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Abstract 

Background:  Rickettsia spp. are important tick-borne pathogens that cause various human and animal diseases 
worldwide. A tool for rapid and accurate detection of the pathogens from its vectors is necessary for prevention of 
Rickettsioses propagation in humans and animals, which are infested by ticks. Therefore, this study was conducted to 
evaluate a molecular tool, ultra-rapid real-time PCR (UR-qPCR), for rapid and accurate detection of Rickettsia spp. from 
5644 ticks in 408 pools collected from livestock and their surrounding environments in Gangwon and Jeju province in 
South Korea.

Results:  The UR-qPCR of Rickettsia DNA showed a limit of detection of 2.72 × 101 copies of Rickettsia DNA and no 
cross reaction with other tick-borne pathogens, namely Anaplasma phagocytophilum, Ehrlichia chaffeensis, E. canis, 
Toxoplasma gondii, and Borrelia burgdorferi. In addition, the PCR assay also showed possibility of various Rickettsia spe‑
cies detection including R. monacensis, “Candidatus R. longicornii”, R. japonica, R. roultii, and R. tamurae. The collected 
ticks were identified with major species belonged to Haemaphysalis longicornis (81.62%), followed by H. flava (15.19%), 
and Ixodes nipponensis (3.19%). Rickettsia detection from tick samples using the UR-qPCR showed that the minimum 
infection rate (MIR) of Rickettsia in collected ticks was 1.24‰ and that all positive pools contained H. longicornis, equal 
to the MIR of 1.39‰ of this species. Additionally, MIR of Rickettsia spp. detected in ticks collected in Gangwon and 
Jeju was 1.53‰ and 0.84‰, respectively. Furthermore, the sequencing results of the 17 kDa protein antigen gene 
and ompA gene showed that Rickettsia spp. sequences from all pools were related to “Candidatus R. longicornii” and 
“Candidatus R. jingxinensis”.

Conclusions:  The UR-qPCR system was demonstrated to be useful tool for accurate and rapid detection of Rickettsia 
from its vector, ixodid ticks, within 20 min. The data on Rickettsia spp. in ticks detected in this study provide useful 
information on the distribution of Rickettsia in previously unstudied Korean provinces, which are important for the 
prevention and control of the spread of rickettsioses in both animals and humans in the country.
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Background
The obligate intracellular bacteria of Rickettsia genus 
are commonly harboured and transmitted by arthro-
pods, mainly ticks [1–3], some of the bacteria cause 
Rickettsioses in animals and humans with mild to life-
threatening consequences [4]. Rickettsia and the related 
tick vectors have been reported in different countries. 
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For example, four subspecies of R. conorii, the cause 
Mediterranean spotted fever in Europe, were mainly 
found in Rhipicephalus sanguineus and Rh. pumilio 
ticks [5, 6], the Japan spotted fever group (R. tamurae, 
R. japonica, R. raoultii, and Candidatus R. principis) 
was detected in Haemaphysalis and Amblyomma ticks 
in Japan [7], and R. raoultii was prevalent in Dermacen-
tor nuttalli and Dermacentor silvarum ticks in China 
[8, 9]. The information of Rickettsia species and related 
tick species in a particular region is important to iden-
tify the risk of Rickettsioses transmission via tick bite.

Polymerase chain reaction (PCR) has been used as 
a sensitive and specific tool for the rapid detection 
of Rickettsia from both ticks and patients [10–14], 
and species identification of Rickettsia was done by 
sequencing analysis of various genes, such as the rick-
ettsial citrate synthase gene (gltA) [15], SFGR-specific 
190 kDa outer membrane protein A gene (ompA) [16], 
outer-membrane protein rOmpB (OmpB) [17], sur-
face cell antigen gene “gene D” (Sca4) [18, 19], and the 
genus-specific 17 kDa outer membrane antigen gene 
[20]. Afterwards, real-time PCR was demonstrated 
to be more sensitive and rapid compared to conven-
tional nested PCR for Rickettsia detection, and become 
an important tool for screening of Rickettsia from its 
natural reservoirs or vectors [21–23]. However, the 
current Rickettsia detection real-time PCRs are still 
time-consuming systems. A new chip-based PCR sys-
tem named ultra-rapid real-time PCR (UR-qPCR) has 
been developed, which has optimal thermal transfer 
with chip-based reaction that reduces turnaround time. 
In addition, this small-footprint device with low power 
consumption make it possible for point-of-care testing 
application. It has been shown to be useful for the sen-
sitive and rapid detection of honeybee pathogens on-
site [24–26]. Therefore, the UR-qPCR could be a useful 
tool for rapid detection of Rickettsia from ticks.

In Korea, Rickettsioses in humans have been reported 
since 2006 [27, 28]. Thereafter, the role of ticks in carry-
ing and transmission of Rickettsia spp. to humans was 
also demonstrated [29–34]. Monitoring of Rickettsia in 
ticks was done in northern and western regions of the 
country and showed that “Candidatus R. longicornii” was 
the most prevalent Rickettsia species carried by ticks [30, 
35, 36]. However, the information of Rickettsia harboured 
by ticks in other regions of the country is still remained 
uncharacterized.

Accordingly, this study was conducted to examine the 
ability of the UR-qPCR system for detection of Rickett-
sia in ticks collected from wild animals and livestock 
in two provinces: Gangwon and Jeju, located in north-
eastern and southern region of South Korea, respec-
tively. Sequencing and phylogenetic analyses of detected 

Rickettsia spp. were done using the 17 kDa protein anti-
gen and ompA genes.

Results
Sensitivity and specificity of Rickettsia UR‑qPCR
Amplification using serially diluted recombinant DNA 
showed a limit of detection of 2.72 × 101 copies of Rick-
ettsia DNA (Fig. 1A and B). The linear regression repre-
senting the relationship between initial DNA copy and 
cycle threshold (Ct) of amplification was established 
from triplicate PCR reactions, y = − 3.5171x + 42.424; 
R2 = 0.9966, where x and y are the log10 DNA copy num-
ber and Ct value, respectively (Fig.  1C). The amplifica-
tion efficiency calculated from the slope of the standard 
curve (E = 10(− 1/slope)-1) was 92.45%. Furthermore, the 
peaks of melting temperature of amplification (Fig.  2A) 
showed that the UR-qPCR can be used for specific detec-
tion of Rickettsia among the tested DNA templates 
originating from other tick-borne pathogens, namely 
Anaplasma phagocytophilum, Ehrlichia chaffeensis, E. 
canis, Toxoplasma gondii, Coxiella burnetii, and Borrelia 
burgdorferi. In addition, the melting peaks of five differ-
ent Rickettsia spp. (R. japonica, R. roultii, “Candidatus 
R. longicornii”, R. monacensis, and R. tamurae) detec-
tion were not greatly different, ranging from 76.03 °C to 
77.01 °C (Fig. 2B). The result demonstrated that the UR-
qPCR assay can be used as a molecular tool for detection 
of various Rickettsia species.

Prevalence of Rickettsia species in ticks
The tick species identified from the highest number of 
pools were Haemaphysalis longicornis (333/408 pools; 
81.62%), followed by H. flava (62/408 pools; 15.19%), and 
Ixodes nipponensis (13/408 pools; 3.19%); H. longicornis 
and H. flava were present in samples collected from both 
Gangwon and Jeju provinces, whereas I. nipponensis 
was only detected in samples collected from Gangwon 
province.

Moreover, among the three most common tick species 
identified, only H. longicornis from both provinces har-
boured Rickettsia spp. The minimum infection rate (MIR) 
in Gangwon province as determined by ITS DNA detec-
tion using UR-qPCR and by 17 kDa protein antigen and 
ompA gene detection using conventional nested PCR was 
1.53‰ (5/408 pools), 1.22‰ (4/408 pools), and 1.53‰ 
(5/408 pools), respectively. In Jeju province, the MIR was 
0.84‰ (2/408 pools), 2.53‰ (6/408 pools), and 2.53‰ 
(6/408 pools) as detected by ITS, 17 kDa protein antigen 
gene, and ompA detection, respectively (Table 1).

The overall MIR was 1.24‰ (7/408 pools), 1.77‰ 
(10/408 pools), and 1.95‰ (11/408 pools) for the detec-
tion methods targeting ITS, 17 kDa protein antigen 
gene, and ompA gene, respectively (Table  1). The MIR 
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Fig. 1  Sensitivity of detection of Rickettsia species using ultra-rapid real-time PCR (UR-qPCR). Amplification curves of UR-qPCR using 2.72 × 108 
to 2.72 × 100 copies of Rickettsia DNA (denoted by number 8 to 0; A). The melting curves show Rickettsia detection is possible from 2.72 × 108 to 
2.72 × 101 copies of target DNA (number 8–1; B). “N” is the negative control without a DNA template. Linear regression representing the relationship 
between cycle threshold of amplification (Ct value) and initial DNA copy number (C) was established by amplifying 10-fold dilutions of Rickettsia 
DNA from 2.72 × 108 to 2.72 × 101 DNA copies in triplicate
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according to the developmental stages of the infected tick 
species ranged from 4.81–9.62‰ for nymphs, 21.89‰ 
for adult males, and 6.70–13.39‰ for adult females; the 
prevalence was 0% for larvae.

Sequencing and phylogenetic analysis
Among the 10 pools, generated sequences of the 17 kDa 
protein antigen gene were 100.00% identical to each other 
(NCBI accession No.: MW916824) and had 100.00% 
identity with NCBI deposited sequences of “Candidatus 
R. longicornii” and “Candidatus R. jingxinensis” that had 
been detected in H. longicornis ticks in Korea and China, 
respectively. Additionally, the sequences of the ompA 
gene (NCBI accession No.: MW916823) were 100.00% 
identical among all 11 pools and showed 100.00% identity 
to sequences of “Candidatus R. longicornii” and “Candi-
datus R. jingxinensis” detected from H. longicornis ticks 

in Korea and China, respectively. Phylogenetic analysis 
of the two genes showed that the detected Rickettsia spp. 
clustered with “Candidatus R. jingxinensis” and “Candi-
datus R. longicornii” when compared to Rickettsia spp. 
originating from other countries (Fig. 3).

Discussion
Screening of Rickettsia was done from ticks collected 
from Gangwon province, located in northeastern Korea, 
and from Jeju island, located in southern Korea. Only 
H. longicornis ticks were found to be the vector of Rick-
ettsia with positive result of 11/408 pools detected by 
ompA gene. The detected Rickettsia spp. all showed 100% 
sequence similarity to “Candidatus R. longicornii” and 
“Candidatus R. jingxinensis”. The result of this study was 
consistent with previous report [35] that only “Candi-
datus R. longicornii” was detected in H. longicornis in 

Fig. 2  Specificity of detection of Rickettsia species using ultra-rapid real-time PCR (UR-qPCR). The specificity of Rickettsia UR-qPCR is demonstrated 
by different melting temperatures observed when amplifying Rickettsia japonica recombinant DNA, Rickettsia sp. DNA from total nucleic acids 
isolated from tick sample, and the DNA of other common tick-borne pathogens, namely Anaplasma phagocytophilum, Ehrlichia chaffeensis, E. canis, 
Toxoplasma gondii, Borrelia burgdorferi, Coxiella burnetii, and samples with no DNA template (A). The melting temperature ranging from 76.03 °C to 
77.01 °C were seen from detection PCR using DNA template of five different Rickettsia species (B). “N1” and “N2” are negative result using total nucleic 
acids isolated from two tick pools, and “N” is negative control without DNA template
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the northern area near the demilitarized zone in South 
Korea. However, various Rickettsia species were detected 
in H. longicornis ticks in other regions of the country, 
such as R. japonica, R. heilongjiangensis, and R. mona-
censis in northwestern and southwestern provinces [30], 
“Candidatus R. longicornii” and R. koreansis in mid-
western region [36]. Rickettsia spp. were also minorly 
detected in H. flava and I. nipponensis in these regions. 
The result of Rickettsia detection in this study could be 
important to fulfil the knowledge of distribution of Rick-
ettsia and its vectors in the country.

“Candidatus R. jingxinensis” and “Candidatus R. longi-
cornii” were detected mainly in China and South Korea, 
in which the name “Candidatus R. jingxinensis” was 
first proposed as a potential new species based on the 
analysis of gltA and ompA genes [8] for a Rickettsia sp. 
detected in H. longicornis ticks collected at Jingxin town 
in Jinlin province, China. This species was then identi-
fied in Rhipicephalus microplus tick in China and in H. 
longicornis in South Korea [37, 38]. The other proposed 
species, “Candidatus R. longicornii”, was introduced 
based on the analysis of rrs, gltA, ompA, ompB, and sca4 

genes [35]. This species was also prevalently detected in 
H. longicornis tick distributed in South Korea, and China 
[38–40]. However, phylogenetic analysis using the 17 kDa 
protein antigen and ompA genes in this study showed 
that the two proposed species have a close phylogenetic 
relationship and the two genes of “Candidatus R. jingxin-
ensis” and “Candidatus R. longicornii” shared 100% iden-
tity. In addition, the gltA gene of the two species was also 
demonstrated to be 100% identical to each other [37]. 
Therefore, “Candidatus R. jingxinensis” and “Candidatus 
R. longicornii” could be the only one species, and accord-
ing to the prevalence of the organisms detected in H. lon-
gicornis tick, the only name “Candidatus R. longicornii” 
should be used for the Rickettsia species.

The distribution of tick species identified from Gang-
won and Jeju provinces was the same as that reported in 
other provinces; H. longicornis was the most abundant 
species among the three most common tick species in 
Korea - H. longicornis, H. flava, and I. nipponensis [41, 
42]. The H. longicornis tick is a common parasite of live-
stock, wild animals, and humans, and it is distributed in 
ten countries including eastern Asia, the USA, Australia, 

Table 1  Detection rates of Rickettsia spp. from different tick species collected in Gangwon and Jeju provinces

MIR Minimum infection rate depicted in ‰, ITS Internal transcribed spacer. ITS region of Rickettsia was detected by UR-qPCR, and other two genes (17 kDa protein 
antigen and ompA) were detected by conventional nested PCR

Province Tick species Life stage Number of ticks Number of positive pools (MIR)

ITS 17 kDa ompA

Gangwon Haemaphysalis longicornis Larva 2764 0 0 0

Nymph 50 1 (20.00) 1 (20.00) 1 (20.00)

Male adults 38 2 (52.63) 2 (52.63) 2 (52.63)

Female adults 240 2 (8.33) 1 (4.17) 2 (8.33)

Haemaphysalis flava Larva 0 0 0 0

Nymph 93 0 0 0

Male adults 28 0 0 0

Female adults 10 0 0 0

Ixodes nipponensis Larva 0 0 0 0

Nymph 16 0 0 0

Male adults 3 0 0 0

Female adults 30 0 0 0

Subtotal 3272 5 (1.53) 4 (1.22) 5 (1.53)
Jeju Haemaphysalis longicornis Larva 1470 0 0 0

Nymph 158 0 1 (6.33) 1 (6.33)

Male adults 99 1 (10.10) 1 (10.10) 1 (10.10)

Female adults 208 1 (4.81) 4 (19.23) 4 (19.23)

Haemaphysalis flava Larva 0 0 0 0

Nymph 368 0 0 0

Male adults 30 0 0 0

Female adults 39 0 0 0

Subtotal 2372 2 (0.84) 6 (2.53) 6 (2.53)
Total 5644 7 (1.24) 10 (1.77) 11 (1.95)
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and New Zealand [35, 43]. H. longicornis ticks were 
known to be vectors of various diseases including rickett-
sioses [43–45].

The loop-mediated isothermal amplification (LAMP) 
assay was developed for rapid detection of Rickettsia 
from ticks within 30 min [46], using the crude DNA pre-
pared by heating method [47] the LAMP was demon-
strated to useful for on-site detection of Rickettsia from 
vectors. However, using hydroxynaphthol blue as a col-
orimetric component for visual detection by naked eye 
in LAMP could make a challenge for different readers, 
and therefore the results need to be confirmed in elec-
trophoresis [46]. The UR-qPCR evaluated in this study 
showed possibility of various Rickettsia species detection 
within 20 min could address the disadvantages of LAMP 
for accurate and rapid detection of Rickettsia. Using the 
crude preparation of DNA [47] the UR-qPCR could be 
used for on-site screening of Rickettsia from ticks.

Conclusions
In this study, a molecular tool UR-qPCR for the rapid 
detection of Rickettsia spp. in ticks was initially exam-
ined. The PCR system showed a limit detection of around 
27.2 copies of Rickettsia DNA within around 20 min. The 

possibility of various Rickettsia species detection was 
confirmed, and the usefulness of Rickettsia spp. detection 
was also demonstrated from tick samples. The rapidity 
and mobility of this PCR system could be important to 
develop a molecular tool for on-site detection of Rick-
ettsia sp. from its vectors. Additionally, the prevalence 
data on Rickettsia spp. identified in ticks collected from 
livestock and wild animals in the Gangwon and Jeju prov-
inces provide useful information on Rickettsia distribu-
tion in previously unstudied Korean provinces; this is 
important for the prevention and control of the spread of 
rickettsioses in both animals and humans in the country.

Methods
Tick sample collection
A total of 5644 larval, nymphal, and adult ticks were col-
lected from livestock, wild animals, and vegetation sur-
rounding the farms or living areas of wild animal in the 
Gangwon and Jeju provinces in Korea between August 
and November in 2019. Species of ticks were identified 
by their morphological characteristics using a stereomi-
croscope (Discovery.V8; ZEISS, Oberkochen, Germany) 
and the standard illustrated taxonomic key [48]. After 
identification of species, the samples were pooled for the 

Fig. 3  Phylogenetic trees of Rickettsia species. The trees were created based on the 410 bp 17 kDa protein antigen gene (A) and the 488 bp ompA 
gene (B) of Rickettsia species using the neighbour-joining method and bootstrap analysis (1000 reiterations) carried out according to the Kimura 
2-parameter method in MEGA7 software
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living stages of the same species collected from the same 
site. Each pool contained 1, 1 to 10, and 1 to 50 individu-
als of adult, nymph, and larvae, respectively. Totally, 408 
pools were acquired, in which 235 pools were collected 
from Gangwon and designated as 19 M1 to 19 M235, 
while 173 pools were collected from Jeju and labelled as 
19 T1 to 19 T173. The samples were then preserved in 
70% ethanol and stored at − 80 °C until further analysis.

Nucleic acid extraction from ticks
Briefly, ticks from each pool were washed three times 
using the UltraPure™ distilled water (Thermo Fisher Sci-
entific, Massachusetts, USA), and were placed in a tissue 
homogeniser with steel beads 2.381 mm diameter (SNC, 
Hanam, Korea). After adding 600 μl of PBS solution, the 
sample was homogenised using a Precellys 24 Tissue 
Homogeniser (Bertin Instruments, Montigny-le-Breton-
neux, France). Then 300 μl of the homogenate was trans-
ferred to a new tube that contained 300 μl of lysis buffer 
and 30 μl of proteinase K solution. The mixture was incu-
bated at 56 °C for 10 min and the total nucleic acid was 
extracted using the Maxwell® RSC Viral Total Nucleic 
Acid Purification Kit on the automated Maxwell® RSC 
Instrument (Promega, Madison, WI, USA) according 
to the manufacturer’s instructions. Finally, 50 μl of total 
nucleic acid was acquired from each sample.

PCR performance
The internal transcribed spacer (ITS) region of Rickettsia 
spp. was targeted for detection in tick samples using the 
GENECHECKER® UF-150 UR-qPCR system (Genesys-
tem Co., Ltd., Daejeon, Korea) and 2× Rapi: Detect™ 
Master mix with dye (SYBR green, Cat. No.: 9799100100; 
Genesystem Co.). The 10 μl reaction mix consisted of 1 μl 
(10 pmol) of each primer (ITS-F/R; Table 2), 5 μl of PCR 
premix, and 3 μl of total nucleic acid. The PCR conditions 
were examined at different annealing temperature from 

52 °C to 66 °C to select the optimal condition for specific 
and sensitive detection of Rickettsia spp., final PCR con-
ditions are shown in Table 2. Recombinant ITS DNA of 
R. japonica (NCBI accession number CP047359) was 
used for optimizing PCR conditions and was used as pos-
itive control for Rickettsia spp. detection from tick sam-
ples, and no DNA template was used in negative control.

Species identification was performed by nested PCR 
using the Mastercycler® X50s conventional PCR system 
(Eppendorf, Hamburg, Germany) and sequence analysis 
of the ompA gene [50, 51] and the 17 kDa protein antigen 
gene [50] using the AccuPower® ProFi Taq PCR Premix 
(Bioneer, Daejeon, Korea). The 20 μl reaction mix was 
composed of 1 μl (10 pmol) of each primer (Table 2), 13 μl 
of ddH2O, and 5 μl of total nucleic acid. The PCR condi-
tions are shown in Table 2. No DNA template was used in 
negative control.

The sensitivity of rickettsial UR-qPCR was exam-
ined using the recombinant DNA of R. japonica, a DNA 
fragment  388 bp long corresponding to the amplicon 
size of primer pair ITS-F/R was chemically synthesized 
according to the sequence from position 700,066 to 
700,453 of R. japonica genome (NCBI accession number 
CP047359). The DNA fragment consisting of 92 bp of 23S 
ribosomal RNA gene, 253 bp internal transcribed spacer, 
43 bp of 5S ribosomal RNA gene was inserted in the 
pGEM®-T vector system (Promega, Madison, WI, USA) 
and used as standard DNA for positive control of UR-
qPCR detection. Recombinant DNA was serially 10-fold 
diluted from 2.72 × 108 to 2.72 × 100 copies/μl, and used 
for UR-qPCR to identify the minimum copy number that 
could be detected. PCR was performed in triplicate and 
a linear regression representing the relationship between 
initial DNA copy number and cycle threshold (Ct) of 
amplification was established. The specificity of the 
UR-qPCR system was also evaluated by assessing cross-
detection of DNA from five other tick-borne pathogens 

Table 2  Primers used for detection and sequencing of Rickettsia spp. from ticks

Primer name Sequence (5′-3′) Target gene (bp) Cycling conditions Reference

ITS-F GAT​AGG​TCG​GGT​GTG​GAA​G ITS, 388 50 cycles, 95 °C (4 s) -64 °C (4 s)-72 °C (4 s) [49]

ITS-R TCG​GGA​TGG​GAT​CGT​GTG​

Rr17k. 1p TTT​ACA​AAA​TTC​TAA​AAA​CCAT​ 17 kDa protein antigen, 539 35 cycles, 95 °C (30 s)-47 °C (30 s)-72 °C (1 min) [50]

Rr17k. 539n TCA​ATT​CAC​AAC​TTG​CCA​TT

Rr17k. 90p GCT​CTT​GCA​ACT​TCT​ATG​TT 17 kDa protein antigen, 450 35 cycles, 95 °C (30 s)-52 °C (30 s)-72 °C (1 min)

Rr17k. 539n TCA​ATT​CAC​AAC​TTG​CCA​TT

Rr190k. 71p TGG​CGA​ATA​TTT​CTC​CAA​AA ompA, 650 35 cycles, 95 °C (30 s)-49 °C (30 s)-72 °C (1 min) [50]

Rr190k. 720n TGC​ATT​TGT​ATT​ACC​TAT​TGT​

Rr190k. 71p TGG​CGA​ATA​TTT​CTC​CAA​AA ompA, 532 35 cycles, 95 °C (30 s)-52 °C (30 s)-72 °C (1 min) [50]

Rr190k. 602n AGT​GCA​GCA​TTC​GCT​CCC​CCT​ [51]
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(Anaplasma phagocytophilum, Ehrlichia chaffeensis, E. 
canis, Toxoplasma gondii, Coxiella burnetii, and Borre-
lia burgdorferi) under the same PCR conditions. Specific 
amplification was determined by comparing the peak of 
melting curves using sample DNA with that using Rick-
ettsia recombinant DNA. The UR-qPCR assay was also 
performed using DNA template of five Rickettsia species 
including R. japonica, R. roultii, “Candidatus R. longicor-
nii”, R. monacensis, and R. tamurae to verify the possibil-
ity of various Rickettsia species detection.

Detection and phylogenetic analysis of Rickettsia 
from ticks
To screen ticks for Rickettsia spp., 10 μl total nucleic acid 
from each of the five tick pools of adults, nymphs, or lar-
vae of the same species collected from the same site was 
taken and combined to have 50 μl solution mix; then, 3 μl 
was used for UR-qPCR. The combined nucleic acid with 
positive UR-qPCR results was identified and each pool 
tested individually to identify the exact pool carrying the 
pathogen; conventional nested PCRs targeting ompA and 
17 kDa protein antigen genes were used for the detection 
and sequencing analysis.

After confirming the expected bands of ITS DNA 
(388 bp) and nested PCR products of ompA (532 bp, 
Table  2) and 17 kDa protein antigen genes (450 bp, 
Table  2) the PCR products were purified using the 
QIAquick PCR Purification Kit (QIAGEN, Hilden, Ger-
many) prior to being shipped for sequencing by Macro-
gen Inc. (Seoul, Korea). The generated sequences were 
deposited on NCBI with accession number MW916824 
(17 kDa protein antigen gene), MW916823 (ompA gene), 
and MW929192 (ITS DNA). The gene sequences were 
aligned using the Clustal X2 program [52], the overhang-
ing ends were trimmed using BioEdit 7.2 software [53], 
and phylogenetic tree was constructed using the neigh-
bour-joining method and bootstrapped 1000 times using 
the MEGA7 software [54].

Statistical analysis
The tick samples were collected and arranged in pools 
according to living stages of each species collected from 
the same site for detection of Rickettsia spp. Analysis of 
the prevalence of Rickettsia spp. in the tick pools was 
done using the minimum infection rate (MIR) that based 
on the assumption that every positive pool contains only 
one infected tick. The MIR was calculated using the for-
mula: MIR = [(number of positive pools)/(total number 
of tested ticks)] × 1000 [55, 56].

Abbreviations
UR-qPCR: Ultra-rapid real-time PCR; ITS: Internal transcribed spacer; MIR: 
Minimum infection rate.
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