
MDS patients. Inflammatory mediators, including S100A8/A9 or
cytokines, such as TNF, IL-1β, IL-6, and IFN-γ, are increased
in MDS (56). BM-derived MSCs from MDS patients display
an inflammatory signature as well as upregulation of molecules
involved in cell adhesion and angiogenic factors (57, 58).
Activation of the nuclear factor kappa B (NF-κB) transcription
factor program was also observed in MSCs of patients with

MDS (59). Of interest, S100A8/A9, secreted in the BM by both
MSCs and cells of hematopoietic origin, has been associated with
activation of the inflammasome and consequent production of
IL-1β and IL-18 by hematopoietic progenitors in MDS (56, 58).
Moreover, S100A8/9 released by MSCs from patients with MDS
induces DNA damage to hematopoietic progenitors, leading to
cell-cycle arrest, cell death and progression toward leukemia
(58). Also contributing to the disease phenotype is the ability
of S100A9 signaling to induce ROS production, inflammasome
activation and pyroptosis in hematopoietic progenitors from
patients with MDS (60). Another study further identified S100A9
to act on myeloid-derived suppressor cells (an innate immune
cell type with immunosuppressive potential enriched in the BM
of MDS patients) and to upregulate secretion of suppressive
factors (e.g., TGF-β and IL-10), thereby indirectly facilitating the
expansion of the malignant clone (61). Intriguingly, IL-1β levels
in the BM and IL-1 receptor expression in CD34+ progenitor
cells are higher in AML patients. Ex vivo studies with leukemic
stem cells identified IL-1β as a factor that drives expansion
of myeloid progenitors from AML patients and suppresses
the proliferation of normal CD34+ progenitors (62). In MPN,
leukemic myeloid cells can affect and remodel the HSC niche in
a way that offers advantages to leukemic stem cells rather than
to healthy stem cells (63). Decreased numbers of BMMSCs were
observed in patients and mice bearing the activating mutation
JAK2(V617F), due to a decrease in sympathetic nerve fibers,
which support MSC abundance and function (64). Mutations
leading to activation of the protein tyrosine phosphatase SHP2
(encoded by the PTPN11 gene) are linked to a specific MPN
form, juvenile myelomonocytic leukemia. Hematopoietic cell-
intrinsic effects of the aforementioned mutations are integral
to MPN pathogenesis (65). Intriguingly, however, activating
Ptpn11 mutations in cellular niche components, such as
MSCs and osteoprogenitors, may also contribute to MPN
development (66). Specifically, mutations in niche cells result
in the increased production of the chemokine CCL3, leading
to monocyte recruitment to the HSC niche, which in turn
produce inflammatory cytokines, such as IL-1β, which can
drive myeloproliferation (66). Furthermore, in a thrombopoietin
(TPO)-dependent mouse model of myelofibrosis, differentiation
of Gli1+ MSCs toward myofibroblasts results in BM fibrosis;
consistently, Gli1+ MSCs numbers are increased in patients
with MPN (67). Transcriptomic analysis revealed that these
cells acquire an inflammatory signature during myelofibrosis,
suggesting a link between inflammation and fibrosis in
MPN (67).

Studies in mouse models point to clonal hematopoietic cells
and their progeny as a substantial cellular source of factors
contributing to BM inflammation and progression of clonal
hematologic pathologies. Hematopoietic progenitor cells from
mice deficient for Tet methylcytosine dioxygenase 2 (TET2), a
gene frequently mutated in patients with myeloid malignancies,
show enhanced self-renewal potential and an increased myeloid
lineage bias (68). Additionally, HSCs from TET2-deficient mice
show a different response to inflammatory stimuli compared to
normal HSCs (69). Specifically, in stark contrast to normal HSCs
whose self-renewal capacity is compromised by inflammation,
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TET2-deficient HSCs maintain their self-renewal capacity
and are resistant to apoptosis upon LPS-induced systemic
inflammation, a combination that promotes their expansion
(69). In vitro treatment of hematopoietic progenitor and mature
myeloid cells with LPS revealed increased expression of several
pro-inflammatory cytokines, including IL-6, IL-1, and TNF,
owing to TET2 deficiency (69). IL-6, in turn, mediates the
enhanced pro-survival and proliferative response of Tet2−/–

progenitor cells to inflammation through hyperactivation of a
Shp2-Stat3–dependent axis (69). As alluded to above, Tet2−/–

progenitors thrive under inflammatory conditions in vitro
at the expense of Tet2-sufficient progenitors, thus Tet2−/−

clones appear to have increased fitness over normal clones
in an inflammatory environment (69–71). Another study
further supported the critical role of inflammation in the
progression of clonal hematologic disease. Specifically, IL-6
produced in response to microbial infection results in pre-
leukemic myeloproliferation in Tet2-deficient mice (72). Taken
together, clonal hematopoietic cells often display increased
pro-inflammatory potential that promotes inflammation within
the BM. This, in turn, confers a competitive advantage
for preferential proliferation of clonal hematopoietic cells,
hence generating a vicious cycle between inflammation and
malignant myelopoiesis.

The interplay between niche inflammation and
myeloproliferation has been exemplified in further studies. In an
acute myeloid leukemia mouse model, mice with constitutively
activating internal tandem duplication (ITDs) of FLT3 (FLT3-
ITD) show enhanced myeloproliferation and progressive loss
of HSC function (73). The functional impairment of HSCs
in FLT3-ITD mice was cell extrinsic and depended on the
inflammatory modulation of the vascular niche populations (73).
Specifically, Tnf expression was upregulated in BM endothelial
cells. Consistently, blockade of TNF signaling with the TNF
inhibitor etanercept partially rescued HSC dysfunction (73).
Another study in the MLL-AF9-driven mouse AML model has
shown that leukemia cell-expressed factors, specifically TNF and
CXCL2, mediate the remodeling of endosteal vessels, generating

a BM niche that supports preferentially leukemic clones resulting
in the decrease of normal HSCs (74).

CONCLUSION

Under steady-state conditions, the crosstalk between cellular
components of the niche and HSCs enables the maintenance
of the latter in the BM in a state of quiescence, thereby
ensuring the preservation of HSCs (2). During inflammation,
HSCs are activated, proliferate, and preferentially differentiate
toward the myeloid lineage (3). In parallel to the direct effect
of inflammatory stimuli on HSCs, inflammatory alterations
in niche cell populations and signals thereof also regulate
the adaptation of HSCs to emergency myelopoiesis (3)
(Figure 2A). In addition, the interplay amongst HSCs, niche
cell populations and inflammation is of critical importance
in myeloid malignancies (54). The release of inflammatory
mediators by clonal hematopoietic populations remodels the
HSC niche in a manner that favors the preferential expansion
of clonal leukemic cells, hence promoting the emergence and
progression of malignant myeloid disease (54) (Figure 2B).
Therefore, it is imperative that future investigations focus
on better understanding of how inflammation regulates the
interactions of HSCs with their niche both during normal and
malignancy-associated hematopoiesis.
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