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Abstract

Introduction: The search for drugs to treat Alzheimer’s disease (AD) has failed to yield

effective therapies.Herewe report the first genome-wide search for biomarkers associ-

atedwith therapeutic response inAD.Blarcamesine (ANAVEX2-73), a selective sigma-1

receptor (SIGMAR1) agonist, was studied in a 57-week Phase 2a trial (NCT02244541).

The study was extended for a further 208weeks (NCT02756858) after meeting its pri-

mary safety endpoint.

Methods: Safety, clinical features, pharmacokinetic, and efficacy, measured by changes

in the Mini-Mental State Examination (MMSE) and the Alzheimer’s Disease Coopera-

tive Study-Activities of Daily Living scale (ADCS-ADL), were recorded. Whole exome

and transcriptome sequences were obtained for 21 patients. The relationship between

all available patient data and efficacy outcome measures was analyzed with unsuper-

vised formal concept analysis (FCA), integrated in the Knowledge Extraction andMan-

agement (KEM) environment.

Results: Biomarkers with a significant impact on clinical outcomes were identified at

week 57: mean plasma concentration of blarcamesine (slopeMMSE:P < .041), genomic

variants SIGMAR1 p.Gln2Pro (ΔMMSE:P < .039; ΔADCS-ADL:P < .063) and COMT

p.Leu146fs (ΔMMSE:P < .039;ΔADCS-ADL:P < .063), and baselineMMSE score (slope

MMSE:P < .015). Their combined impact on drug response was confirmed at week 148

with linear mixed effect models.
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Discussion: Confirmatory Phase 2b/3 clinical studies of these patient selection mark-

ers are ongoing. This FCA/KEM analysis is a template for the identification of patient

selectionmarkers in early therapeutic development for neurologic disorders.

K EYWORD S

Alzheimer’s disease, association rules, biomarker, genomic analysis, knowledge extraction man-

agement, machine learning, mixed effect models, precisionmedicine, unsupervised analysis

1 INTRODUCTION

Alzheimer’s disease (AD) is a progressive neurodegenerative disor-

der characterized by loss of memory and other cognitive functions,

leading to interference in daily life activities. At present, no phar-

macological treatment has been shown to alter progression of the

disease1. Heterogeneity of the AD patient population2,3 and lack of

objective efficacymeasuresor predictivebiomarkers of response4 con-

tribute to this limitation. Sigma-1 receptor (SIGMAR1), a modulator

of calcium homeostasis and mitochondrial function,5 is a new tar-

get relevant to AD.6 SIGMAR1 activation has been shown to reduce

key pathophysiological processes in AD including hyperphosphoryla-

tion of tau,7 neuroprotection,7 and oxidative stress.7,8 Activation of

SIGMAR1also leads to increase in autophagic flux in human cells and in

vivo.9

Blarcamesine (ANAVEX2-73), an agonist of the SIGMAR1, has

been shown by positron emission tomography (PET) scan to directly

bind its target10 and to modulate cholinergic muscarinic receptors

in mice.11 The clinical potential of blarcamesine in AD was initially

assessed in mouse models of AD,11,12 followed by a Phase 1 study

in healthy volunteers13 and a 57-week Phase 2a AD study. This

study,ANAVEX2-73-002 (Figure1a), enrolled32patientswithmild-to-

moderate AD andmet its primary endpoint of safety and tolerability14

(Tables S1 and S2 in supporting information), leading to a 208-week

extension study, labeled as ANAVEX2-73-003 (Figure 1a). Patients

enrolled in the two studies were characterized at baseline and at

each visit, including collection of data on clinical descriptors, physi-

cal examination, pharmacokinetics, and Mini-Mental State Examina-

tion (MMSE) and Alzheimer’s Disease Cooperative Study-Activities of

Daily Living scale (ADCS-ADL) as efficacy measures (Figure 1b and

Table 1).

Patient tumors are routinely characterized in oncology studies by

sequencing of their genomic material to identify and rank genomic

biomarkers of disease and therapeutic response.15 Genetic polymor-

phisms and changes in expression levels in somatic cells are associated

with variations in treatment response in oncology, modulating thera-

peutic response in patient populations.16-18

A similar strategy to the aforementioned one in precision oncol-

ogy can also be applied to enhance therapeutic efficacy in neuro-

logic disorders. In this study, whole exome sequencing (WES) and

gene expression (RNAseq) were analyzed at 103 to 135 weeks

in the 21 patients continuing in the ANAVEX2-73-003 study

(Figure 1b). The integration of genomic data from these samples

with longitudinal clinical and other patient data, including effi-

cacy outcome measures and derived measures of progression,

led to the identification and ranking of patient selection markers

(Figures 1b and 1c).

Small sample sizes, for which the number of patient observations is

orders of magnitude smaller than the number of attributes, is an ana-

lytical challenge19–21 for standard statistical platforms. Formal con-

cept analysis (FCA) is less affected by population size than other sta-

tistical analysis platforms. In this study, FCA, integrated in Knowledge

Extraction andManagement (KEM) software (v.3.6.2),22,23 was used to

identify and rank phenotypic and genotypic biomarkers. No link was

assumed in these analyses of biomarkers and therapeutic responses,

enabling a hypothesis free, data-driven, tabulation of all relational

effects between potential biomarkers and therapeutic responses in

patients with AD.

2 METHODS

2.1 Study design

The present study analyzes data from two consecutive clinical

trials: ANAVEX2-73-002 (NCT02244541) and ANAVEX2-73-003

(NCT02756858). ANAVEX2-73-002 was a multicenter Phase 2a

clinical trial of the drug blarcamesine (ANAVEX2-73) that recruited

32 subjects with mild-to-moderate AD. This was a two-part study:

Part A was a simple randomized, open-label, two-period, cross-over,

adaptive trial lasting up to 5 weeks. Each period involved one specific

administration route and two possible dose levels: in the first period,

the oral dose (30 or 50 mg) was administered, and in the second

period an intravenous (IV) form (3 or 5 mg) was administered, with a

total of eight possible dose administration schemes in Part A (details

available in Fig. S1a in supporting information). The two periods

were separated by a wash-out period of 12 days when no dose was

given.

Part B, following immediately after Part A, was an open-label

extension of the oral daily dose for an additional 52 weeks. The

primary endpoint of ANAVEX2-73-002was to establish the safety and

tolerability of the drug. Secondary endpoints aimed at establishing

http://NCT02244541
http://NCT02756858
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the relationship between dosing regimen and pharmacodynamics-

exploratory efficacy outcomes of cognition and function. Cognition

was assessed by theMMSE, while functional abilities were assessed by

the ADCS-ADL. Additional cognitive measures included the Cogstate

Brief Battery (CBB) and functional measures of electroencephalog-

raphy and event-related potential (EEG and ERP). Part B continued

an adaptive oral administration scheme. Figure S1d in supporting

information summarizes the mean oral dose administration during the

ANAVEX2-73-002 study.

Due to the favorable safety and tolerability profile of ANAVEX2-

73-002 (Supplementary Table 1 and 2), and in response to requests

from patients and caregivers, a 208-week open-label extension

study (ANAVEX2-73-003) was added immediately after completion

of ANAVEX2-73-002 Part B. ANAVEX2-73-003 enrolled the 24 sub-

jects who completed Part B and applied similarly an adaptive daily oral

administration scheme. ANAVEX2-73-003 includes continuous evalu-

ation of safety and efficacy asmeasured by theMMSE and ADCS-ADL.

At week 148 (interim time point for analyses), data on the subjects

remaining in the study (n = 21) was analyzed for efficacy outcomes.

This article reports data up to week 148, while ANAVEX2-73-003

was still ongoing. The baseline for these analyses is defined as week

0 (Figure 1a) after all screening and baseline procedures have been

completed.

2.2 Subjects

A total of 32 subjects with mild-to-moderate AD, between 50 and 85

years of age, were enrolled across three sites in Australia fromDecem-

ber 2014 through September 2015. Their diagnoses were consistent

withDiagnostic and StatisticalManual ofMental Disorders 4th edition

(DSM-IV)24 and National Institute of Neurological and Communica-

tive Disorders and Stroke/Alzheimer’s Disease and Related Disorders

Association criteria,25 and included evaluation of magnetic resonance

imaging (MRI) and/or computed tomography (CT) brain scans. The

demographics and baseline characteristics of the 32 participants are

summarized in Table 1 along with the group of participating subjects

with genomic data collected after protocol amendment and patient

consent (N = 21). Table S1 summarizes patient disposition. Seven

patients discontinued therapy during the 57-week ANAVEX2-73-002

study; six withdrew their consent and one had an adverse event (AE).

An additional three patients discontinued therapy in the ANAVEX2-

73-003 study throughout a 148-week interim period of the on-going

extension study.

The following assessment scores and criteria were recorded at

baseline and at each visit: MMSE, ADCS-ADL, Hamilton Depression

Rating scale (HAM-D) assessment, RosenModified Hachinski Ischemic

score (RmHis), CBB, and EEG/ERP. CBB subtests consisted of six dif-

ferent subscores: Detection (DET; Processing Speed), Identification

(IDN; Attention/Vigilance), One-Card-Learning (OCL; Visual Recog-

nition Memory), One-Back (OBK; Working Memory), International

Shopping List (ISLT; Verbal Learning), and International Shopping List

delayed recall (ISRL; VerbalMemory).

RESEARCH INCONTEXT

1. Systematic review: The authors reviewed the literature

using PubMed, clinicaltrials.gov, and relevant Alzheimer’s

disease (AD) meeting abstracts and presentations. This

study is, to the best of our knowledge, the first reported

genome-wide search for biomarkers associatedwith drug

response in AD.

2. Interpretation of results: Our findings have led to the

identification of two genomic variants and a clinical base-

line to pre-specify patients most likely to respond to a

SIGMAR1 therapy using blarcamesine.

3. Future directions: The findings from this analysis have

led to an ongoing confirmatory, randomized, and placebo-

controlled Phase 2b/3 study investigating blarcamesine

in 450 subjects (NCT03790709).

2.3 Study endpoints

2.3.1 Safety endpoints

Safety was evaluated by assessment of incidence and severity of AEs

(Table S2), vital signs, physical examination, clinical laboratory parame-

ters (hematology, serum chemistry, and urinalysis), and electrocardio-

gram (data not shown).

2.3.2 Efficacy outcomes

Exploratory clinical efficacy in this study was defined as change from

baseline of each patient’s cognitive (MMSE) and functional ability

(ADCS-ADL) scores. MMSE26 is a widely used and validated instru-

ment in clinical AD research, included as a cognitive outcomemeasure

in drug trials. The range of this scale is from 0 to 30, with a higher

score indicating higher cognitive function. The ADCS-ADL27 is applied

in a structured caregiver interview format and assesses performance

in activities of daily living of patients with AD. The scale is from 0 to

78, with a higher score indicating greater function. The ADCS-ADL has

been shown to have good test-retest reliability.28 The MMSE and the

ADCS-ADLwere assessedduringpre-specified clinical site visits across

14 different time points over the ANAVEX2-73-002 (weeks 0 and 5 in

Part A; weeks 17, 31, 41, 53, and 57 in Part B), and ANAVEX2-73-003

(weeks 70, 83, 96, 109, 122, 135, and 148) studies.

Changes in scores over baseline (Delta) were calculated using the

difference between values at each visit and at baseline for each indi-

vidual patient. In addition, a rate of decline (Slope) was estimated for

each individual patient having at least two scores recorded during

the ANAVEX2-73-002 study to lower the impact of noise in MMSE

and ADCS-ADL scores, with a simple linear regression analysis across

all available time points between the baseline and week 57 (end of

http://NCT03790709
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F IGURE 1 Overview of study design, data availability, and analytical methods. (a) Summary of consecutive clinical trials ANAVEX2-73-002
involving two parts: Part A over 5weeks and Part B over 52weeks, and the ANAVEX2-73-003 extension study over a planned 208-week period
immediately after the initial trial, with a cumulative 265weeks. (b) Summary of integrated data sources. A total of 2527 features, from 1152
descriptors, were used for each subject, including 837 genomic sequences with amino acid changes, from a total of 27,155 annotated genes and
185 RNA expression profiles. Patient descriptors are shown in gray and outcomes in pink. (c) Classification of number of patient descriptors
incorporated in the two analytical steps applied in the study: (1) Unsupervised FCA rule-based analysis of response at week 57 and (2) longitudinal
confirmation usingmixed effect modeling of response over 148weeks withmarkers found at week 57 tomodel two groups of ANAVEX2-73
concentrations
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TABLE 1 Baseline characteristics (N= 32 andN= 21)

All patients

at baseline

(N= 32)

Patients having

genomic data

(N= 21)

Age, mean± SD 68.9± 9.84 67.9± 9.85

Male, n (%) 19 (59.4) 10 (47.6)

Height (cm), mean± SD 169.9± 10.38 169.2± 9.84

Weight (cm), mean± SD 76.8± 14.79 78.3± 16.31

Cardiovascular disease, n (%) 20 (62.5) 12 (57.1)

Donepezil on-going treatment, n (%) 25 (78.1) 16 (76.2)

APOE 𝜀4-positive, n (%) 18 (56.3) 10 (47.6)

APOE 𝜀3/𝜀4, n (%) 14 (43.6) 7 (33.3)

APOE 𝜀4/𝜀4, n (%) 4 (12.6) 3 (14.3)

Mini-Mental State Examination

(MMSE), mean± SD

21.0± 3.16 21.0± 2.73

ADCS-ADL, mean± SD 69.0± 6.83 70.6± 4.08

RosenModified Hachinski Ischemic

score, mean± SD

1.0± 0.67 1.0± 0.63

Hamilton Psychiatric Rating Scale

for Depression (HAM-D),

mean± SD

2.1± 2.18 2.2± 2.48

Baseline mean and standard deviation of characteristics of the 32 patients

enrolled in ANAVEX2-73-002 study at baseline and the 21 patients having

genomic data collected.

ANAVEX2-73-002). The scores from these clinical outcomes show the

progression of exploratory efficacy data from baseline at several spe-

cific time points (Deltas) and over a set period of 57 weeks (Slope). Sub-

scores and derived measures from the same test score do not have an

impact on the analytical platform in this study because they identify

each relation independently of each other.

Tables S3a and S3b in supporting information summarize change

since baseline of MMSE and ADCS-ADL scores at 13 time points in

ANAVEX2-73-002 (weeks 5, 17, 31, 41, 53, and 57) and in ANAVEX2-

73-003 (weeks 70, 83, 96, 109, 122, 135, and 148). Summary statistics

for Slopes for MMSE and ADCS-ADL over 57 weeks are illustrated in

Table S3a.

2.4 Pharmacokinetics

A pharmacokinetics analysis was performed during Part A only. Blood

samples were drawn at 12 and 11 time points after the first oral

or IV administration during the first and second periods of Part A,

respectively. Pharmacokinetic parameters included in the analysis con-

sisted of maximum plasma drug concentration (Cmax), time to maxi-

mum plasma concentration during a dosing interval (tmax), area under

the curve from the time of dosing to the last measurable concentra-

tion (AUC0–t), mean elimination half-life (t½), and the total body clear-

ance for extravascular administration divided by the fraction of dose

absorbed (CL/F). Figure S1b shows AUC0-inf after first administration

(24 first hours).

Steady-state plasma levels of blarcamesine (ANAVEX2-73) and its

metabolite ANAVEX19-144 were measured in Part B in blood samples

collected at prespecified time points (weeks 17, 31, 41, and 53). Mean

concentration values in ng/mL were averaged for each patient. Figure

S1e shows mean plasma concentrations of blarcamesine (ANAVEX2-

73) and itsmetabolite ANAVEX19-144 in theANAVEX2-73-002 study.

The relationship between dose and plasma concentration of blar-

camesine (ANAVEX2-73)was determined in a Phase 1 study,13 and can

beassumed tobe linear in the1 to60mg range inhealthymale subjects.

The dose-dependent increase of plasma concentration of blarcamesine

(ANAVEX2-73) and metabolite has also been confirmed in the present

study, as shown in Fig. S1b.

2.5 DNA and RNA extraction and sequencing

The protocol was amended to allow collection of blood samples in the

ANAVEX2-73-003 extension study. The 21 patients who were still

enrolled in the study at the time of protocol amendment accepted

blood sample collection. Blood samples were collected at the next

scheduled visit, between weeks 103 and 135. These samples were

sequenced for DNA (WES) and RNA expression levels (RNASeq).

Standard quality control (Q-Score) as specified by the manufacturer

Illumina29 was applied and all reported sequences passed these

standard quality control thresholds.30 We identified 408,551 DNA

variants within the cohort. Of these, 39,974 high- or moderate-impact

variants31 driving an amino acid modification in proteins were kept;

RNA expression values were normalized as transcripts per kilobase

million.32,33 An additive genetic model was used in the association

study. When using a binary descriptor for genomic variants, the

presence of one copy of the allele was considered sufficient to define

the descriptor. For example, apolipoprotein E gene (APOE) genotype

𝜀4 (APOE 𝜀4/-) was considered “TRUE” if at least one copy of 𝜀4 was

present.

2.5.1 Focused gene subset

We selected 243 genes from the 27,155 mapped sequences in the

NGS analysis (Fig. S2a, S2b, S2c in supporting information). 102 genes

were selected from their association with neurodegenerative diseases

(Fig. S2a). A total of 113 genes of the cytochrome P450s gene family

and 10 genes from the methyltransferase gene family were also added

(S2b). Finally, 20 geneswere selected as part of a SIGMAR1’s functional

interactome (Fig. S2c and S2d), based on a confidence score of 0.150

from the STRING database (January 2018).34

2.6 Data analysis

Data analysis with the association rule-based FCA platform on week

57 identified and ranked candidates for patient selection biomarkers

for therapeutic response.Confirmationof thisweek57draft biomarker

list was shown in linear mixed effect (LME) models and unadjusted
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mean averages after 148 weeks. Figure 1b illustrates the different

types of data used in the analyses. Figure 1c displays the two different

types of analyses applied for identification and confirmation of patient

selectionmarkers for therapeutic response.

2.6.1 Association rules and the KEM R© platform

The KEM R© v 3.6.2 22,23 analytical platform systematically extracted

relations between all variables collected. These relations are devel-

oped from Galois lattices theory, or FCA.35 KEM identifies groups of

objects with shared properties23,36 and generates corresponding asso-

ciation rules. Association rules have been developed to detect patterns

and relationships in large heterogeneous databases.37,38

FCAwas introduced byAgrawal and Srikant.39,40 FCAhas been suc-

cessfully applied in different domains, including: drug discovery,22,41

studies for the identification of patient selection biomarkers for thera-

peutic responses,42,43 genomic characterizationof complexdiseases,44

and market basket analysis.45 FCA association rules may reflect a

causal relationship between two variables. However, the presence of a

statistically significant association is neither necessary nor sufficient to

indicate the presence of such causal relationships.46 Quality measures

described below calibrate the value of these association rules.

An association rule is a relationship such as X→Y, with X being the

antecedent (or a combination of antecedents) and Y the consequent

(or combination of consequents) of the rule, that allows inferring X as a

consequence of Y. For a dataset of N subjects, nX, nY, and nXY, respec-

tively are the numbers of subjects satisfying:

• the antecedent(s) X of a rule,

• the consequent(s) Y, and

• both parts of the rule.

Thenxy subjectsmatchinganyassociation rule canbe identifiedwith

this platform.

Six quality measures describe and rank association rules:

• Support

• Confidence

• Lift

• Two P-values

• Measures of significance

• Cohen’s d (a measure of effect size)

Support, confidence, and lift

Support is the number of subjects for which the association has been

observed:

Support (X → Y) = nXY

Confidence is the percentage of the characterized subjects verifying the

rule:

Confidence (X → Y) =
nXY
nX

Lift (relative probability) is the ratio of observed support to that

expected if X and Y were independent. N represents the total num-

ber of subjects. It measures the performance of a rule to identify a

subgroup from a larger population:

Lift (X → Y) =
N × nXY
nX × ny

See Methods S1 in supporting information for details of measures of

significance, size effect, and discretization.

2.6.2 Linearmixed effect models

The routine application of LME modeling for continuous primary end-

points in longitudinal clinical trials and specifically to analyze the out-

come of AD clinical studies is reflected in several publications.47,48

LME models were developed with the R statistical software lme4

package.49,50 Clinical outcomes of the LME models were changes

in MMSE and ADCS-ADL continuous scores compared to baseline.

The same baseline (week 0) was used as defined in Section 2.1.

Details of the LME models are given in Methods S2 in supporting

information.

3 RESULTS

3.1 Exploratory therapeutic response
analysis: Response to blarcamesine
(ANAVEX2-73) at week 57

A total of 3,145,630 relations between all available features were

explored. Stringent filtering focused on relationships of response at

week 57 (end of Part B) reduced the number of associations to only

15 linked to clinical outcomes, as measured by change from baseline

(Delta) or rate of decline (Slope)MMSE or ADCS-ADL (Table 2a).Within

the 15 relations identified, average blood concentration of blarcame-

sine (ANAVEX2-73) above 4 ng/mL in Part B increased the proba-

bility of improved MMSE outcome 1.88-fold at week 57 (Table 2a).

Higher concentrations also increased the probability of improved

ADCS-ADL scores (P = .03; Fig. S1c). Lower MMSE baseline scores

(<20) increased the relative probability (lift) of worse MMSE out-

come by 1.5-fold, while higher MMSE baseline scores (≥20) increased

the relative probability of improved MMSE by 1.62-fold, both at

week 57.

3.1.1 Genomicmarkers

As we focused on relations displaying a 100% confidence and true

for both a change in MMSE and a change in ADCS-ADL, two DNA

variants were identified, SIGMAR1 p.Gln2Pro (rs1800866) and COMT

p.Leu146fs (rs113895332/rs61143203; Table 2b). Observed geno-

types for SIGMAR1 p.Gln2Pro and COMT p.Leu146fs are shown in
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TABLE 2 (a) FCA association rules results for clinical outcomes at week 57. Stringent filtering excluded rules containing variables coding for
the absence of DNA variants andmediumRNA expression groups. Numerical filtering of rules had the following thresholds: support (n > 3),
confidence (>50%), and lift (≥1.2). The filtering steps led to a subset of 4009 association rules linking clinical, genomic, and transcriptomics patient
characteristics with response at multiple time points. A second filtering step focused on relationships with response at week 57 only, raising
support≥ 5, lift≥ 1.5, and P-value (Fisher exact test orMann-Whitney-Wilcoxon <.05), and excluding RNA expression, CYP variants, and
dose/concentration from Part A. This further reduced the number of rules to 15 associations linked to clinical outcomes asmeasured by change
since baseline, labeledDelta (with binarized discretization; see Supplementary Table 3a), or slope ofMMSE or ADCS-ADL at week 57. The 15 rules
are shown in decreasing order for highest confidence and highest lift

Antecedent X Consequent Y

Patient

Characteristic Endpoint Deriv. Outcome Week Support Confidence Lift

Fisher exact

test P-value

Mann-

Whitney-

Wilcoxon

P-value nx ny

SIGMAR1 p.Gln2Pro

variant

MMSE Delta Worsen 57 5 1 1.75 .039 .081 5 12

COMT p.L146fs

variant

MMSE Delta Worsen 57 5 1 1.75 .039 .106 5 12

RmHis hypertension

history FALSE

ADCS-ADL Delta Worsen 57 9 1 1.62 .002 .001 9 13

MS4A6E p.M59T

variant

ADCS-ADL Delta Worsen 57 6 1 1.62 .032 .101 6 13

COMT p.Leu146fs

variant

ADCS-ADL Delta Worsen 57 5 1 1.62 .063 .007 5 13

SIGMAR1 p.Gln2Pro

variant

ADCS-ADL Delta Worsen 57 5 1 1.62 .063 .035 5 13

Baseline scoreMMSE

low

MMSE Slope Worsen 57 8 1 1.5 .015 .109 8 14

HLA-DRB1 p.Y89S

variant

MMSE Slope Worsen 57 7 1 1.5 .03 .039 7 14

HLA-DRB1 p.Y89S

variant

MMSE Delta Worsen 57 6 0.86 1.5 .078 .039 7 12

DPYD p.I543V

variant

MMSE Delta Improve 57 5 0.71 1.67 .08 .043 7 9

High baseline score

ISRL

MMSE Delta Improve 57 7 0.7 1.63 .024 .006 10 9

RmHis hypertension

history TRUE

ADCS-ADL Delta Improve 57 8 0.67 1.75 .002 .001 12 8

High concentration

AV2-73 Part B

MMSE Slope Improve 57 5 0.63 1.88 .041 .308 8 7

High baseline score

ISRL

MMSE Slope Improve 57 6 0.6 1.8 .021 .006 10 7

High baseline score

MMSE

MMSE Slope Improve 57 7 0.54 1.62 .015 .109 13 7

nx: number of antecedent (patient characteristic) observations

ny: number of consequent (Endpoint) observations

Deriv.: Calculation used for derived endpoint descriptor.

Delta: Change since baseline.

Slope: Rate of decline since baseline.

RmHis: RosenModified Hachinski Ischemic Score

ISRL: International Shopping List Delayed Recall (themeasure describes the total number of words correctly recalled in verbal memory test).

Table 2c. Genetic variants for SIGMAR1 p.Gln2Pro for the 21 patients

were confirmed by an independent group using a real-time PCR

(rtPCR) assay. Blinded samples showed a 100% concordance between

the rtPCRdata and the reportedWESdata (data not shown). The struc-

tural impact of SIGMAR1 p.Gln2Prowas alsomodeled in Fig. S3 in sup-

porting information. Nomultiple testing was applied to the top filtered

rules.

3.1.2 Effect size at week 57

Daily treatment with ANAVEX2-73 for 57 weeks for the entire Phase

2a cohort showed effect sizes of 0.57 and 0.18 for change in MMSE

and change in ADCS-ADL, respectively, compared to standard of care

(Table 3). When patients carrying SIGMAR1 p.Gln2Pro and COMT

p.Leu146fs variants and lowbaselineMMSEscore (9outof21patients)
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TABLE 2 (b) Association rule results of variants linked to worsenMMSE and ADCS-ADL scores at week 57 (confidence= 100%)

Antecedent X Consequent Y

Variant nx Endpoint Deriv. Outcome Week ny Support Confidence Lift

Fisher

exact test

P-value

Mann-

Whitney-

Wilcoxon

P-value

COMT p.Leu146fs 5 MMSE Delta Worsen 57 12 5 1.00 1.75 .039 .106

COMT p.Leu146fs 5 ADCS-ADL Delta Worsen 57 13 5 1.00 1.62 .063 .007

SIGMAR1 p.Gln2Pro 5 MMSE Delta Worsen 57 12 5 1.00 1.75 .039 .081

SIGMAR1 p.Gln2Pro 5 ADCS-ADL Delta Worsen 57 13 5 1.00 1.62 .063 .035

Deriv.: Calculation used for derived endpoint descriptor.

Delta: Change since baseline.

Slope: Rate of decline since baseline.

nx, number of antecedent (patient characteristic) observations; ny, number of consequent (endpoint) observations.

TABLE 2 (c) Genotype information of SIGMAR1 p.Gln2Pro, COMT p.Leu146fs, and APOE variants

SIGMAR1 p.Gln2Pro (rs1800866) (N= 21)

genotype T/T (wild-type) T/G (heterozygous variant) G/G (homozygous variant)

n 16 5 0

COMT p.Leu146fs (rs113895332/rs61143203) (N= 21)

genotype T/T (wild-type) -/T (heterozygous variant) -/- (homozygous variant)

n 16 4 1

APOE (rs429358/rs7412) N= 32 (N*= 21)

genotype 𝜺2/𝜺3 𝜺3/𝜺3 𝜺3/𝜺4 𝜺4/𝜺4

n (n*) 1 (1) 14 (10) 13 (7) 4 (3)

N: Number of total patients.

N*: Number of patients withWES data.

n: Number of patients in each genotype group.

n*: Number of patients in each genotype havingWES data.

were excluded, effect sizes increased to 1.05 and 0.93 for MMSE and

ADCS-ADL, respectively (Table 3). These values are considered "large"

according to Cohen’s d guidelines.51

3.2 Confirmation ofmarkers of response at week
57: Interim analysis at week 148

3.2.1 Confirmation at 148weeks: LMEmodels

Biomarkers for therapeutic response identified at week 57 were con-

firmed using regression analyses of longitudinal data at 148 weeks

in the ANAVEX2-73-003 extension study. This analysis included

21 patients with genomic data and 287 results across 14 time points

(Table S4a in supporting information). Blarcamesine (ANAVEX2-73)

concentration in Part B, identified as predictor of therapeutic response

at week 57, was used to define two arms for the LME model. In addi-

tion to parameters identified at week 57 (ANAVEX2-73 concentra-

tion levels, baseline MMSE score, SIGMAR1 p.Gln2Pro, and COMT

p.Leu146fs variants), age, sex, APOE 𝜀4 genotype status, and donepezil

co-medication were included in the LME models of change in MMSE

and change in ADCS-ADL. Observed genotypes of APOE for patients

included inmodel are presented in Table 2c.

This analysis showed that the higher blarcamesine (ANAVEX2-

73) mean concentration arm had improved therapeutic responses of

78% and 88% in adjusted MMSE and adjusted ADCS-ADL, respec-

tively, relative to the low/medium arm at 148 weeks (P-values < .0008

and <.0001, respectively). In addition to time, APOE 𝜀4 status

(P < .0001), and blarcamesine (ANAVEX2-73) mean concentration

were significant predictors (Figure 2a and 2b and Supplementary

Tables 4b, 4c). Additional significant variables in this model were SIG-

MAR1 p.Gln2Pro, COMT p.Leu146fs, and APOE4 𝜀4 status interac-

tions with time.

3.2.2 Confirmation at 148weeks: Unadjusted values

Unadjusted measures corroborated these results. Patients with

biomarkers of improved therapeutic response at week 57 had

improved therapeutic response in ADCS-ADL at 148 weeks compared

to those without these biomarkers or reference populations receiving

standard of care (Figure 3a and 3b). Two patients showed exceptional

therapeutic response during the longitudinal study (148-week period).

Both subjects had SIGMAR1 wild type, high mean concentration of

blarcamesine (ANAVEX2-73) in plasma and baseline MMSE ≥ 20 (Fig.

S4 in supporting information). Clinical benefits reported included
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TABLE 3 Effect size on clinical outcomes at week 57

MMSE ADCS-ADL

Subjects’ characteristics

Mean𝚫 at

57weeks Cohen’s d N (%)

Mean𝚫 at

57weeks Cohen’s d N (%)

All −1.52 ± 4.15 0.57
a

21 (100.0%) −5.24 ± 8.42 0.18 21 (100.0%)

BaselineMMSE≥ 20 −0.15 ± 4.06 0.94
b

13 (61.9%) −2.08 ± 5.88 0.66
a

13 (61.9%)

Absence of SIGMAR1 p.Gln2Pro
variant

−0.62 ± 4.11 0.81
b

16 (76.2%) −3.38 ± 7.60 0.43 16 (76.2%)

Absence of COMT p.Leu146fs
variant

−0.62 ± 4.05 0.81
b

16 (76.2%) −2.44 ± 6.93 0.57
a

16 (76.2%)

Absence of SIGMAR1 p.Gln2Pro
variant and baselineMMSE≥ 20

0.27 ± 4.29 1.01
b

11 (52.4%) −1.36 ± 6.09 0.76
a

11 (52.4%)

Absence of COMT p.Leu146fs
variant and baselineMMSE≥ 20

0.18 ± 4.35 0.98
b

11 (52.4%) −0.73 ± 5.29 0.89
b

11 (52.4%)

Absence of SIGMAR1 p.Gln2Pro
variant and absence of COMT
p.Leu146fs variant and baseline
MMSE≥ 20

0.50 ± 4.45 1.05
b

10 (47.6%) −0.40 ± 5.46 0.93
b

10 (47.6%)

Summary of mean change inMMSE andmean change in ADCS-ADL scores at week 57 since baseline, Cohen’s d effect size calculation compared to standard

of care40-43 depending on genomic variant status of SIGMAR1 p.Gln2Pro and COMT p.Leu146fs, and/or baselineMMSE score.

Mean± SDDelta scores baseline to week 57 are presented.
aMediumCohen’s d index (≥0.5).39,44
bLarge Cohen’s d index (≥0.8).39,44

improvements in mood and alertness and increased independent

activity.

4 DISCUSSION

This study is, to the best of our knowledge, the first reported genome-

wide search for biomarkers associated with improved therapeutic

response in AD. This approach is different from standard classifica-

tionor searches formolecular “signatures.” Analyzing pharmacological,

genomic, and clinical data, including efficacy endpoints, the FCA-based

KEM framework identified and ranked predictors of response by asso-

ciation rules that are consistent with the observed data from our two

clinical studies. The FCA platform enables an analysis of a very large

combinatorial space, typically 109 and larger. Application of the plat-

form to the present study led to a selection of smaller sets, typically

2 to 3 × 106, and to the identification of dozens of important asso-

ciation rules, linking potential biomarkers with response. In contrast

with “black box” numerical methods, the FCA approach allows the ver-

ification of each association rule for individual patients (as shown in

Tables 2a, 2b). This analytical platform enables objective and explicit

rules filtering strategies to identify patient selection biomarkers of

therapeutic response.

The characterization of AD at early stages has been challenged

by the absence of reliable genomic markers prognostic of the onset

of mild cognitive impairment (MCI). APOE 𝜀4 genotype status alone

does not have sufficient predictive power, because only about 25% of

the population carries the APOE 𝜀4 genotype. TOMM4052 has been

proposed as a variant associated with the early detection of MCI, a

hypothesis that was tested in the TOMORROW study. However, the

TOMORROW study, which included 3494 patients (out of 24,136

screened) was not able to reach its primary biomarker endpoint.53

Randomized clinical trials in AD have been challenged by twomajor

hurdles:

• Variability in the assessment of efficacy based on clinical eval-

uation of cognitive, behavioral, and functional changes over time

with inherently noisy tests or questionnaires. Robust links have

yet to be established between clinical outcomes and reproducible

neuroimaging/fluid-based biomarkers. The uncertainty in the values

measuredby theseendpoints adds to theuncertainty in thedetermi-

nation of therapeutic efficacy.

• Heterogeneity of AD, based on neurobehavioral features, inheri-

tance (familial or sporadic) and other genetic characteristics, time

course of progression, age of onset, pathological and other features,

which have been discussed at length.

This observed heterogeneity is also seen in other therapeutic areas

such as oncology. In oncology, multiple small, open-label clinical trials

are run in which a broad range of biomarker candidates are identi-

fied and hypotheses generated and tested iteratively, serving as foun-

dation for the design of follow-up controlled studies. Crizotinib is a

good example of accelerated approval in oncology following an open-

label Phase 1a study, where a novel biomarker (ALK+) was first identi-
fied based on 2 of 11 patients with non-small cell lung cancer enrolled

in a Phase 1 dose escalation trial.54 The biomarker was validated

through an amended Phase 2a study including 19 patients, with 10

out of 19 patients being labeled as responders, which ultimately led

to a preliminary drug registration. Subsequently, a confirmatory trial

enrolled 82 ALK+ patients and showed 57% partial response and 1%
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F IGURE 2 Linear mixed effect (LME)models of change inMini-Mental State Examination (MMSE) and Alzheimer’s Disease Co-operative
Study-Activities of Daily Living scale (ADCS-ADL) since baseline over 148weeks. To analyze the effect of high concentration on outcome over
time, significant fixed effect terms linked to concentration were kept in themodel. This has the effect of “correcting” for all other parameters
except concentration. Because part of the response signal is not explained by themodel (random error), this “residual” was added to the adjusted
response values. For each time point, themodel generates an adjusted predicted outcome for each patient. This adjusted outcome includes the
residual mentioned above. For each time point, a mean and standard deviation of the adjusted outcomewere calculated for the 21 patients and
represented as solid points and error bars linked by dotted lines. A, LME-adjusted slopes for the high concentration (green) cohort versus low and
medium concentration patient cohort (magenta) with time (in weeks) against adjusted change inMMSE. Average adjusted values with residuals at
the population level were plotted at each time point (dotted line). B, LME-adjusted slopes for the high concentration (green) cohort versus low and
medium concentration patient cohort (magenta) with time (in weeks) against adjusted change in ADCS-ADL. Average adjusted values with
residuals at the population level were plotted at each time point (dotted line)

complete response. Unbiased and unsupervised data analytics meth-

ods such as the KEM platform may be ideal tools to streamline this

type of discovery process. As such, they provide systematic itera-

tive precision medicine tools for drug development, suitable as much

to AD as to oncology. The search for alternative druggable targets

for AD is becoming a priority, and SIGMAR1 targeted by blarcame-

sine (ANAVEX2-73) may be an important drug target to maintain cel-

lular homeostasis, delay or halt neurodegeneration, and/or enhance

synaptic compensatory responses, as suggested by experimental

studies.

This article presents an unbiased analysis of data from two clinical

studies, which enabled the identification of parameters associated

with improved therapeutic response. By searching for and select-

ing biomarkers that are consistently associated with therapeutic

response over multiple time points and multiple endpoints, a reli-

able identification and ranking of patient selection biomarkers

for therapeutic response is possible. The approach described in

this study, without a priori hypotheses, identified, in addition to a

specific variant of the SIGMAR1gene (rs1800866) andCOMTvariants

(rs113895332/rs61143203), blarcamesine (ANAVEX2-73) mean

concentration, and baselineMMSEwere included in the top 15 drivers

of clinical response, from the >3 million retained subset of rules

(Table 2a). Their relevance is supported because drug concentration

is a more meaningful PK parameter than dose; low baseline MMSE

is thought to be associated with an AD stage that has progressed

beyond the reach of a number of therapeutic approaches; SIGMAR1

is the confirmed in vivo target of blarcamesine (ANAVEX2-73); and

COMT is a gene associated with memory and other neurobehavioral

functions.55,56

Biomarkers were identified in this article with the FCA framework,

which enabled a systematic search for association rules between all

parameters collected in the studies. FCA is an overview of relation-

ships between all variables (ie, the analysis is not supervised), allow-

ing mining and ranking these relationships based on measures of
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F IGURE 3 Unadjusted values of change in Alzheimer’s Disease Co-operative Study-Activities of Daily Living scale (ADCS-ADL) since baseline
over 148weeks. A, The plot presents (unadjusted) mean trajectories of change in ADCS-ADL scores over interim 148weeks of subgroups of
ANAVEX2-73-002/003 patients depending on biomarker status (absent or present) and of patients given standard of care. The subgroups of
ANAVEX2-73-002/003 patients are represented (blue, green, orange, pink, purple, and turquoise) with plot depending on identified biomarker and
baseline criteria characteristics. B, Summary of themean and standard deviations of different patient groups unadjusted change in ADCS-ADL
scores at 14 time points (weeks 0, 5, 17, 31, 41, 53, 57, 83, 96, 109, 122, 135, and 148). All patients in the ANAVEX2-73 study are presented along
with each patient subgroup depending on inclusion criteria. The standard of caremean changes from baseline for ADCS-ADL scores were obtained
from the literature with−6.7 point change in 1 year42 and−10.5 change in 18months/70wk43
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“interestingness”.57 Commonly used interestingness measures include

support (the number of patients verifying the relation), confidence (a

probability of a property existing if a pre-condition is set), and lift (a rel-

ative probability).

Unlike statistical tests and statistical modeling, association rules

analysis does not state a null hypothesis nor estimates any parameters.

Nevertheless, a measure of statistical significance of the association is

calculated for each identified rule using the Fisher’s exact test P-value.

This is a calculation of the likelihood that the relationship between the

values of two variables, given a univariate rule X→Y, is caused by some-

thing other than chance. A threshold on P-values in our study was set

to P= .05, that is, the probability that the selected association is due to

random chance is<5%.

Because association rule methods generate rules which are depen-

dent on each other, multiple testing P-values corrections, such as

Bonferroni, are too conservative and reject true positive results.

Instead, we characterized themagnitude of the changes in outcome by

calculating effect sizes using Cohen’s d. Monte Carlo simulations were

considered to assess validity and reliability of results; however, they

were deemed unsuitable in this analysis and are discussed in detail in

the Discussion in supporting information.

The goal of FCA and association rule analysis is to explicitly gener-

ate hypotheses consistent with the data and provide a framework for

ranking them. All hypotheses generated from the data are considered

without a priori hypotheses. These hypotheses can be challenged by

the existing body of evidence in the field, beyond the data contained in

the trial, and are confirmed in subsequent experiments, as in any scien-

tific discovery process. Short of testing the relations identified in this

study in an independent cohort, we did an initial confirmation of the

hypotheses generated by KEM with the longitudinal assessment over

148 weeks. LMEmodels were derived using all 287 available observed

outcome data from patients. LMEmodels account for missing data and

provide robust results in small clinical trial studies.58

The LME model analysis at week 148 showed a significant differ-

ence in therapeutic response between the two concentration arms

related to adjusted mean change from baseline in ADCS-ADL (88%)

and adjusted mean change from baseline MMSE (78%). These differ-

ences are significant and quite large. These values compare favorably

with recent results obtained in other studies for data presented at

CTAD 2018 for BAN2401 after 72 weeks:59 47% in adjusted mean

change from baseline in ADAS-Cog and 30% adjusted mean change in

ADCOMS,60 inwhich about 18%of the change reportedmaybe associ-

ated with an imbalance of the APOE 𝜀4 genotype status in the respec-

tive arms.

There are some limitations in this study:

• Small sample size, with 32 patients entering the study and

21 patients having available genomic data, which limited the power

of the study.

• Lack of adjustment for multiple comparisons in the analyses of rela-

tions betweenmarkers and therapeutic response.

• Genomic analysis results reported for only a subset panel of

243 genes; however, an analysis of 39,974 DNA variants (Table S5

in supporting information) showed SIGMAR1 p.Gln2Pro and COMT

p.Leu146fs in the top 0.2% association rules linked to outcome.

• Standard of care measure of change in MMSE and change in ADCS-

ADL for calculating effect size were obtained from the literature at

48, 52, and 82 weeks61-64 and extrapolated to 57 weeks, which was

the time point used in this study.

• RNA analysis was limited due to collection time (103 to 135 weeks)

and lack of baseline transcriptome data for comparison. Nonethe-

less, an exploratory analysis did find that high SIGMAR1 expression

was associated with better therapeutic response (Table S6 in sup-

porting information).

• Newly identified patient selection biomarkers were longitudinally

confirmed for change in ADCS-ADL, but not for change in MMSE,

over 148 weeks. This result may be due to a higher variability in

MMSE scores.

Findings from this study are the basis for a new ongoing Phase

2b/3 AD study (NCT03790709), as well as for identifying patient

populations likely to have better therapeutic responses to blarcame-

sine (ANAVEX2-73) in clinical trials for Parkinson’s disease dementia

(NCT03774459) and Rett syndrome (NCT03758924).

The FCA platform described in this work opens the possibility of

using data-driven unbiased biomarker identification early in the drug

development process. The “white box” and systematic approach of

FCA is ideal for the analysis of early data, leading to the identification

of patient selection biomarkers that can assist in the design of more

effective subsequent clinical trials.
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