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Abstract

Background: The potential of combining multiple populations in genomic prediction is depending on the
consistency of linkage disequilibrium (LD) between SNPs and QTL across populations. We investigated consistency
of multi-locus LD across populations using selection index theory and investigated the relationship between
consistency of multi-locus LD and accuracy of genomic prediction across different simulated scenarios. In the
selection index, QTL genotypes were considered as breeding goal traits and SNP genotypes as index traits, based
on LD among SNPs and between SNPs and QTL. The consistency of multi-locus LD across populations was
computed as the accuracy of predicting QTL genotypes in selection candidates using a selection index derived in
the reference population. Different scenarios of within and across population genomic prediction were evaluated,
using all SNPs or only the four neighboring SNPs of a simulated QTL. Phenotypes were simulated using different
numbers of QTL underlying the trait. The relationship between the calculated consistency of multi-locus LD and
accuracy of genomic prediction using a GBLUP type of model was investigated.

Results: The accuracy of predicting QTL genotypes, i.e. the measure describing consistency of multi-locus LD, was
much lower for across population scenarios compared to within population scenarios, and was lower when QTL
had a low MAF compared to QTL randomly selected from the SNPs. Consistency of multi-locus LD was highly
correlated with the realized accuracy of genomic prediction across different scenarios and the correlation was
higher when QTL were weighted according to their effects in the selection index instead of weighting QTL equally.
By only considering neighboring SNPs of QTL, accuracy of predicting QTL genotypes within population decreased,
but it substantially increased the accuracy across populations.

Conclusions: Consistency of multi-locus LD across populations is a characteristic of the properties of the QTL in the
investigated populations and can provide more insight in underlying reasons for a low empirical accuracy of across
population genomic prediction. By focusing in genomic prediction models only on neighboring SNPs of QTL,
multi-locus LD is more consistent across populations since only short-range LD is considered, and accuracy of
predicting QTL genotypes of individuals from another population is increased.

Keywords: Multi-locus LD, Consistency of LD, Genomic prediction, Across population genomic prediction, Accuracy,
Selection index theory
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Background
In genomic prediction, marker information is used to
predict breeding values for selection candidates based on
estimated marker effects in a reference population con-
sisting of individuals with phenotypes and marker geno-
types. The accuracy of predicting genomic breeding
values depends on the size of the reference population,
the heritability of the trait, and on the level of family re-
lationships between the reference population and selec-
tion candidates, e.g. [1–3]. Moreover, the accuracy is
influenced by the level of linkage disequilibrium (LD),
i.e. non-random associations, between the single nucleo-
tide polymorphism (SNP) markers and quantitative trait
loci (QTL) influencing the trait of interest [4]. The
higher the level of LD, the more accurate breeding
values can be predicted for the selection candidates [5].
Therefore, the consistency of linkage phase between
SNPs and QTL across populations has been suggested
to be an important factor determining the success of
across and multi population genomic prediction [6, 7].
Within a population, the level of LD between a QTL and
a SNP depends on the effective population size, the re-
combination rate, the distance between the QTL and SNP
on the genome, and the difference in allele frequency be-
tween the QTL and SNP [8]. Several studies showed dif-
ferent LD patterns across different cattle [9, 10], chicken
[11, 12], pig [13] and human [14] populations. In different
livestock species, however, the consistency of linkage
phase across populations is found to be reasonable high at
short distances on the genome [9, 12, 15], and depending
on the degree of relatedness between the populations; the
higher the relatedness between the populations, the higher
the consistency of LD [12].
The studies investigating the consistency of LD across

populations focused on the LD between two loci. How-
ever, genomic prediction models trained within popula-
tions are expected to use more than one SNP to capture
the genetic variance explained by one QTL [16]. Hayes
et al. [17] for example showed a substantial increase in
the proportion of the QTL variance captured by the
SNPs when going from haplotypes based on 2 SNPs per
haplotype to 4 SNPs per haplotype and from 4 SNPs per
haplotype to 6 SNPs per haplotype. Moreover, the pro-
portion of the QTL variance explained by haplotypes
with more than 2 SNPs was higher than the proportion
that could be explained by the SNP in highest LD with
the QTL [17]. Also for fine mapping QTL, the use of
haplotypes consisting of multiple SNPs is shown to be
beneficial compared to using one SNP at a time [18–20].
This indicates that SNPs in less strong LD with the QTL
might be helpful in genomic prediction, and linear com-
binations of several linked SNPs form the within popula-
tion prediction equation. Therefore, a measure of multi-
locus LD, compared to the average LD between two

adjacent loci, might be better able to explain the contri-
bution of LD to the accuracy of genomic prediction.
This might especially be important for situations with
multiple populations, because the consistency of LD
across populations is decreasing more rapidly at increas-
ing distances on the genome [9, 21, 10].
The first objective of this study was to investigate the

consistency of multi-locus LD across different popula-
tions using selection index theory. The consistency of
multi-locus LD is one of the components of the accuracy
of genomic prediction, therefore, the second objective
was to investigate the relationship between consistency
of multi-locus LD and accuracy of genomic prediction
across different simulated within and across population
genomic prediction scenarios. Three different cattle
breeds with real SNP genotype information were used to
represent different populations. Phenotypes of the indi-
viduals were simulated by sampling QTL from the SNPs,
such that the actual QTL genotypes influencing the phe-
notypes were known.

Methods
Prediction accuracies
Using selection index theory to predict QTL genotypes
In this study, the consistency of multi-locus LD across
different populations is investigated using selection
index theory [22–24], which is equivalent to multiple re-
gression of the QTL genotypes on the SNP genotypes.
In the selection index calculations, a regression equation
to predict the QTL genotypes (i.e. the breeding goal
traits) using SNP genotypes (i.e. the index traits) was de-
rived in population A and the accuracy of this equation
to predict the QTL genotypes in population B was inves-
tigated. This approach is different from other studies in-
vestigating the consistency of LD across populations, e.g.
[9, 10, 15], where the consistency of LD was calculated
using the correlation of the LD measure r between two
single loci across populations. The advantage of our se-
lection index method is that a measure is obtained of
explaining the QTL genotypes using the information of
multiple SNPs instead of a single SNP.
In population A, a selection index can be derived to

predict the QTL genotype for a single individual using
all SNP genotypes of that same individual, following:

Ii ¼ bA
0xi ð1Þ

in which Ii forms the selection index for individual i, bA
is a vector containing regression coefficients on the SNP
genotypes to predict Ii, and xi is a vector containing all
SNP genotypes of individual i.
Rather than predicting Ii, the aim is to predict the ag-

gregated genotype including all QTL:
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Hi ¼ v0gi ð2Þ
in which Hi is the aggregate genotype of individual i, v is
a vector with weighting factors for each of the QTL ge-
notypes and gi is a vector containing the genotype for
each QTL of individual i.
The regression coefficients on the SNP genotypes that

would optimize the prediction accuracy of H can be cal-
culated as [25]:

bA ¼ P−1
A GAv ð3Þ

in which PA is the covariance matrix (based on LD) be-
tween all SNPs in population A and GA is the covariance
matrix between SNPs and QTL in population A. Then
the prediction accuracy of predicting the QTL genotype
in another population, i.e. population B, using bA can be
calculated as [26]:

rIH ¼ bA
0GBvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bA
0PBbAv0CBv

p ð4Þ

in which GB is the covariance matrix between SNPs and
QTL in population B, PB is the covariance matrix of
SNPs in population B and CB is the covariance matrix of
QTL in population B.

Using a genomic best linear unbiased prediction model to
estimate breeding values
To investigate the relationship between the prediction
accuracies of the QTL genotypes and the accuracies of
predicting genomic breeding values, the following
genomic-relationship-matrix residual maximum likeli-
hood (GREML) model was used:

y ¼ Xbþ Zgþ e ð5Þ
in which y is a vector containing phenotypes, b is a vec-
tor containing fixed effects, X is an incidence matrix that
allocates the fixed effects to the individuals, g is a vector
containing the predicted genomic breeding values ~
N(0,GRMσg

2), GRM is a genomic relationship matrix
based on SNPs (calculation of GRM is explained later),
Z is an incidence matrix that allocates the genomic
breeding values to the individuals and e is a vector con-
taining the residuals ~N(0,Iσe

2). The GREML model is
equivalent to the commonly known genomic best linear
unbiased prediction (GBLUP) model, except that it esti-
mates the variances using residual maximum likelihood
(REML) instead of assuming that the variances are known.

Simulations to investigate the prediction accuracies
Genotypes
Genotypes of 1285 dairy cows from the Netherlands
were used, originating from three different breeds (1033
Holstein Friesians (HF), 105 Groninger White Headed

(GWH), and 147 Meuse-Rhine-Yssel (MRY)). The geno-
types of MRY and GWH animals were obtained by iso-
lating DNA from whole blood samples of the animals.
Blood samples were collected in accordance with the
guidelines for the care and use of animals as approved
by the ethical committee on animal experiments of ID-
LELYSTAD (protocol: 2011062). No approval was ob-
tained for the HF genotypes, because these genotypes
were obtained from an existing database.
All animals originated for at least 87.5 % from one of

the three breeds, so were considered to be pure-bred an-
imals. The HF animals were genotyped with the Illumina
BovineSNP50 Beadchip (50 k, Illumina, San Diego, CA),
and genotypes were imputed to high density (777 k)
using 3150 HF animals in the reference population as
described in Pryce et al. [27]. The GWH and MRY ani-
mals were genotyped with the Illumina BovineHD Bead-
chip (777 k, Illumina, San Diego, CA). The quality
checks and the criteria for including the SNP genotypes
in the combined dataset of the three breeds are de-
scribed in Wientjes et al. [28]. For each of the individ-
uals, both genotype (coded as 0, 1 and 2) and phased
allele information (coded as 0 and 1) was available. Phas-
ing of the allele genotypes was done using the software
package Beagle [29]. From those high density genotypes,
arbitrarily the SNP genotypes of three chromosomes
(Bos Taurus chromosome (BTA) 13, BTA 23 and BTA
28) were selected to reduce computation time and to in-
crease the power of the study to estimate breeding
values. The three selected chromosomes contained 31
503 SNPs, which was about 10 % of the SNPs from the
entire combined dataset. The characteristics of the 31
503 SNPs used in this study are shown in Table 1.
From all 31 503 SNPs, randomly 5000 SNPs were se-

lected to become candidate QTL from which the actual
QTL were sampled. The other 26 503 SNPs were used

Table 1 Characteristics of the SNPs in each of the different
breeds

Characteristics of the SNPs HF1 GWH2 MRY3

Number of segregating SNPs 31 483 30 449 31 262

Number of breed-specific SNPs 14 6 3

Average MAF4 of all SNPs 0.279 0.251 0.266

Average MAF4 of segregating SNPs 0.279 0.260 0.268

Number of SNPs with MAF4 ≤ 0.1 4266 6530 5308

Number of SNPs with 0.1 < MAF4≤ 0.2 5587 5803 5609

Number of SNPs with 0.2 < MAF4≤ 0.3 6558 5745 6623

Number of SNPs with 0.3 < MAF4≤ 0.4 7430 6718 6657

Number of SNPs with 0.4 < MAF4≤ 0.5 7662 6707 7306
1HF Holstein Friesian
2MRY Meuse-Rhine-Yssel
3GWH Groninger White Headed
4MAF Minor allele frequency
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as SNP markers in this study. With this approach, it was
possible to randomly sample QTL from the candidate
QTL in each of the replicates, while keeping the set of
SNP markers constant across the replicates to reduce
the computational demands. To limit the number of
possible singularities in the matrices needed for the se-
lection index calculations, SNPs with a correlation above
0.85 or below −0.85 with another SNP on the same
chromosome were deleted, irrespective of their allele fre-
quency. Moreover, SNPs that were not segregating in
one of the breeds were deleted as well. Deleting those
SNPs reduced the total number of SNPs from 26 503 to
4541, of which 1655 SNPs were located on BTA 13,
1515 on BTA 23, and 1371 on BTA 28.

Phenotypes
Phenotypes were simulated for each individual by ran-
domly sampling 3000, 300, 30, or 3 QTL from the group
of 5000 candidate QTL and by sampling their allele sub-
stitution effects from N(0,1), using the same effects for
each of the breeds. An additive model, without consider-
ing epistatic interactions or dominance effects, was as-
sumed. The simulated allele substitution effects were
multiplied with the QTL genotypes, coded as 0, 1 and 2,
to calculate a true breeding value (TBV) for each of the
individuals. Those TBVs were rescaled to a mean of 0
and a variance of 1 across breeds for all of the scenarios.
Thus, when the number of QTL underlying the trait was
lower, each QTL explained a larger part of the genetic
variance. For each individual, an environmental effect

was sampled from N(0, 1
h2
−1

� �
*variance of TBV cor-

rected for mean TBV within breed), in which h2 is the
heritability of the simulated trait. This approach enables
to sample the environmental term from the same distri-
bution for each individual, independent of the breed,
and to keep the heritability more or less constant across
the breeds [28]. The phenotype for each individual was
calculated as the sum of its TBV and its randomly sam-
pled environmental effect. Please note that the TBVs
were only corrected for the mean TBV to calculate the
environmental variance, the TBVs and the phenotypes
still contained the breed effect.
Two different heritabilities were used to simulate phe-

notypes, namely 0.3 and 0.95. The same subsets of QTL
were used to simulate phenotypes for the two heritabil-
ities, but allele substitution effects and environmental ef-
fects were different. For all scenarios, simulations were
replicated 100 times for each scenario. A more detailed
description of the simulations of phenotypes can be
found in Wientjes et al. [28].
In general, QTL underlying complex traits are ex-

pected to have a lower minor allele frequency (MAF)
than the SNPs, due to ascertainment bias of the SNPs

on the chip [30, 31]. To investigate if selecting QTL ran-
domly from the SNPs could affect our results, pheno-
types were also simulated by selecting QTL from the
5000 candidate QTL with an average MAF across the
breeds below 0.1. The average MAF across the breeds
was calculated by giving an equal weight to each of the
three breeds, indicating that the allele frequency in each
of the breeds ranged between 0 and 0.3, resulting in
sampling QTL from 480 candidate QTL. Simulating
phenotypes by selecting QTL with a low MAF was only
done using 3 QTL underlying the trait and a heritability
of 0.95 using 100 replicates.

Scenarios
The consistency of multi-locus LD and accuracy of gen-
omic prediction were evaluated in five different scenar-
ios (Table 2). In the base scenario, within population
genomic prediction was applied, using HF individuals
both in the reference population and as selection candi-
dates. The other four scenarios used across population
genomic prediction, indicating that the population of the
selection candidates (GWH or MRY) was not included
in the reference population, and that all individuals of
the predicted population were used for the validation.
To perform validation in the within population scenario,
10-fold cross validation was used in which the individ-
uals were randomly divided in 10 equally sized groups
using each group once as selection candidates and the
other groups as reference population. In each replicate,
the division of the individuals over the groups was the
same.

Selection index calculations
The selection index calculations were performed for
each scenario by defining a selection index to predict
QTL genotypes in the reference population (Equation 3)
and to calculate the prediction accuracy of this selection
index in the selection candidates (Equation 4). In the P-,

Table 2 Overview of the breeds used in the different reference
populations and as selection candidates

Reference population Predicted individuals

Scenario Breed(s) Number of
individuals

Breed Number of individuals

Base HF1 928-929 HF1 103-104

1 HF1 1033 GWH3 105

2 HF1 + MRY2 1180 GWH3 105

3 HF1 1033 MRY2 147

4 HF1 + GWH3 1138 MRY2 147
1HF Holstein Friesian
2MRY Meuse-Rhine-Yssel
3GWH Groninger White Headed
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G-, and C-matrices (Equation 3 and 4), we used the cor-
relations between SNPs and QTL that were calculated
based on the phased alleles of SNPs and QTL of all indi-
viduals in either the reference population or the group
of selection candidates. By using correlations instead of
covariances, each SNP explains an equal amount of the
genetic variance, similar to the commonly used assump-
tion in GREML. Moreover, the square of the correlation
between phased alleles at two loci, r2, is commonly used
as a measure for LD between loci [8].
Across the different replicates, the subset of SNPs was

constant, as indicated previously. This indicates that the
P-matrices within both the reference population and the
selection candidates were constant across the replicates.
The set of QTL differed for each replicate, so both the
G- and C-matrices were specific for each of the repli-
cates. Correlations among SNPs and QTL and between
SNPs and QTL on different chromosomes were taken
into account as well to make the analyses consistent
with the GREML analyses that did not differentiate be-
tween the chromosomes. To prevent problems due to
non-positive definiteness of the final matrices, the P-
and C-matrices were bended following the unweighted
bending procedure described by Jorjani et al. [32] by set-
ting the eigenvalues of the matrix lower than 10e−6 to
10e−6.
Two different weightings of the QTL in the overall

breeding goal, vector v in Equation 2, 3 and 4, were
used; either QTL were weighted equally (v is a vector of
ones), or each QTL was weighted based on its simulated
allele substitution effect to take into account that it is
more important to accurately predict the QTL genotype
of QTL with large effects than for QTL with small ef-
fects. Weighting the QTL based on their allele substitu-
tion effects was only performed for the phenotypes
simulated using a heritability of 0.95, both when QTL
were randomly selected and when QTL were selected
with a low MAF.
In the analyses described above, all SNPs across the

whole genome were taken into account to explain the
QTL genotypes. The SNPs more closely located to a
QTL are supposed to have a higher and more consistent
LD with the QTL across populations, e.g. [9, 12, 15]. To
investigate if the accuracy of predicting QTL genotypes
would be increased when focusing only on the SNPs sur-
rounding a QTL, the analyses with 3 randomly selected
QTL underlying the trait were repeated using only the
four surrounding SNPs (two at either side) of each QTL.
When the number of SNPs from one side of the QTL
was insufficient, i.e. when the QTL was located at the
end of a chromosome, more SNPs from the other side of
the QTL were added to obtain four SNPs per QTL.
Those analyses were only performed by using an equal
weight of the QTL in the overall breeding goal.

Estimating breeding values using GREML
To estimate breeding values for the individuals, the
GREML model (Equation 5) was run in ASReml [33], in-
cluding breed as the only fixed effect. The GRM matrix
that was used in the model was calculated as GRM ¼ XX0

n

[34, 35], in which n represents the number of SNP
markers (n = 4541) and the X-matrix contains standard-

ized genotypes, calculated as xij ¼ gij−2pjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pj 1−pjð Þp , in which gij

codes the genotype for individual i at marker locus j as 0,
1 and 2, and pj is the allele frequency at marker locus j
for the second allele (for which the homozygote geno-
type is coded 2) averaged over the three breeds. After
adjusting the inbreeding level in GRM to the inbreed-
ing level in the pedigree based relationship matrix A,
the GRM matrix was regressed back to the A matrix to
reduce the effect of sampling the SNPs on the chip. For
each of the scenarios, a different GRM matrix was cal-
culated, containing only the individuals included in that
scenario. For a more detailed description of calculating
GRM, see Wientjes et al. [28].
For each population, the accuracy of genomic predic-

tion was calculated as the correlation between the
estimated breeding values and the simulated TBVs.
Averages and standard errors of the accuracies of gen-
omic prediction were calculated across replicates.

Results
Regression coefficients
The regression coefficients on the SNP genotypes to pre-
dict the QTL genotypes derived in the Holstein Friesian
reference population using selection index calculations
(Equation 2; bRP) are presented in Fig. 1 for one of the
replicates with 3 randomly selected QTL underlying the
trait. This figure clearly shows that the SNPs surround-
ing a QTL were given a higher weight to predict the
QTL genotypes, due to the greater correlations between
those SNPs and the QTL. When QTL were weighted
based on their different allele substitution effects, mainly
the SNPs surrounding the QTL with a large effect were
given a higher weight. The same patterns were also seen
when the number of QTL was higher, although the pat-
tern was less clear due to the higher number of QTL
(See Additional file 1: Figures S1-S3), and when the MAF
of QTL was lower (See Additional file 2: Figure S4).

Accuracy of predicting QTL genotypes using selection
index theory
Accuracies of predicting the QTL genotypes for the se-
lection candidates, using a selection index derived in the
reference population based on all SNPs, are shown in
Fig. 2 when QTL were randomly sampled. Since this
prediction accuracy is a measure of the consistency of
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multi-locus LD (MLLD) between the selection candi-
dates and the reference population, hereafter this accur-
acy will be referred to as acc_MLLD. In the within
population scenarios, average acc_MLLD was around
0.94. As expected, average acc_MLLD was much lower
for the across population scenarios due to differences in
LD across populations with an average acc_MLLD of ~
0.37 for GWH and ~0.34 for MRY using HF as refer-
ence population. Adding another population to the HF
reference population did not affect the prediction
accuracy.
The average acc_MLLD seems to be independent from

the number of QTL underlying the trait for the within
as well as for the across population scenarios, both when
QTL had an equal weight and when QTL were weighted
based on their allele substitution effects. Only when
3000 QTL were underlying the trait and QTL had an
equal weight in the breeding goal, acc_MLLD was
slightly lower compared to the across population scenar-
ios with fewer QTL. Standard errors were in general very
small, but tended to be slightly larger for the scenarios
with a lower number of QTL.

Weighting the QTL equally or based on their allele
substitution effects resulted in similar values for
acc_MLLD, both for the within and across population
scenarios. This was also expected beforehand, since the
consistency of multi-locus LD across populations was
supposed to be a characteristic of the investigated popu-
lations. Giving different weights to the QTL only re-
sulted in giving more emphasis on predicting QTL with
a large effect, but it had no effect on the LD structure of
that QTL with the surrounding SNPs. The only excep-
tion to this pattern was again the across population sce-
nario with 3000 QTL underlying the trait, where
acc_MLLD was higher when QTL were weighted differ-
ently compared to weighting the QTL equally.
By focusing only on the four SNPs surrounding a

QTL, the accuracy of predicting the QTL genotypes of
the selection candidates decreased by 19 % for the
within population scenario (Table 3). For the across
population scenarios, however, the prediction accuracy
increased by approximately 53 % (Table 3). As a conse-
quence, the difference in prediction accuracy of the QTL
genotypes between the within and across population

Fig. 1 Absolute estimated regression coefficients (b-values) for each SNP to predict the QTL genotypes of 3 randomly selected QTL. Absolute
regression coefficients for each of the SNPs estimated in a Holstein Friesian reference population (bRP) to predict the QTL genotypes of 3
randomly selected QTL with (a) equal weight for each of the QTL, or (b) QTL weighted differently, based on their allele substitution effects, in the
overall breeding goal. The size of the triangle represents the weight of the QTL in the overall breeding goal of the selection index calculations,
i.e. the allele substitution effect in (b)
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scenarios was substantially reduced compared to the
analyses using all SNPs.
In Fig. 3, the values for acc_MLLD are shown when 3

QTL were underlying the trait and when QTL were
sampled with a low MAF. The results show that
acc_MLLD was lower for all scenarios when the MAF of
the QTL was lower, confirming the expectation that
the strength of LD is reduced when the MAF of the
QTL is lower. The decrease in acc_MLLD was, how-
ever, much lower for the within population scenario
where acc_MLLD was around 95 % of the acc_MLLD

with QTL randomly sampled, than for the across popula-
tion scenarios where acc_MLLD was around 60 – 70 % of
the acc_MLLD with QTL randomly sampled.

Accuracy of genomic prediction
Accuracies of predicting genomic estimated breeding
values, hereafter denoted as acc_GEBV, achieved with a
GREML model are shown in Fig. 4, for a heritability of
0.95 (A) and a heritability of 0.3 (B). At a heritability of
0.95, the average acc_GEBV for the within population
scenario was around 0.95, and was much lower and in

Fig. 2 Accuracies of predicing genotypes of randomly sampled QTL using selection index theory. Violin plot depicting the accuracies of selection
index theory to predict the QTL genotypes of randomly sampled QTL using (a) equal weight for each of the QTL, or (b) QTL weighted differently,
based on their allele substitution effects, in the overall breeding goal for five different scenarios. Base = reference population Holstein Friesian
(HF), selection candidates HF; 1 = reference population HF, selection candidates Groninger White Headed (GWH); 2 = reference population HF and
Meuse-Rhine-Yssel (MRY), selection candidates GWH; 3 = reference population HF, selection candidates MRY; 4 = reference population HF and
GWH, selection candidates MRY
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the range of 0.3 – 0.4 across populations. At a heritabil-
ity of 0.3, average acc_GEBV was lower for all scenarios,
with values around 0.75 for the within population sce-
nario and values around 0.2 for the across population
scenarios. For all scenarios, acc_GEBV was independent
from the number of QTL underlying the trait and stand-
ard errors were reasonably small, although slightly larger
for the across population scenarios compared to the
within population scenarios.
The acc_GEBV for GWH individuals were somewhat

higher (~0.04 at a heritability of 0.95; and ~0.005 at a
heritability of 0.3) than predicting MRY individuals using
a HF reference population. When the reference popula-
tion was extended with the other population, acc_GEBV
increased slightly, although not significantly, for both
populations (~0.015).
Table 4 shows the average acc_GEBV when 3 QTL

were underlying the trait with QTL randomly selected
and QTL selected to have a low MAF for a heritability

of 0.95. Those results show that average acc_GEBV was
in all scenarios lower when QTL had a low MAF com-
pared to randomly selected QTL. The accuracies
achieved for QTL with a low MAF were 98 % and 65 %
of the accuracies for randomly selected QTL for respect-
ively the within and across population scenarios, indicat-
ing that the decrease in accuracy was smaller for the
within population scenario compared to the across
population scenarios.

Accuracy of predicting genomic breeding values
(acc_GEBV) versus accuracy of predicting QTL genotypes
(acc_MLLD)
To investigate the relationship between acc_MLLD and
acc_GEBV across different across population genomic
prediction scenarios, the average acc_GEBV are plotted
against the average acc_MLLD in Fig. 5 for the four
across population scenarios with 3 QTL underlying the
trait. As expected, the average acc_MLLD was for most

Table 3 Average prediction accuracies of QTL genotypes using all SNPs or only the neighboring SNPs of the QTL. The results are for
different within and across population scenarios with 3 QTL underlying the trait and with an equal weight of the QTL in the overall
breeding goal

Reference
population

Selection
candidates

Average prediction accuracy (s.e.)

Scenario All SNPs Four surrounding SNPs

Base HF1 HF1 0.942 (0.003) 0.766 (0.011)

1 HF1 GWH3 0.378 (0.018) 0.569 (0.020)

2 HF1 + MRY2 GWH3 0.377 (0.017) 0.579 (0.020)

3 HF1 MRY2 0.362 (0.018) 0.562 (0.020)

4 HF1 + GWH3 MRY2 0.373 (0.018) 0.567 (0.021)
1HF Holstein Friesian
2MRY Meuse-Rhine-Yssel
3GWH Groninger White Headed

Fig. 3 Accuracies of predicing genotypes of QTL with low MAF using selection index theory. Violin plot depicting the accuracies of selection
index theory to predict the QTL genotypes of three QTL with low MAF using an equal weight for each of the QTL, or different weights for each
QTL, based on their allele substitution effects, in the overall breeding goal for five different scenarios. Base = reference population Holstein
Friesian (HF), selection candidates HF; 1 = reference population HF, selection candidates Groninger White Headed (GWH); 2 = reference population
HF and Meuse-Rhine-Yssel (MRY), selection candidates GWH; 3 = reference population HF, selection candidates MRY; 4 = reference population HF
and GWH, selection candidates MRY
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Fig. 4 Accuracies of predicting genomic breeding values using GREML for different scenarios using multiple populations. Violin plot depicting the
accuracies of genomic prediction using GREML and a (a) heritability of 0.95, or (b) heritability of 0.3 for five different scenarios. Base = reference
population Holstein Friesian (HF), selection candidates HF; 1 = reference population HF, selection candidates Groninger White Headed (GWH);
2 = reference population HF and Meuse-Rhine-Yssel (MRY), selection candidates GWH; 3 = reference population HF, selection candidates MRY;
4 = reference population HF and GWH, selection candidates MRY

Table 4 Average accuracies (s.e.) of genomic prediction using QTL randomly sampled or QTL with low MAF. The results are for
different within and across population scenarios with 3 QTL underlying the trait and a heritability of 0.95

Scenario Reference
population

Selection
candidates

Average accuracy of genomic prediction (s.e.)

QTL randomly sampled QTL with low MAF

Base HF1 HF1 0.949 (0.001) 0.932 (0.002)

1 HF1 GWH3 0.341 (0.021) 0.233 (0.022)

2 HF1 + MRY2 GWH3 0.361 (0.022) 0.246 (0.022)

3 HF1 MRY2 0.304 (0.020) 0.186 (0.018)

4 HF1 + GWH3 MRY2 0.310 (0.021) 0.189 (0.019)
1HF Holstein Friesian
2MRY Meuse-Rhine-Yssel
3GWH Groninger White Headed
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scenarios equal or higher than the average acc_GEBV.
When the heritability was 0.95 and QTL were randomly
sampled, the average acc_MLLD was ~0.03 higher than
acc_GEBV in the across population scenarios, and the
average acc_MLLD and acc_GEBV were similar in the
within population scenarios. The differences were larger
when the heritability was 0.3 (~0.17 in the across popu-
lation scenarios, and ~0.20 in the within population sce-
narios). When QTL were sampled with a low MAF, the
differences were comparable to the differences with
QTL randomly sampled at a heritability of 0.95 for the

across population scenarios. In the within population
scenarios, however, the average acc_GEBV was ~0.04
higher than acc_MLLD.
The correlation between acc_GEBV and acc_MLLD

was expected to be high and positive, since a high
consistency of multi-locus LD across reference individ-
uals and selection candidates is supposed to be very
important in getting a high accuracy of genomic predic-
tion. Across the four different across population scenar-
ios and at the same number of randomly sampled QTL
underlying the trait and a heritability of 0.95, the average

Fig. 5 Average accuracies of genomic prediction (Acc_GEBV) versus average accuracies of predicting QTL genotypes (Acc_MLLD) with 3 QTL.
Average accuracies of genomic prediction (Acc_GEBV) versus average accuracies of selection index theory to predict the QTL genotypes
(Acc_MLLD) with (a) equal weight for each of the QTL, or (b) QTL weighted based on their allele substitution effects in the overall breeding goal
and with 3 QTL underlying the trait randomly sampled using a heritability of 0.95 (black) or 0.3 (dark grey), or QTL selected with a low MAF and a
heritability of 0.95 (light grey) for four different scenarios; HF = Holstein Friesian; MRY = Meuse-Rhine-Yssel; GWH = Groninger White Headed
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correlation between acc_GEBV and acc_MLLD was 0.91
(range 0.76 to 1.00) when each QTL had an equal weight
in the breeding goal, and on average 0.94 (range 0.86 to
1.00) when each QTL had a different weight, based on
their different allele substitution effects. When the herit-
ability was only 0.3, the average correlation was lower
(0.79). At a heritability of 0.95 and 3 QTL sampled with
a low MAF, the correlations were 0.33 and 0.95 when
QTL were respectively equally weighted or weighted
based on their different allele substitution effects.
Altogether, those results show that the measure for
consistency of multi-locus LD, acc_MLLD, as calculated
in this study using selection index theory, is highly re-
lated to the accuracy of genomic prediction obtained
with GBLUP.

Discussion
Using selection index theory to investigate the
consistency of multi-locus LD
The first objective of this study was to investigate the
consistency of multi-locus LD across different popula-
tions using selection index theory. Our results indicate
that the strength of LD reduces when the MAFof the
QTL reduces and that LD between QTL and SNPs is at
least partly different across populations, especially for
loci with a low MAF, resulting in a lower accuracy of
predicting the QTL genotypes of selection candidates
from another population. When focusing in genomic
prediction models only on the SNPs closely located to a
QTL, the accuracy of predicting the QTL genotypes of
individuals from another population increased, indicat-
ing that consistency of LD across populations is higher
at shorter distances on the genome. Those findings are
in agreement with other studies investigating the
consistency of linkage phase between pairs of markers
across populations [9, 10], but provide a more complete
picture as it considers multi-locus LD. Moreover, the
measure for the consistency of multi-locus LD seems to
be independent from the number of QTL underlying the
trait and the weighting of the QTL in the overall breed-
ing goal of the selection index calculations, but it is de-
pending on the properties of the QTL like allele
frequency pattern. Therefore, the consistency of multi-
locus LD, as calculated with selection index theory using
all SNPs, can be seen as a characteristic of the properties
of the QTL for the investigated populations.

Consistency of multi-locus LD and accuracy of genomic
prediction
The second objective of this paper was to investigate the
relationship between consistency of multi-locus LD and
accuracy of genomic prediction across different within
and across population genomic prediction scenarios. As
expected, the correlation between average consistency of

multi-locus LD and average accuracy of genomic predic-
tion across the different across population scenarios was
positive and strong, both at a heritability of 0.95 and 0.3,
and when QTL were randomly selected or selected to
have a low MAF. The correlations were slightly stronger
when QTL were weighted based on their allele substitu-
tion effects in the overall breeding goal, since it is more
important that the linkage phases between SNPs and
QTL with a high effect are consistent across reference
and selection individuals compared to QTL with a small
effect.
At a heritability of 0.95 and with QTL randomly se-

lected, the correlations between consistency of multi-
locus LD and accuracy of genomic prediction were
around 0.9. This indicates that around 81 % of the vari-
ance in accuracy of genomic prediction could be ex-
plained by differences in consistency of multi-locus LD.
The remaining part of the variance might be explained
by the accuracy of estimating SNP effects, which influ-
enced the accuracy of genomic prediction, but not the
consistency of multi-locus LD. The accuracy of estimat-
ing SNP effects in the reference population depends on
the allele frequency of the QTL, the number of QTL
underlying the trait, the heritability of the trait and the
size of the reference population [1, 4, 5]. In general, esti-
mated SNP effects are less accurate for traits with a low
heritability and for SNPs linked to QTL with a low fre-
quency. This is confirmed by the lower correlations be-
tween consistency of multi-locus LD and accuracy of
genomic prediction found in this study when the herit-
ability was only 0.3 and when QTL were selected to have
a low MAF. The difference in accuracy obtained when
QTL were randomly selected compared to selecting
QTL with a low MAF was higher for the across popula-
tion scenarios compared to the within population sce-
narios. This can be explained by the fact that QTL with
a low MAF in the reference population explain only a
small part of the genetic variance within the selection
candidates when they are from the same population [1].
Due to differences in allele frequencies across popula-
tions, the penalty of incorrectly estimating the effects of
SNPs linked to QTL with a low MAF might be much
higher when selection candidates are from a different
population [1]. Combining two or more populations in
the reference population might increase the probability
that the QTL explaining a large part of the genetic vari-
ance in the selection candidates are segregating at rea-
sonable allele frequencies in the reference population.
This could explain the slight increase in accuracy of
across population genomic prediction when another
population was added to the reference population, as
seen in this study as well as in other studies [7, 28, 36].
Another explanation for the slight increase in accuracy
when combining multiple populations in the reference
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population could be the assigning of the effect of QTL
to SNPs that are more closely located to the QTL [7],
for which the consistency of LD across populations is
higher [9, 12, 15]. This latter explanation is, however,
not confirmed by the values for the consistency of
multi-locus LD calculated in this study.
Both the accuracy of predicting the QTL genotype and

accuracy of genomic prediction were very high in the
single population scenario. Those high values might in-
dicate a strong level of LD within the population, but
might also be caused by a high level of family relation-
ships within the population, since family relationships
and level of LD are entangled [37]. Both population level
LD and LD due to family relationships are helpful in
predicting the QTL genotype, resulting in higher accur-
acies of genomic prediction when the level of family re-
lationships between reference and selection candidates is
higher, as was already shown in other studies [2, 38].
Across populations, close family relationships are in gen-
eral absent, so across population genomic prediction is
only depending on the level of LD across the popula-
tions, resulting in lower accuracies of genomic predic-
tion. Both the accuracy of predicting the QTL genotype
and accuracy of genomic prediction decreased when the
MAF of QTL was lower, with a much smaller decrease
in the within population scenario compared to the
across population scenarios. This might be a result of
the possibility to tag QTL with low MAF by the SNPs
within a population due to the high level of family rela-
tionships. Across populations, it is much more difficult
to tag those QTL by the SNPs, since only the level of
LD across the populations can be used. This indicates
that the effect of the MAF of QTL might be much larger
for across population genomic prediction compared to
within population genomic prediction.
By focusing only on the four neighboring SNPs of a

QTL, the accuracy of predicting the QTL genotype of
the selection candidates substantially decreased within a
population, but substantially increased in the across
population scenarios. This indicates that SNPs further
away from the QTL on the genome can be helpful in pre-
dicting the QTL genotype within a population, but can be
detrimental for across population settings, due to the
lower consistency of LD across populations [9, 12, 15,].
The potential of combining populations using the
current methods of genomic prediction based on all
SNPs would therefore be overestimated by only consid-
ering the consistency of LD across populations at short
distances on the genome. On the other hand, the re-
sults do show that the accuracy of across and multi
population genomic prediction could potentially be in-
creased by focusing only on the neighboring SNPs of a
QTL, for which the consistency of LD is higher across
populations.

Within this study, different numbers of QTL were se-
lected and allele substitution effects were drawn from a
normal distribution. The actual distribution of allele sub-
stitution effects may perhaps be closer to a gamma dis-
tribution [39], showing few QTL with large effects and
many QTL with small effects. In such case, the achieved
accuracy mainly depends on the ability to tag those few
QTL [40], so effectively is rather similar to our simula-
tions with only 3 QTL underlying the trait. Since the
number of QTL underlying the trait had no effect on the
consistency of multi-locus LD and the accuracy of gen-
omic prediction in the GBLUP model, we expect that
the results of our study are also valid when QTL effects
follow a gamma distribution.
Altogether, the results of this study show that consistency

of multi-locus LD can be used to get more insight in pos-
sible underlying reasons and potential ways to increase the
low empirical accuracies of across population genomic pre-
diction described in literature, e.g. [16, 36, 41], as follows.
When a low accuracy of across population genomic predic-
tion is accompanied by a low consistency of multi-locus
LD, a higher marker density might be used to increase the
accuracy of genomic prediction. When a low accuracy
is not accompanied by a low consistency of multi-
locus LD, it indicates that the accuracy of estimating
SNP effects is low. This might be caused by differ-
ences in allele substitution effects across populations,
due to the presence of non-additive effects and differ-
ences in allele frequencies across populations [37]. In
genetic analyses, those differences can be taken into
account by estimating the genetic correlation across
the populations [28, 42]. Another reason for the low
accuracy of estimating SNP effects might be that the
allele frequency of the QTL explaining a large part of
the genetic variance in the selection candidates is too
low in the reference population, the effect of this
might be reduced by including another population in
the reference population.

Potential applications
Our results showed that consistency of multi-locus LD
across populations was not influenced by the number
of QTL or by the weighting of QTL in the overall
breeding goal. This indicates that the consistency of
multi-locus LD is not trait-dependent and that, even
when the actual QTL are unknown, reliable estimates
of the consistency of multi-locus LD can be obtained
by sampling loci from the SNPs. The characteristics of
the QTL, such as allele frequency, however, influenced
the consistency of multi-locus LD and accuracy of gen-
omic prediction. The effect of MAF of QTL on accur-
acy was already shown in other studies [43, 44], but the
results of this study confirm the hypothesis that this ef-
fect was due to a reduction in the strength of LD
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between SNPs and QTL. Therefore, it is highly recom-
mended, assuming that the knowledge about the distri-
bution of allele frequencies of QTL increases in the
next decade, to select loci that have comparable allele
frequencies as the actual QTL underlying the trait of
interest in future applications. Since the main conclu-
sions of this study remain valid when the characteristics
of the QTL are taken into account, we expect that
those conclusions are also valid for traits with other
characteristics, for other breeds and even for other
species.
The computational demands for the selection index

calculations would be high when including all SNPs on
the genome. For practical applications, it might there-
fore be beneficial to only include a subset of the chro-
mosomes in the analyses which have a representative
LD pattern for the whole genome. Computational de-
mands can also be reduced by decreasing the number
of QTL, which also reduces the number of potential
singularities in the correlation matrices between QTL,
since the number of QTL did not have a large impact
on the accuracy of predicting the QTL genotype. The
number of QTL did, however, influence the variance
across the replicates. Therefore, multiple replicates
would be necessary when a rather small number of
QTL is selected.

Conclusions
In this paper, selection index theory was used to obtain
a measure for the consistency of multi-locus LD across
the reference and selection populations. As expected,
the consistency of multi-locus LD across populations,
when reference and selection candidates were from dif-
ferent populations, was much lower compared to the
consistency of multi-locus LD within a population,
when reference and selection individuals belonged to
the same population. Moreover, the consistency of
multi-locus LD was much lower for QTL with a low
MAF compared to randomly selected QTL. The average
consistency of multi-locus LD is shown to be independ-
ent from the number of QTL and the weighting of the
QTL in the overall breeding goal of the selection index.
Therefore, consistency of multi-locus LD can be seen
as a characteristic of the properties of the QTL for the
investigated populations. Across different across popu-
lation scenarios, consistency of multi-locus LD was
highly correlated with the achieved accuracy of gen-
omic prediction using a GBLUP type of model, con-
firming that consistency of LD is an import factor
determining the accuracy of across population genomic
prediction. Therefore, the consistency of multi-locus
LD can provide more insight in underlying reasons
for a low empirical accuracy of across population ge-
nomic prediction. By focusing only on the SNPs closely

located to a QTL, the accuracy of predicting the QTL
genotypes of individuals from another population in-
creased. This shows that accuracy of across and multi
population genomic prediction could be increased by
focusing only on the neighboring SNPs of a QTL, for
which the consistency of LD is higher across
populations.

Additional files

Additional file 1: Figure S1. Absolute estimated regression coefficients
(b-values) for each SNP to predict the QTL genotypes of 30 randomly
selected QTL. Absolute regression coefficients for each of the SNPs
estimated in a Holstein Friesian reference population (bRP) to predict the
QTL genotypes of 30 randomly selected QTL with (A) equal weight for
each of the QTL, or (B) QTL weighted differently, based on their allele
substitution effects, in the overall breeding goal. The size of the triangle
represents the weight of the QTL in the overall breeding goal of the
selection index calculations, i.e. the allele substitution effect in (B).
Figure S2. – Absolute estimated regression coefficients (b-values) for
each SNP to predict the QTL genotypes of 300 randomly selected QTL.
Absolute regression coefficients for each of the SNPs estimated in a
Holstein Friesian reference population (bRP) to predict the QTL genotypes
of 300 randomly selected QTL with (A) equal weight for each of the QTL,
or (B) QTL weighted differently, based on their allele substitution effects,
in the overall breeding goal. The size of the triangle represents the
weight of the QTL in the overall breeding goal of the selection index
calculations, i.e. the allele substitution effect in (B). Figure S3. – Absolute
estimated regression coefficients (b-values) for each SNP to predict the
QTL genotypes of 3000 randomly selected QTL. Absolute regression
coefficients for each of the SNPs estimated in a Holstein Friesian
reference population (bRP) to predict the QTL genotypes of 3000
randomly selected QTL with (A) equal weight for each of the QTL, or (B)
QTL weighted differently, based on their allele substitution effects, in the
overall breeding goal. The size of the triangle represents the weight of
the QTL in the overall breeding goal of the selection index calculations,
i.e. the allele substitution effect in (B).

Additional file 2: Figure S4. Absolute estimated regression coefficients
(b-values) for each SNP to predict the QTL genotypes of 3 QTL with a
low MAF. Absolute regression coefficients for each of the SNPs estimated
in a Holstein Friesian reference population (bRP) to predict the QTL
genotypes of 3 QTL with a low MAF with (A) equal weight for each of
the QTL, or (B) QTL weighted differently, based on their allele substitution
effects, in the overall breeding goal. The size of the triangle represents
the weight of the QTL in the overall breeding goal of the selection index
calculations, i.e. the allele substitution effect in (B).
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