
Evaluating Support for the Current
Classification of Eukaryotic Diversity
Laura Wegener Parfrey

1
, Erika Barbero

2
, Elyse Lasser

2
, Micah Dunthorn

1
, Debashish Bhattacharya

3,4
,

David J. Patterson
5

, Laura A. Katz
1,2*

1 Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, Massachusetts, United States of America, 2 Department of Biological Sciences,

Smith College, Northampton, Massachusetts, United States of America, 3 Department of Biological Sciences, University of Iowa, Iowa City, Iowa, United States of America,

4 Roy J. Carver Center for Comparative Genomics, University of Iowa, Iowa City, Iowa, United States of America, 5 Bay Paul Center for Genomics, Marine Biological Laboratory,

Woods Hole, Massachusetts, United States of America

Perspectives on the classification of eukaryotic diversity have changed rapidly in recent years, as the four eukaryotic
groups within the five-kingdom classification—plants, animals, fungi, and protists—have been transformed through
numerous permutations into the current system of six ‘‘supergroups.’’ The intent of the supergroup classification
system is to unite microbial and macroscopic eukaryotes based on phylogenetic inference. This supergroup approach is
increasing in popularity in the literature and is appearing in introductory biology textbooks. We evaluate the stability
and support for the current six-supergroup classification of eukaryotes based on molecular genealogies. We assess
three aspects of each supergroup: (1) the stability of its taxonomy, (2) the support for monophyly (single evolutionary
origin) in molecular analyses targeting a supergroup, and (3) the support for monophyly when a supergroup is
included as an out-group in phylogenetic studies targeting other taxa. Our analysis demonstrates that supergroup
taxonomies are unstable and that support for groups varies tremendously, indicating that the current classification
scheme of eukaryotes is likely premature. We highlight several trends contributing to the instability and discuss the
requirements for establishing robust clades within the eukaryotic tree of life.
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Introduction

Biological research is based on the shared history of living
things. Taxonomy—the science of classifying organismal
diversity—is the scaffold on which biological knowledge is
assembled and integrated into a cohesive structure. A
comprehensive eukaryotic taxonomy is a powerful research
tool in evolutionary genetics, medicine, and many other
fields. As the foundation of much subsequent research, the
framework must, however, be robust. Here we test the
existing framework by evaluating the support for and stability
of the classification of eukaryotic diversity into six super-
groups.

Eukaryotes (organisms containing nuclei) encompass in-
credible morphological diversity from picoplankton of only
two microns in size to the blue whale and giant sequoia that
are eight orders of magnitude larger. Many evolutionary
innovations are found only in eukaryotes, some of which are
present in all lineages (e.g., the cytoskeleton, nucleus) and
others that are restricted to a few lineages (e.g., multi-
cellularity, photosynthetic organelles [plastids]). These and
other eukaryotic features evolved within microbial eukar-
yotes (protists) that thrived for hundreds of millions of years
before they gave rise independently to multicellular eukar-
yotes, the familiar plants, animals, and fungi [1]. Thus,
elucidating the origins of novel eukaryotic traits requires a
comprehensive phylogeny—an inference of organismal rela-
tionships—that includes the diverse microbial lineages.

Higher-level classifications have historically emphasized
the visible diversity of large eukaryotes, as reflected by the
establishment of the plant, animal, and fungal kingdoms. In
these schemes the diverse microbial eukaryotes have gen-

erally been placed in one (Protista [2–4] or Protoctista [5]) or
two (Protozoa and Chromista [6]) groups (Figure 1; but see
also [7,8]). However, this historic distinction between macro-
scopic and microscopic eukaryotes does not adequately
capture their complex evolutionary relationships or the vast
diversity within the microbial world.
In the past decade, the emphasis in high-level taxonomy has

shifted away from the historic kingdoms and toward a new
system of six supergroups that aims to portray evolutionary
relationships between microbial and macrobial lineages. The
supergroup concept is gaining popularity as evidenced by
several reviews [9,10] and inclusion in forthcoming editions
of introductory biology textbooks. In addition, the Interna-
tional Society of Protozoologists recently proposed a formal
reclassification of eukaryotes into six supergroups, though
acknowledging uncertainty in some groups [7].

The Supergroups
Below we introduce the six supergroups in alphabetical

order (Figure 2). The supergroup ‘‘Amoebozoa’’ was proposed
in 1996 [11]. Original evidence for the group was drawn from
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molecular genealogies and morphological characters such as
eruptive pseudopodia and branched tubular mitochondrial
cristae. However, no clear synapomorphy—shared derived
character—exists for ‘‘Amoebozoa.’’ In fact, amoeboid or-
ganisms are not restricted to the ‘‘Amoebozoa,’’ but are found
in at least four of the six supergroups.

The ‘‘Amoebozoa’’ include a diversity of predominantly
amoeboid members such as Dictyostelium discoideum (cellular
slime mold), which is a model for understanding multi-
cellularity [12]. Another member, Entamoeba histolytica, is an
amitochondriate amoeba (Pelobiont) and is the cause of
amoebic dysentery, an intestinal infection with global health
consequences [13].

‘‘Chromalveolata’’ was introduced as a parsimonious, albeit
controversial, explanation for the presence of plastids of red
algal origin in photosynthetic members of the ‘‘Alveolata’’
and ‘‘Chromista’’ [14]. Under this hypothesis, the last
common ancestor of the chromalveolates was a heterotroph
that acquired photosynthesis by engulfing a red alga and
retaining it as a plastid [15,16]. The ‘‘Alveolata’’ include
ciliates, dinoflagellates, and apicomplexa, and its monophyly
is well supported by morphology and molecules. ‘‘Chromista’’
was created as a kingdom to unite diverse microbial lineages
with red algal plastids (and their nonphotosynthetic descend-
ants) [6,17], but no clear synapomorphy unites this clade.

The supergroup ‘‘Chromalveolata’’ includes microbes with
critical roles in the environment and in human health.
Numerous key discoveries emerged from studies of the model
organism Tetrahymena (ciliate: ‘‘Alveolata’’), including self-
splicing RNAs and the presence of telomeres [18]. Phytophthora
(stramenopile: ‘‘Chromista’’), a soil-dwelling organism, is the
causative agent of the Irish Potato Famine [19], whereas
Plasmodium (Apicomplexa: ‘‘Alveolata’’) is the causative agent
of malaria [20].

‘‘Excavata’’ is a supergroup composed predominately of

heterotrophic flagellates whose ancestor is postulated to have
had a synapomorphy of a conserved ventral feeding groove
[21]. Most members of ‘‘Excavata’’ are free-living hetero-
trophs, but there are notable exceptions that are pathogens.
For example, Giardia (Diplomonada) causes the intestinal
infection giardiasis, and Trichomonas vaginalis (Parabasalia) is
the causative agent of a sexually transmitted disease [22].
Kinetoplastids, such as Trypanosoma (Euglenozoa), have unique
molecular features such as extensive RNA editing of
mitochondrial genes that is templated by minicircle DNA [23].
‘‘Opisthokonta’’ includes animals, fungi, and their micro-

bial relatives. This supergroup emerged from molecular gene
trees [24] and is united by the presence of a single posterior
flagellum in many constituent lineages [25]. Molecular studies
have expanded microbial membership of the group and
revealed a potential molecular synapomorphy, an insertion in
the Elongation Factor 1a gene in lineages containing this
ortholog [26,27].
‘‘Opisthokonts’’ include many biological model organisms

(Drosophila, Saccharomyces). Vast amounts of research have been
conducted on members of this supergroup and much text-
book science is based on inferences from these lineages.
Other notable opisthokonts include Encephalitozoon (Micro-
sporidia: Fungi), a causative agent of diarrhea, which has one
of the smallest known nuclear genomes at 2.9 MB [28]. Also
included within the ‘‘Opisthokonta’’ are the choanoflagellates
(e.g., Monosiga), which are the sister to animals [29].
The supergroup ‘‘Plantae’’ was erected as a kingdom in

1981 [30] to unite the three lineages with primary plastids:
green algae (including land plants), rhodophytes, and
glaucophytes. Under this hypothesis a single ancestral
primary endosymbiosis of a cyanobacterium gave rise to the
plastid in this supergroup [31]. The term ‘‘Plantae’’ has been
used to describe numerous subsets of photosynthetic organ-
isms, but in this manuscript will only be used in reference to
the supergroup.
Well-known ‘‘Plantae’’ genera include Arabidopsis, a model

angiosperm, and Porphyra (red alga), the edible seaweed nori.
Within the ‘‘Plantae’’ there have been numerous independent
origins of multicellularity including: Volvox (Chlorophyta)
[32], the land plants, and red algae.
‘‘Rhizaria’’ emerged from molecular data in 2002 to unite a

heterogeneous group of flagellates and amoebae including:
cercomonads, foraminifera, diverse testate amoebae, and
former members of the polyphyletic radiolaria [33]. ‘‘Rhiza-
ria’’ is an expansion of the ‘‘Cercozoa’’ [6] that was also
recognized from molecular data [34,35]. ‘‘Cercozoa’’ and

Figure 1. Trends in the Taxonomy of Eukaryotes

A comparison of four representative taxonomies illustrates trends within
eukaryotic taxonomy over the past 50 years [2,5–7]. Movement of taxa is
traced from earlier to more recent taxonomies with solid and dashed
lines. A solid line indicates all members of a group (left of line) are
incorporated into the subsequent group (right of line). Dashed lines
indicate that a subset of members (left) is incorporated into subsequent
groups (right).
doi:10.1371/journal.pgen.0020220.g001
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Synopsis

Evolutionary perspectives, including the classification of living
organisms, provide the unifying scaffold on which biological
knowledge is assembled. Researchers in many areas of biology
use evolutionary classifications (taxonomy) in many ways, including
as a means for interpreting the origin of evolutionary innovations, as
a framework for comparative genetics/genomics, and as the basis
for drawing broad conclusions about the diversity of living
organisms. Thus, it is essential that taxonomy be robust. Here the
authors evaluate the stability of and support for the current
classification system of eukaryotic cells (cells with nuclei) in which
eukaryotes are divided into six kingdom level categories, or
supergroups. These six supergroups unite diverse microbial and
macrobial eukaryotic lineages, including the well-known groups of
plants, animals, and fungi. The authors assess the stability of
supergroup classifications through time and reveal a rapidly
changing taxonomic landscape that is difficult to navigate for the
specialist and generalist alike. Additionally, the authors find variable
support for each of the supergroups in published analyses based on
DNA sequence variation. The support for supergroups differs
according to the taxonomic area under study and the origin of
the genes (e.g., nuclear, plastid) used in the analysis. Encouragingly,
combining a conservative approach to taxonomy with increased
sampling of microbial eukaryotes and the use of multiple types of
data is likely to produce a robust scaffold for the eukaryotic tree of
life.



foraminifera appear to share a unique insertion in ubiquitin
[36], but there is a paucity of non-molecular characters
uniting members of ‘‘Rhizaria.’’

‘‘Rhizaria’’ encompasses a diversity of forms, including a
heterotrophic flagellate Cercomonas (Cercomonada: ‘‘Cerco-
zoa’’) and a photosynthetic amoeba Paulinella chromatophora,
(Silicofilosea: ‘‘Cercozoa’’). The latter likely represents a
recent endosymbiosis of a cyanobacterium [37,38]. Some
members of the ‘‘Rhizaria,’’ notably the shelled foraminifera,
also have a substantial fossil record that can be used to
determine the age of sediments [39].

Our Approach
To assess the robustness of the six proposed supergroups,

we compare formal taxonomies and track group composition
and nomenclature across time (Figures 1 and 3). We also
evaluate support for the six supergroups by analyzing
published molecular genealogies that either target a specific
supergroup or aim to survey all supergroups. Our focus on
molecular genealogies is limited. We recognize that super-
groups have, in many cases, been defined by suites of

characters such as flagellar apparatus in ‘‘Excavata’’ [33,40]
and ‘‘Opisthokonta’’[25], and that groups are more robust
when supported by multiple data types (see Discussion). Use of
genealogies is further complicated because a genealogy is the
reconstruction of the history of a gene, and may or may not be
congruent with phylogenies, which depict the history of
organisms [41,42]. Despite these factors, our treatment of
molecular genealogies is warranted given the prevalence of
molecular analyses in the literature that seeks support for
supergroups and the reliance on these gene trees in establish-
ing taxonomy.
For each genealogy we evaluate the taxon sampling for the

targeted supergroup (Membership; Figures 4–9) and the
monophyly of all supergroups with at least two member taxa
(Supergroup monophyly; Figures 4–9). Monophyletic clades,
those that include an ancestor and all of its descendants [43],
are scored (þ; Figures 4–9). We assess support for supergroups
when they are targeted by specific studies and when they are
included as out-groups in studies targeting other super-
groups. A conservative measure of out-group monophyly was

Figure 2. Summary of Eukaryotic Supergroups

Assessment based on our analysis of molecular genealogies. þþþ, well supported; þ, some support; �, support missing or very limited. Nuclear,
genealogies based on nuclear genes. Plastid, genealogies based on chloroplast genes. Pictured organisms: Lesquereusia, Thalassionema, Jakoba,
Proterospongia, Cosmarium, Ammonia. (Images: micro*scope, http://starcentral.mbl.edu/microscope).
doi:10.1371/journal.pgen.0020220.g002
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Figure 3. Trends in Supergroup Taxonomy

A comparison of three formal classifications illustrates trends within (A) ‘‘Amoebozoa’’ [7,45,47]; (B) ‘‘Excavata’’ [7,33,60]; (C) ‘‘Plantae’’ [2,6,7]; and (D)
‘‘Rhizaria’’ [6,7,33]. A majority of solid, horizontal lines would indicate temporal stability of supergroup classification. For visual simplicity we do not
indicate groups newly included in the supergroups or taxonomic restructuring within subgroups. Asterisk indicates a newly introduced term.
‘‘Chromalveolata’’ and ‘‘Opisthokonta’’ are not included because only one formal taxonomy exists for both groups. See Figure 1 for further notes.
doi:10.1371/journal.pgen.0020220.g003

Figure 4. Support for Membership and Supergroup Monophyly from ‘‘Amoebozoa’’-Targeted Molecular Genealogies

Membership: � indicates the member taxon falls within the supergroup Amoebozoa; * indicates that the member taxon is excluded from the
Amoebozoa clade, or no clade is formed. Papers below blank line survey eukaryotic diversity [33,49,115] and are included in all analyses. Member taxa:
My, Mycetozoa; Dc, Dictyosteliids; Tu, Tubulinea (Lobosea, Gymnamoebea sensu stricto); Am, Acanthamoebidae; Fl, Flabellinea (Discosea, Glycostylea);
Pe, Pelomyxa; Ma, Mastigamoebidae; En, Entamoebidae; Rs, residua; Br, Breviata, ‘‘Mastigamoeba invertans sensu NCBI.’’ Supergroup Monophyly, þ
indicates monophyly;� indicates group is para- or polyphyletic, and blank indicates insufficient data available. Supergroup definition based on Adl et al.
2005 [4]: A, Amoebozoa; C, Chromalveolata; E, Excavata; O, Opisthokonta; P, Plantae; R, Rhizaria. The position of Breviata, Br, was not considered when
scoring the monophyly of Amoebozoa as this organism was misidentified and affiliations are unknown (see text). Some nodes were constrained in
reference [97]. References cited in this figure are [25,33,45,48,49,84,97,114,115].
doi:10.1371/journal.pgen.0020220.g004
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used because we required only two member lineages be
present. In contrast, focal supergroups had broader taxo-
nomic sampling.

Results

Taxonomic Instability
There is considerable instability in taxonomies of the six

putative supergroups (Figure 3). Causes of the rapid revisions

in eukaryotic taxonomy over short time periods include: (1)
nomenclatural ambiguity, (2) ephemeral and poorly sup-
ported higher-level taxa, and (3) classification schemes
erected under differing taxonomic philosophies. For exam-
ple, taxonomy of the ‘‘Amoebozoa,’’ a term originally
introduced by Lühe in 1913 [44] to encompass a very
different assemblage of organisms, has changed considerably
in ten years (Figure 3A). ‘‘Variosea’’ was created as a subclade
within the ‘‘Amoebozoa’’ in 2004 to group taxonomically
unplaced genera of amoebae with ‘‘exceptionally varied
phenotype’’ [45]. Rarely supported by morphology or
molecular evidence [46–49], this taxon was excluded from
subsequent classifications [7,47] but is still discussed in the
literature [46]. Similarly, the excavate taxon ‘‘Loukozoa’’ [6]
has been continually redefined to include a variety of taxa
bearing a ventral groove (Figure 3B) and finally abandoned
[40]. The taxonomy of ‘‘Rhizaria’’ has emerged largely from
molecular genealogies and has varied partly in response to
shifting topology of gene trees that change with taxon
sampling and the method of tree construction [6,33,50,51]
(Figure 3D).
The taxonomy of ‘‘Plantae’’ is destabilized by the complex

history of the term. Used since Haeckel’s time [52], ‘‘Plantae’’
has been redefined numerous times to describe various
collections of photosynthetic organisms, leading to major
discrepancies between taxonomic schemes (Figure 3C; e.g.,
[2,5]). The term ‘‘Archaeplastida’’ was recently introduced to
alleviate confusion over ‘‘Plantae,’’ but this synonym is not
widely used.
The stability of two supergroups, ‘‘Chromalveolata’’ and

‘‘Opisthokonta,’’ cannot be assessed at this time because only
a single formal taxonomy exists [7]. Other classification
schemes of eukaryotes segregate animals and fungi as
separate kingdoms and place microbial opisthokonts in the
kingdom Protozoa (Figure 1) [6,33]. Similarly, chromalveolate
members are often divided between the polyphyletic king-
doms ‘‘Chromista’’ and ‘‘Protozoa’’ (Figure 1) [33,49].

Figure 5. Support for Membership and Supergroup Monophyly from

‘‘Chromalveolata’’-Targeted Molecular Genealogies

Member taxa: Al, Alveolata; St, Stramenopiles (Heterokonts); Ha,
Haptophyta; Cr, Cryptophyceae. Monophyletic ‘‘Plantae’’ from plastid
genealogies includes secondarily derived plastids. See Figure 4 for further
notes. References cited in this figure are [33,49,55,56,107,108,115–122].
Loc, location (genome) from which the gene of interest originated; Pla,
plastid genome; Nuc, nuclear genome; Mit, mitochondrial genome.
doi:10.1371/journal.pgen.0020220.g005

Figure 6. Support for Membership and Supergroup Monophyly from ‘‘Excavata’’-Targeted Molecular Genealogies

Member taxa: Di, Diplomonadida; Rt, Retortamonadida; Cp, Carpediemonas; Tr, Trimastix; Ox, Oxymonadida; Ht, Heterolobosea; Eu, Euglenozoa; Ml,
Malawimonas; Jk, Jakobida; Pa, Parabasalia; Dy, Diphylleia. Hypothesized subgroups: � Fornicata clade (DiþRtþCp) monophyletic, & Preaxostyla clade
(OxþTr) monophyletic, ¤ Discicristata clade (Htþ Eu) monophyletic. The position of Diphylleia, Dy, was not considered when scoring the monophyly of
‘‘Excavata’’ as the inclusion of this organism within ‘‘Excavata’’ is controversial and has been removed from recent classifications (see text). See Figure 4
for further notes. References cited in this figure are [33,40,49,60,115,123–128].
doi:10.1371/journal.pgen.0020220.g006
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Varying Support for Membership within and Monophyly
of Targeted Supergroups

Several supergroups are generally well supported when
targeted in molecular systematic studies. Strikingly, the
monophyly of both the original and expanded ‘‘Opisthokon-
ta’’ members is strongly supported in all investigations
targeting the group (ten of ten, Figure 7). Two other
supergroups are also well supported: ‘‘Rhizaria’’ monophyly
is recovered in 11 of 14 studies focusing on this supergroup
(Figure 9) and ‘‘Amoebozoa’’ retained in five of seven
topologies (Figure 4). However, support for these groups is

expected, given that they were recognized from molecular
gene trees [11,33].
‘‘Excavata’’ rarely form a monophyletic group in molecular

systematic studies targeting this supergroup (two of nine;
Figure 6). Moreover, the position of putative members,
jakobids, Malawimonas, parabasalids, and Diphylleia vary by
analysis (Figure 6). Three distinct subclades, all of which are
supported by ultrastructural characters [40], are generally
recovered (Fornicata [six of six], Preaxostyla [six of six], and
Discicristata [five of eight]; Figure 6).
Support for two supergroups varies depending on the type

of character used: plastid or nuclear. The monophyly of
‘‘Plantae’’ and ‘‘Chromalveolata’’ are well supported by
plastid characters: four of four plastid analyses (Figure 8)
and six of nine (Figure 5), respectively. The ‘‘Plantae’’ clade is
monophyletic in only three of six analyses using nuclear
genes, including Elongation Factor 2 [53] and a 100þ gene
analysis that included very limited taxon sample [54]. Nuclear
loci never support ‘‘Chromalveolata’’ (zero of six; Figure 5),
though alveolates and stramenopiles often form a clade to the
exclusion of haptophytes and cryptophytes (e.g., [24,97];
Figures 4 and 7).

Decreased Support for Monophyly of Supergroups as Out-
Groups in Other Studies
For each genealogy we also assessed the monophyly of the

supergroups when included as out-groups. Overall, we find
that support for the monophyly of a given supergroup is
stronger when targeted and support decreases when the same
supergroup is included as an out-group in other studies.
This trend is particularly unexpected given our less

stringent requirements for monophyly of out-groups: a
minimum of only two members need be included, while
targeted groups had broader taxon sampling (see Methods). A
priori, it would seem that the lower stringency could allow a
limited sample of supergroup members to substitute for

Figure 7. Support for Membership and Supergroup Monophyly from ‘‘Opisthokonta’’-Targeted Molecular Genealogies

Member taxa: Mt, Metazoa; Fu, Fungi; Cf, Choanomonada; Cy, chytrids; Ic, Ichthyosporea (DRIPs); Cl, Corallochytrium; Nu, Nucleariida; Mi, Ministeria; Ap,
apusomonads. The position of apusomonads, Ap, was not considered when scoring the monophyly of ‘‘Opisthokonta’’ as this organism is highly
variable, and it has been removed from recent classifications (see text). See Figure 4 for further notes. References cited in this figure are [24–
27,33,49,115,122,129–132].
doi:10.1371/journal.pgen.0020220.g007

Figure 8. Support for Membership and Supergroup Monophyly from

‘‘Plantae’’-Targeted Molecular Genealogies

Member taxa: Gr, Chloroplastida ¼ Viridiplantae (Green algae, including
land plants); Rd, Rhodophyceae (Red algae); Gl, Glaucophyta. See Figure
4 for general notes and Figure 5 for plastid-specific notes. References
cited in this figure are [33,49,53,54,115,133–139].
doi:10.1371/journal.pgen.0020220.g008
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overall supergroup monophyly, thereby increasing the
occurrence of supergroup monophyly for out-group taxa.
However, this scenario is realized only in the groups that
receive poor support, ‘‘Excavata’’ and ‘‘Chromalveolata,’’
assessed by nuclear genes. ‘‘Excavata’’ is monophyletic more
frequently when members are included as out-groups (seven
of 30, Figures 4, 5, and 7–9, versus two of nine, Figure 8).
Taxonomic sampling of these lineages is often considerably
lower in non-targeted analysis, and monophyly reflects that of
the subclades ‘‘Discicristata’’ or ‘‘Fornicata’’ (such as in
[48,58,59], but see [60,128] for two exceptions, Figures 4, 6,
and 9). ‘‘Chromalveolata’’ is monophyletic in ten of 45
nuclear gene trees targeting other taxonomic areas (Figures 4
and 6–9). Intriguingly, in all ten of the cases where nuclear
genes support monophyletic ‘‘Chromalveolata,’’ only alveo-
lates and stramenopiles are included (Figures 4–9).

In contrast, the remaining supergroups are monophyletic
less often when included as out-groups. For example,
‘‘Opisthokonta’’ was recovered in all studies targeting this
supergroup, but in only 33 of 41 studies that target other
groups (Figures 5–9). Similarly, both the ‘‘Amoebozoa’’ and
‘‘Rhizaria’’ are monophyletic less often when their members
are included as out-groups in studies targeting the remaining
five supergroups (15 of 35 and eight of 15, respectively:
Figures 5–9 and 4–8). When included as an out-group,
‘‘Plantae’’ plastids usually form a monophyletic clade (eight
of nine analyses, Figure 5) but support is much lower in
nuclear gene trees (11 of 42, Figures 4–7 and 9).

Discussion

Our analysis reveals varying levels of stability and support
for the six supergroups (Figure 2). Below, we assess the status
of each supergroup, describe factors that contribute to the
instability, and propose measures to improve reconstruction
of an accurate eukaryotic phylogeny.

Supergroup Robustness
Robust taxa—those consistently supported by multiple

datasets—are emerging and include the supergroup ‘‘Opis-
thokonta.’’ This group of animals, fungi, and their microbial
relatives receives consistent support in molecular genealo-
gies. This supergroup was monophyletic in 43 of 51 trees we
examined (Figures 4–9). ‘‘Opisthokonta’’ is also united by
additional types of data: most members share a single
posterior flagellum, contain plate-like cristae in mitochon-
dria, and have an insertion within the Elongation Factor 1a
gene [8,25–27].
The remaining five supergroups receive varying degrees of

support from molecular genealogies. ‘‘Amoebozoa’’ and
‘‘Rhizaria’’ received high support in analyses that targeted
them (Figures 4 and 9, respectively) but formed monophyletic
clades less often when included as out-groups. The two
photosynthetic clades ‘‘Chromalveolata’’ and ‘‘Plantae’’ re-
ceive differential support depending on the origin of the
gene: high support in plastid genealogies but low in nuclear
gene trees (Figures 5 and 8, see Results). Molecular support
for the ‘‘Excavata’’ as a whole is lacking from well-sampled
gene trees (Figure 6).
Although the six supergroups are not consistently sup-

ported by molecular genealogies, some nested clades are
emerging as robust groups. For example, a sister relationship
between Alveolata and Stramenopila is often recovered. It is
this relationship that makes ‘‘Chromalveolata’’ appear mono-
phyletic in nuclear genealogies when only these clades are
included as outgroups (e.g., [24,97], and Figures 4 and 7).
There is also growing support for several subgroups within
the poorly supported ‘‘Excavata’’ (i.e., ‘‘Fornicata’’ and
‘‘Preaxostyla’’; Figure 6).

Alternative Hypotheses
Although it is clear from our analysis that eukaryotic

supergroups are not well supported, no alternative high-level
groupings emerge from molecular genealogies. Rather, there

Figure 9. Support for Membership and Supergroup Monophyly from ‘‘Rhizaria’’-Targeted Molecular Genealogies

Member taxa: Ce, Cercomonadida; Ch, Chlorarachniophyta; Eg, euglyphids; Pt, Phytomyxea (plasmophorids); Ph, Phaeodarea; Gr, Gromia; Fo,
Foraminifera; Hs, Haplosporidia (Ascetosporea); Po, Polycystinea; Ac, Acantharia; Ds, desmothoracids; Rs, residua; Ap, apusomonads. The position of
apusomonads, Ap, was not considered when scoring the monophyly of ‘‘Rhizaria’’ as the position of this organism is highly variable, and it has been
removed from recent classifications (see text). See Figure 4 for further notes. References cited in this figure are [33,49,57–59,61,131,140–145].
doi:10.1371/journal.pgen.0020220.g009
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is support for lower-level groups, such as the ‘‘Excavata’’
subgroups discussed above and perhaps also alveolates plus
stramenopiles. This suggests that either there are no higher-
level groupings to be found, or there is as yet inadequate data
to resolve these clades. We believe that lack of taxon sampling
is the key to resolution.

Further evidence against the six-supergroup view of
eukaryotic diversity is the existence of ‘‘nomadic’’ taxa—
lineages that do not have a consistent sister group, but
instead wander between various weakly supported positions.
Some nomadic taxa are acknowledged incertae sedis (of
unknown taxonomic position) such as Ancyromonas, Breviata,
and Apusomonadidae [7,8]. Other taxa that have been
assigned to supergroups also appear to be nomadic, including
Haptophyta (putative member of ‘‘Chromalveolata’’) and
Malawimonas (putative member of ‘‘Excavata’’). For example,
the haptophytes variously branch with Centrohelida and red
algae [45], sister to a clade of ‘‘Rhizaria’’ and Heterolobosea
[48], sister to cryptophytes [56], and in a basal polytomy [61].
These nomadic taxa may either represent independent, early
diverging lineages or their phylogenetic position cannot yet
be resolved with the data available. Again, we feel that taxon
sampling is the key in order to distinguish between these
possibilities.

Why Is Eukaryotic Taxonomy So Difficult?
The variable support for relationships is in part attribut-

able to the inherent difficulty of deep phylogeny, the
chimeric nature of eukaryotes, misidentified organisms, and
conflicting approaches to taxonomy. Here we elaborate on
these destabilizing trends and provide illustrative examples.

Challenges of deep phylogeny. Reconstructing the history
of eukaryotic lineages requires extraction of phylogenetic
signal from the noise that has accumulated over many
hundreds of millions of years of divergent evolutionary
histories. There is doubt whether resolution of divergences
this deep can be resolved with molecular data [62]. Addition-
ally, the nature of the relationships may also pose a significant
challenge. For example, a rapid radiation of major eukaryotic
lineages has been proposed [63] and is the most difficult
scenario to resolve because of the lack of time to accumulate
synapomorphies at deep nodes.

Further, phylogenetic relationships can be obscured by
heterogeneous rates of evolution and divergent selection
pressures. For example, genes in many parasitic lineages of
eukaryotes experience elevated rates of evolution. If not
properly accounted for, these fast lineages will group
together due to long-branch attraction [64,65]. This was the
case for Microsporidia, intracellular parasites of animals;
early small subunit rDNA (SSU) genealogies placed the
Microsporidia at the base of the tree with other amito-
chondriate taxa, including Giardia and Entamoeba [66]. These
parasites were united under the ‘‘Archezoa’’ hypothesis [67].
More recent analyses with appropriate models of evolution
[68] and those using protein-coding genes [69] place the
Microsporidia within fungi and falsify ‘‘Archezoa.’’ This
example demonstrates the importance of phylogenetic
methods in the interpretation of eukaryotic diversity. In
our analysis we find no clear correlation between method of
tree building and group stability. Arguments about phyloge-
netic inference have been discussed extensively [62,70–76],

and increasingly sophisticated algorithms are being devel-
oped to compensate for the difficulties [77–79].
The chimeric nature of eukaryotes. Reconstructing the

history of eukaryotic lineages is complicated by the horizon-
tal transfer of genes and organelles [74,80–83]. For example,
‘‘Chromalveolata’’ plastid genes tell one story, consistent with
a single transfer from red algae, which is not currently
supported by available nuclear genes (Figure 5). There is also
a growing body of evidence for aberrant lateral gene transfers
in eukaryotes (reviewed in [80,82]).
Instability due to misidentification. Misidentification de-

stabilizes taxonomy because all efforts to classify a misidenti-
fied organism reach erroneous conclusions. Cases of
misidentification lead to inaccurate conclusions and require
considerable effort to remedy. There is a rigorous standard
for identifying microbial eukaryotes, but this standard is not
always upheld. For example, the putative ‘‘Amoebozoa’’
species ‘‘Mastigamoeba invertens’’ that always branched outside
the ‘‘Amoebozoa’’ clade [45,49,84] was misidentified [85]; it
has now been properly described as Breviata anathema and is
not yet placed within any of the supergroups [85].
Inaccurate conclusions about organismal relationships can

also result from contamination (e.g., from symbionts and
parasites). The results of subsequent molecular genealogies
are therefore wrong and misleading. For example, opalinids,
multinucleated flagellates that inhabit the lower digestive
track of Anurans, were placed in the stramenopiles (Slopa-
linida: ‘‘Chromalevolata’’) based on ultrastructural data [86].
However, the first molecular sequences for this group placed
them within fungi (Opalina ranarum and Cepedea virguloidea
[87,88]). These sequences were later shown to belong to
zygomycete fungal contaminants, not to the opalinids.
Subsequent isolates (Protoopalina intestinalis) yielded genealo-
gies congruent with the ultrastructural data, placing P.
intestinalis within the stramenopiles [89]. To avoid setbacks
and confusion due to misidentification, we propose that all
analyses of eukaryotic diversity include a vouchering system
for strains, images, and DNAs.
Conflicting approaches to taxonomy. Our evaluation of the

stability of taxonomy for supergroups reveals a rapidly
changing landscape (Figures 1 and 3). The instability in
higher-level classifications of eukaryotes reflects the diversity
of philosophical approaches, the exploratory state of eukary-
otic taxonomy, and premature taxon naming. Many research-
ers seek schemes based on monophyletic groupings so that
their taxonomies reflect evolutionary relationships
[7,8,90,91]. In contrast, others employ a taxonomic philoso-
phy in which evolutionary relatedness and monophyly are
just one criterion from a set of group characteristics [33].
Paraphyly—a taxon defined without all descendants—is
tolerated in these systems, and paraphyletic taxa are
designated as such (see [6] p. 210–215 for explanation of
such a philosophy).
In many cases, classification schemes that are separated by

two years or less vary substantially from one another (e.g.,
Figure 3A and 3B). New groups and fluctuating group
composition result in numerous cases of homonymy (two
concepts linked to one name), synonymy (one concept linked
to two names), and redefinition of existing terms. For
example, at the highest level the terms ‘‘Amoebozoa,’’
‘‘Opisthokonta,’’ and ‘‘Plantae’’ were all introduced under
different definitions [4,44,52] before being applied to super-
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groups. The term ‘‘Plantae’’ is an extreme case of homonymy
having referred to numerous groups of photosynthetic
organisms over the past century and a half (Figure 3C). The
rapidly changing taxonomic landscape makes it difficult for
non-specialists as well specialists to follow the current debate
over supergroups.

Toward a Robust Scaffold to the Eukaryotic Tree of Life
Taxonomic sampling. Perhaps the most critical aspect of

the current state of eukaryotic systematics is the very limited
taxonomic sampling to date. This is particularly problematic
as the supergroup literature is often derived from a
resampled pool of genes and taxa. More than 60 lineages of
microbial eukaryotes have been identified by ultrastructure
[8], yet only about one-half of these have been included in
molecular analyses. Furthermore, even when these lineages
are included, they are generally represented by a single
species. Such sparse sampling increases the risk of long-
branch attraction as discussed above, such as occurred for
Giardia, and may cause artifactual relationships [92]. Further,
analyses of sequences from newly sampled lineages have
altered or expanded supergroup definitions (e.g., nucleariids
in ‘‘Opisthokonta’’ [93] and Phaeodarea in ‘‘Rhizaria’’ [94]).
Thus, statements of monophyly may be premature when
taxonomic sampling is low.

There is tension between increasing the number of taxa
versus the numbers of genes. Several theoretical works have
demonstrated the diminishing returns of increased number
of genes relative to increased taxon sampling [95–97], but
see [98]. In addition, increasing taxon sampling can lead to
shifts in molecular tree topology [99–101]. These results
provide incentive to concentrate sequencing efforts on
obtaining more taxa and a moderate number of genes. We
recommend increasing the lineages sampled and the number
of diverse taxa within lineages. We are optimistic that as
data become available from a greater diversity of taxa,
eukaryotic phylogeny will become increasingly more re-
solved.

Multiple character sets. We further anticipate that support
for clades will increase as additional character sets are
incorporated. Phylogenies based on single characters,
whether genes, morphology, or ultrastructure, are subject to
biases in the data and are not reliable by themselves. Hence,
multiple character sets should be used to corroborate results.
Ultrastructural apomorphies combined with molecular ge-
nealogies have proven to be good indicators of phylogeny at
the level below supergroups [40,102]. This approach has
bolstered support for ‘‘Fornicata’’ and ‘‘Preaxostyla,’’ which
are consistently recovered in molecular genealogies and have
defining ultrastructural characters. As we move forward with
multiple character sets, we must shift from searching for
characters to support hypotheses to evaluating hypotheses in
light of all available data.

Well-sampled multigene and genome scale molecular
systematics provide another powerful tool for resolving
ancient splits in the tree of life. The National Science
Foundation initiative ‘‘Assembling the Tree of Life’’ provides
evidence of this shift in systematics research, whereby all
proposals involve multigene or genome (organellar) sequenc-
ing to establish robust phylogenetic hypotheses (see http://
www.nsf.gov/pubs/2005/nsf05523/nsf05523.htm; [54,97]). The
EuTree consortium (http://www.eutree.org) aims to increase

substantially the sampled diversity of eukaryotes by focusing
on understudied lineages in our multigene project to
assemble the tree of life.
An example of multigene study is analysis of genes involved

in clade-specific functions. This approach has been employed
in testing ‘‘Plantae’’ and ‘‘Chromalveolata’’ (e.g., [103]). A
single endosymbiosis (of a cyanobacterium in ‘‘Plantae’’ and
red alga in ‘‘Chromalveolata’’) predicts that the systems that
facilitate controlled exchange of metabolic intermediates
between the symbiotic partners be shared by putative
members of these two supergroups [104]. This prediction
has been supported by analyses of the plastid import
machinery [105] and antiporters that transport fixed carbons
across the plastid membranes [106]. However, taxon sampling
has been limited in these studies. Currently, increased
sampling of genomes from diverse photosynthetic eukaryotes
is yielding additional genes for clade-specific predictions
[107,108].
A conservative approach to taxonomy. Because taxonomy

is the foundation for much of the dialog and research in
evolutionary biology, there must be an unambiguous
taxonomic system in which one term is linked to one
concept. In contrast to this ideal, homonymy and redefini-
tion are prevalent in the taxonomy of eukaryotes, often as
the result of premature introduction or redefinition of taxa
(see above; Figure 3). Emerging hypotheses benefit the
community by sparking new research to test the hypothesis,
but they also introduce ambiguity. To alleviate the con-
fusion, we suggest introducing hypotheses as informal groups
and using inverted commas to indicate the existence of a
caveat, as done with the uncertain groups in this manuscript.
These steps will inform the community that group compo-
sition is likely to change, alleviate quick taxon turnover, and
promote stable taxa that are more resistant to compositional
change.
As increasing amounts of data become available, well-

supported nodes emerge and classifications tend to stabilize,
such as is occurring for the ordinal framework for angio-
sperms [109,110]. Similarly, we expect that this conservative
approach, combined with increased sampling of taxa and
genes, will promote the future stabilization of eukaryotic
classification.

Conclusion
Although the level of support varies among groups, the

current classification of eukaryotes into six supergroups is
being adopted broadly by the biological community (i.e.,
evidenced by its appearance in biology textbooks). The
supergroup ‘‘Opisthokonta’’ and a number of nested clades
within supergroups are supported by most studies. However,
support for ‘‘Amoebozoa,’’ ‘‘Chromalveolata,’’ ‘‘Excavata,’’
‘‘Plantae,’’ and ‘‘Rhizaria’’ is less consistent. The supergroups,
and eukaryotic taxonomy in general, are further destabilized
by considerable fluidity of taxa, taxon membership, and
ambiguous nomenclature as revealed by comparison of
classification schemes.
The accurate reconstruction of the eukaryotic tree of life

requires: (1) a more inclusive sample of microbial eukaryotes;
(2) distinguishing emerging hypotheses from taxa corrobo-
rated by multiple datasets; and (3) a conservative, mutually
agreed upon approach to establishing taxonomies. Analyses
of these types of data from a broad, inclusive sampling of
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eukaryotes are likely to lead to a robust scaffold for the
eukaryotic tree of life.

Methods
Stability of taxonomy. To assess the stability of supergroup

taxonomies over time, we selected three classification schemes for
each supergroup and tracked both the stability of taxa membership
(solid and dashed lines; Figures 1 and 3) and the fate of newly created
taxon names (asterisk; Figure 3). In sampling representative taxon-
omies, we aimed to capture a diversity of authors and opinions. In the
case of ‘‘Opisthokonta’’ and ‘‘Chromalveolata’’ we are aware of only
one formal, peer-reviewed classification scheme [7]. Given the lack of
equivalency in ranks between taxonomies, we have chosen to display
three levels with the intention of listing equivalent levels clearly.

Membership support. Within each supergroup, we assess the
support for each member taxon by documenting its inclusion in
molecular genealogies (Figures 4–9). Member taxa were chosen
because they are historically a well-supported group, usually with
an ultrastructural identity. The haptophytes are such a group, and
share a haptonema [8]. We included members that represent a broad
interpretation of the supergroup. For example, ‘‘Rhizaria’’ member
taxa include groups (e.g., apusomonads) originally placed in
‘‘Rhizaria’’ but later removed. We considered a taxon to be a
supported member of its supergroup (filled circles; Figures 4–9) when
it falls within a monophyletic clade containing a majority of the
supergroup members. A taxon that falls outside of its supergroup
clade, or on the occasion that a majority of members do not form a
monophyletic clade, is considered unsupported in that genealogy
(open circles; Figures 4–9).

The inclusion of a genealogy requires that it be found in a paper
that specifically addresses one of the supergroups or analyzes broad
eukaryotic diversity. The genealogies must also include adequate
sampling—two-member taxa per supergroup—from at least two of
the six supergroups to allow for the comparison of supergroup
monophyly. In cases where multiple gene trees are presented we
display the authors’ findings as multiple entries when the trees are
not congruent or as a single entry when the trees are concordant. Due
to the lack of monophyly in virtually all analyses, we have evaluated
the support for several hypothesized subgroups within the ‘‘Excavata’’
(geometric shapes; Figure 6).

Supergroup monophyly. To assess monophyly of supergroups, we
used the set of genealogies described above to evaluate the molecular

support for the supergroups as interpreted by Adl et al. 2005 ([7];
Figures 4–9). We analyzed the monophyly [43] of each supergroup in
trees having at least two member taxa present (þ/� Figures 4–9). We
do not indicate the method of tree construction. Although the
algorithm used is important, we did not find a clear correlation
between supported groups and algorithm used. We were also liberal
in accepting any level of support (e.g., bootstrap values and posterior
probabilities ranged from 4%–100%) when determining monophyly,
in part because there is debate over acceptable cutoff values [111–
113].

Supporting Information
Accession Numbers

Information about commonly used genes for phylogenesis of micro-
bial eukaryotes discussed in this paper can be found in the
Homologene database at NCBI (http://www.ncbi.nlm.nih.gov/Gen-
bank): actin (88645), a-tubulin (81745), b-tubulin (69099), Elongation
Factor 1a gene (68181), small subunit rDNA (6629), and ubiquitin
(39626). Accession numbers for genes from misidentified organisms
can be found at NCBI in GenBank (http://www.ncbi.nlm.nih.gov/
Genbank). Misidentified opalinids: Opalina ranarum (AF141969) and
Cepedea virguloidea (AF141970); correctly identified Protoopalina in-
testinalis (AY576544–AY576546) and Breviata anathema (AF153206).
Sequences for Encephalitozoon cuniculi can be found at NCBI under
genome project number 9545.
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