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Abstract: The study uses geographic information science (GIS) and statistics to find out if there are 
statistical differences between full term and preterm births to non-Hispanic white, non-Hispanic 
Black, and Hispanic mothers in their exposure to air pollution and access to environmental amenities 
(green space and vendors of healthy food) in the second largest city in New England, Worcester, 
Massachusetts. Proximity to a Toxic Release Inventory site has a statistically significant effect on 
preterm birth regardless of race. The air-pollution hazard score from the Risk Screening 
Environmental Indicators Model is also a statistically significant factor when preterm births are 
categorized into three groups based on the degree of prematurity. Proximity to green space and to a 
healthy food vendor did not have an effect on preterm births. The study also used cluster analysis and 
found statistically significant spatial clusters of high preterm birth volume for non-Hispanic white, 
non-Hispanic Black, and Hispanic mothers. 
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1. Introduction  

Each year in the United States about a half million, or 1 in 8, babies are delivered to their 
mothers preterm, or earlier than thirty-seven weeks gestational age. Preterm birth (PTB) shortens in 
utero fetal development and has been linked to numerous adverse health outcomes including learning 
disabilities, respiratory problems, visual issues hearing loss, as well as immediate hospitalization 
following birth and others [1]. PTB is also a risk factor for low birth weight (LBW, < 2,500 grams) 
which affects about 316,000 babies born each year in the U.S. [2]. Both PTB and LBW babies are 
also associated with increased infant mortality, and have higher risks of delayed motor and social 
skills, as well as learning disabilities [3,4]. 

Biologic associations and risk factors for PTB are well documented, and many studies have 
been performed to test correlations between social and environmental stressors potentially leading to 
PTB mechanisms, but the exact etiology of PTB is unknown. Biology of stress theories have led 
scientists to focus on the social determinants that contribute to the incidence of PTB. These can be 
divided into the two categories: socioeconomic status and environmental exposure. Mothers living in 
poverty can experience a number of related socio-environmental stressors that may increase the risk 
of delivering babies preterm or at LBW [5]. For example, poor-quality housing and racially isolated 
and poor neighborhoods have been demonstrated to increase the likelihood of PTB and LBW [6–8]. 
Race also has an effect on preterm births in the US. According to the National Center for Health 
Statistics, 16.54% of births to black mothers were preterm, while only 9.68% of births to non-
Hispanic white mothers were preterm [9]. This disparity exists with LBW as well, with 11.84% of 
births to non-Hispanic Black mothers classified as LBW, compared to 5.36% of births to non-
Hispanic white mothers.  

Environmental stressors, such as air pollution, landfills, and industrial polluting sites, have been 
linked to PTB and LBW as well. A literature review found that living in proximity to the 
aforementioned areas confers an increased risk of adverse health outcomes in general [10], and 
traffic-related air pollution in particular has been shown to increase the risk of adverse birth 
outcomes [11–18]. 

It is possible that some of the effects of pollution exposure will be mitigated by proximity and 
access to green space. For instance, an increase in birth weight was associated with an increase in 
distance to major highways and increase in percent open space [19]. People that live near or have 
access to green spaces are also more likely to use and derive health benefits from them as compared 
to  people who don’t live near them, and the literature suggests a positive relationship between green 
spaces and an improvement in the health of potential mothers [20]. Tree cover may reduce maternal 
stress, which might explain why a 10% increase in tree cover within fifty meters of homes was 
shown to reduce the number of LBW births by 1.42 per 1000 in Portland, Oregon [21]. Another 
factor that can contribute to maternal health but has not been widely studied is access to healthy 
foods, which has been shown to affect diet quality during pregnancy. Specifically, women living 
more than four miles from a supermarket had twice the odds of falling into the lowest level of the 
diet-quality index for pregnancy versus women located within four miles [22].  

Most studies on adverse birth outcomes that use GIS technology are usually limited to mapping 
maternal addresses and calculating their distances to polluting facilities or major roads. Studies that 
use methods of spatial cluster analysis and mapping to explore the spatial distribution and pattern of 
adverse birth outcomes are still limited [23–25].The identification of “hot spots” or clusters of 
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certain events (areas with high density of PTB, for example) is an important investigative first step as 
it allows researchers to focus further on these specific areas and to develop a targeted intervention 
strategy [26]. The first objective of our study is to analyze the spatial distribution of preterm births 
for three racial groups (non-Hispanic Blacks, Hispanic and non-Hispanic white) in Worcester, MA to 
determine if they are clustered or randomly distributed in the city. Our specific research question is: 
Are there spatial clusters on preterm births in Worcester? Statistically significant spatial clusters 
would suggest that there is some underlying process or characteristic of space that could be 
associated with these clusters.  

Multiple studies have concluded that environmental factors are important contributors to birth 
outcomes, along with social and host factors [27]. While some of these environmental factors have 
been studied extensively in the context of the adverse birth outcomes (air pollution), others have not. 
Our study attempts to bring those less and more studied environmental factors together and use 
spatial statistics to explore their potential effects on PTB. More specifically, our second objective is 
to analyze associations between PTB and distance to major roads, exposure to hazardous air 
pollutants from stationary sources, access to vendors of healthy food, and access to green space and 
parks. In other words, the study addresses the following research question: are there statistical 
differences between full term and preterm births in their access to environmental amenities (green 
space and vendors of healthy foods) and exposure to air pollution? 

2. Materials and Method 

2.1. Study area 

Worcester’s population of 182,669 makes it the second-largest city in New England after 
Boston [28]. Worcester has a long history that dates back to its incorporation as a town in 1722 [29]. 
Manufacturing was a strong driver of Worcester’s economy throughout the industrial revolution and 
into the 1950s, after which manufacturing declined and the city lost 20% of its population over the 
next thirty years [30]. 

As a former manufacturing base Worcester is home to a number of brownfields, or abandoned 
but desirable building sites with unknown levels of pollutants that are part of the EPA’s National 
Priorities List [31]. There are also a number of actively polluting TRI sites monitored by the EPA 
that are located near population centers within and around the city [32]. Multiple state and Federal 
highways pass through the city, carrying some 270,000 pollution-emitting automobiles every 
day [33]. 

Worcester is also home to dense “triple-decker” housing, living units built during the industrial 
era that typically house a family on each floor [34]. Dense triple-decker housing and wave after wave 
of immigrants, including Italian, Swedish, Lithuanian, Jewish, sub-Saharan African, Polish, Syrian, 
and Vietnamese among many others has resulted in a 40% minority city with a population density of 
4,678 persons per square mile. Its poverty rate is 20%, twice the Massachusetts state average. The 
high school graduation rate in Worcester is 5% lower than the state average, and the percent of 
people with four-year bachelor’s degrees is 10% lower than the state average [28,35]. Worcester’s 
confluence of dense, low-income populations concentrated near highways, TRI sites, and 
brownfields is an interesting setting to investigate the social and environmental effects of this kind of 
living situation on preterm birth and low birth weight babies. 
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2.2. Data 

Birth data for residents of the city of Worcester delivered between 4/1/2006 and 3/31/2011 were 
provided by UMASS Memorial Health Care (7377 records total) after approval by the Institutional 
Review Board of its academic partner, the University of Massachusetts Medical School and the 
Institutional Review Board of Clark University. UMASS Memorial Health Care delivers on average 
about 50 percent of all births in Worcester County (central Massachusetts).  

The data included mother’s residential address and race/ethnicity, baby’s birth date, gender, 
estimated gestational age (EGA) in weeks, birth weight, singleton or multiple birth, and if it was a 
live birth. We used the address database from the GIS Office of Worcester to geocode and map birth 
data.  This database consists of about 48,000 points corresponding to individual buildings and allows 
identifying each birth’s location with a high degree of spatial accuracy. The geocoding success rate 
was 99.8% (only 16 addresses of 7377 were unmatched). We selected only singleton births (7217 
records), and from them further selected only live births (7136 records). We then separated singleton 
live births into two groups for each race/ethnicity—full term (≥ 37 weeks EGA) and preterm (<37 
weeks EGA). There were 613 PTB total (see Table 1). It should be noted that percent preterm births 
reported in this table is lower than typically cited as national average ( i.e. 11-12%) as we considered 
singletons only. 

To examine PTB in more details we divided them into three groups based on the degree of 
prematurity: late preterm (EGA = 34-<37 weeks; 430 births); early preterm (EGA = 28-<34 weeks; 
158 births), and extremely preterm (EGA < 28 weeks; 76 births). The thresholds for the groups were 
selected based on what has been reported in the literature [36]. 

Table 1. Prevalence of preterm birth in the cohort by race (n = 7136). 

Race Total births Preterm births % preterm births 
Non-Hispanic 

Black 
1376 136 9.89 

Non-Hispanic 
White 

3209 265 8.25 

Hispanic 2564 212 8.26 

To explore socio-economic context of PTB we used Environmental Justice map obtained from 
MassGIS [34]. Environmental justice (EJ) areas are defined as neighborhoods that meet one or more 
of the following criteria: >25% of residents are minorities, median household income is ≤65% of the 
statewide median, and English language isolation present in ≥25% of residents. These calculations 
use Census 2010 blockgroup data and the American Community Survey (ACS) 2006–2010 five-year 
estimates tables. Historically, these communities have been disproportionately impacted by 
environmental hazards and the lack of environmental assets, such as urban parks and green space. In 
Worcester, 70.7% population lives in EJ areas [37]. 

All environmental variables were obtained from public sources. We downloaded relevant data 
not only for the City of Worcester, but also for the surrounding areas within 5 km of the City. This 
allowed accounting for nearest points of interest (vendors, parks, and polluting facilities) that are 
outside the city border to be included in the calculations of distances (Figure 1).  

Distance to nearest major roads for each birth was calculated using Massachusetts Department 
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of Transportation roads data available from MassGIS [38]. The following four road categories were 
considered major roads according to Mass DOT: limited access highway; multi-lane highway, not 
limited access; other numbered route; and major road—arterials and collectors. Distance was 
calculated as the shortest straight line distance using spatial join algorithm in GIS. 

 

Figure 1. TRI facilities, major roads, vendors of healthy food, 
and green space in Worcester and its vicinity. 

To find vendors of healthy foods we used Reference USA (http://www.referenceusa.com/), a 
commercial database of all businesses in the country, to which we had access as patrons of Worcester 
public library. We selected the following vendor types based on the North American Industry 
Classification System (NAICS) codes:  supermarkets and other grocery stores, except convenience 
stores (code 445110), fruit and vegetable market (code 445230), department stores except discount 
stores (code 45211101) and warehouse clubs and supermarkets (code 45291001). These categories 
include large chain supermarket such as Stop and Shop, Shaw’s, Price Chopper, smaller non-chain 
ethnic supermarkets, such as Compare Foods, small markets that exclusively sell fruits and 
vegetables, and department and warehouse stores, such as Wal-Mart Supercenter, Sam’s Club, and 
BJ’s Club. There were a total of 59 vendors in Worcester and the surrounding towns; their addresses 
were geocoded using the Worcester address database.  

Green spaces and parks data for Worcester and surrounding towns were obtained from Protected 
and recreational open space layer available from MassGIS [39]. This layer contains parks, 
playgrounds, recreational complexes, wildlife sanctuaries and other conservation areas where 
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residents can walk, play, and exercise. Distance from each birth to the nearest vendor and to the 
green space was calculated using network analysis tools in ArcGIS Desktop. Street data from the 
City of Worcester were used to build the network. 

The main source of air pollution data are regional monitoring stations that provide continuous 
measurements over 24-hour periods on a variety of air pollutants, most commonly including Ozone, 
Carbon Monoxide, Sulfur Dioxide, Nitric Oxide, Nitrogen Dioxide, Total Reactive Oxides of 
Nitrogen, Lead, Particulate Matter or PM10 (10 microns & smaller), and Fine Particles or 
PM2.5 (2.5 microns & smaller). Unfortunately, stations are often located far from each other, so 
their data is most suitable for a regional level assessment rather than individual-level exposure. For 
example, there are only three air-monitoring stations in Worcester, MA making the data unsuitable 
for individual-level exposure analyses. An alternative approach to modeling air pollution exposure is 
to use emissions data from polluting facilities. For example, the Environmental Protection 
Agency (EPA) collects data for the Toxic Release Inventory (TRI) every year from more than 
20,000 U.S. industrial facilities [32], and reports emissions data not only for each chemical 
separately, but also for groups of chemicals (hazardous air pollutants, carcinogens, metals and metal 
compounds, persistent bioaccumulative, and toxic chemicals). The data includes geographic 
coordinates of the facility, and the amount of releases per year (in pounds) for each chemical and 
holds a lot of potential for local level air pollution exposure studies, but so far has been underutilized 
in research on adverse birth outcomes.  For this study, we selected hazardous air pollutants (HAP) 
because of their links with LBW and PTB. There are currently 190 different chemicals on the HAP 
list (http://iaspub.epa.gov/triexplorer/tri_text.list_chemical_hap). We downloaded data for 2005-
2010 and linked each birth to the corresponding year of the TRI release. For babies born before April 
15 of each year we used TRI data from the previous year to account for the exposure during the first 
half of the pregnancy. The number of TRI facilities that reported HAP releases ranged between 64 
and 96 for the six years we examined.  

We used two approaches to model maternal exposure to these pollutants. First, we calculated 
straight-line distance to the nearest TRI facility for each birth using spatial join in GIS. The second 
approach used a modeled hazard score and was based on the amount of release and its toxicity. The 
data for the second approach came from the EPA’s Risk-Screening Environmental 
Indicators (RSEI) Model [40]. This model takes into account fate and transport of pollutants, 
pounds of release, and chemical-specific toxicity weights and produces “modeled hazard score” and 
other measures for each TRI facility. The higher the score the more hazardous is the facility to 
human health. Detailed information about the model can be found in the RSEI Methodology 
paper [40]. Modeled hazard scores were used to study unequal exposure to hazardous industrial 
facilities in Philadelphia [41] and Hillsborough County in Florida [42]. In order to link these scores 
to each birth, we created a continuous surface of modeled hazard scores using a kernel density 
function in GIS (search radius of 1500 ft and 20 ft x 20ft output pixel size) and extracted the 
modeled hazard score from the underlying raster pixel for each birth. Figure 1 shows locations of 
TRI facilities, vendors of healthy food, major roads and green space. 

2.3. Methods 

As the first step, to visually represent the spatial distribution of PTB we created kernel density 
maps for each race separately. This technique shows general patterns of distribution while masking 
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the exact location of the points and thus preserving confidentiality of the data. We used Spatial 
Analyst in ArcGIS 10.1 with a quadratic kernel function [43] and search radius of 1500 ft. The 
output raster surfaces show the density of PTB near each 30 ft x 30ft raster cell.  In the next step we 
used a variety of analytical methods, including spatial cluster analysis and analysis of variance.  

2.3.1. Spatial clustering 

While most research on birth outcomes uses birth data aggregated to census block group, tract, 
city block, town, zip code or county, some researchers used mother’s residence address and 
geocoding tools to create maps depicting locations of births. These studies then used point locations 
on the map as inputs for distance and buffer operations in GIS to calculate exposure to air pollution 
from traffic [44–48] or landfills [49]. However, no studies have used GIS and methods of spatial 
statistics to identify spatial clusters of adverse birth outcomes. These methods enabled us to answer 
the following questions: Are pre-term births distributed randomly within the city or are they spatially 
clustered. If they are clustered, where are these clusters located?  

To answer these questions we used two spatial clustering methods—Nearest Neighbor 
Hierarchical (NNH) Clustering and Risk-Adjusted Nearest Neighbor Hierarchical (RNNH) 
Clustering in CrimeStat software [50] to find statistically significant spatial clusters of PTB for each 
racial group. Both methods identify spatial groupings of observations that are closer to each other 
than would be expected if the distribution was completely random, however there is an important 
difference between them. While the former method identifies clusters representing high volume of 
events (PTB), the latter method takes into account the distribution of the underlying population (i.e., 
locations of all births) and finds areas where PTB points are closer than would be expected from the 
underlying population. In criminology, the RNNH approach is used to analyze spatial distribution of 
one type of crime, e.g., robberies, in relationship to the overall distribution of crimes. In this case, all 
crimes are used as the baseline population and the output represent clusters of high risk of 
robberies [50]. In our study, RNNH identifies areas of high risk of PTB given distribution of all 
births. These approaches have been used traditionally in crime analysis, including identifying drug 
markets [51], as well as in other research areas, such as clustering of mobile produce vendors in 
Bronx, NY [52] and clustering of falls in Hong Kong [53].  

The NNH technique uses two criteria for grouping points into clusters—the threshold distance 
and the minimum number of points per cluster. The threshold distance is related to the probability 
level for selecting any two points as a pair by chance. The smaller the threshold distance, the lower is 
the probability of identifying a cluster by chance (for more details see chapter 7 in [50]). The second 
criterion is the minimum number of points necessary for a cluster. The user arbitrarily sets both 
criteria, and it is recommended that the user start with the default settings and experiments with 
several runs “to get a solution that appears right” [50, page 7.23]. We have used a threshold distance 
corresponding to 5% probability of identifying a cluster by chance (most commonly used setting) 
and changed minimum number of points per cluster between 3 and 10 to test sensitivity of results.  

The RNNH technique uses one additional parameter—the distribution of the underlying 
population in a form of a kernel density surface. This continuous surface is interpolated from the 
point data of all births within each racial/ethnic group and shows areas of high and low birth 
concentrations. The algorithm uses this information to dynamically adjust the threshold clustering 
distance according to the varying densities of births. In other words, in areas with high birth density, 
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the threshold distance is shorter, and in areas with low birth density, it is larger. There are several 
options for the interpolation method (density functions) and the choice of kernel bandwidth (fixed 
distance or adaptive). We used a normal density function (most commonly used setting) and an 
adaptive bandwidth with a minimum of 25 points. 

Monte-Carlo simulation was used to test statistical significance of clusters produced by each 
NNH and RNHH run. This simulation assigns the same number of observations to random locations 
within a rectangular area of the same size as the study area (38.44 sq. miles for Worcester), and 
evaluates the number of clusters according to the parameters previously set by the researcher. The 
simulation is repeated multiple times, and for each simulation, the number of clusters generated from 
a random distribution is compared to the number of observed clusters. 

2.3.2. Analysis of associations with air pollution and environmental amenities  

To analyze associations with environmental factors we first ran a t-test to compare the means 
for the two groups (PTB and full-term) for all races together for the following variables: distance to 
major roads, distance to vendors of healthy foods, distance to the nearest green space, distance to the 
nearest TRI facility, and modeled hazard score for RSEI. Then we repeated the analysis for each race 
separately. We used Welch’s t-test because of unequal variances within the samples. We also used 
ANOVA to compare the means of these variables for three PTB groups based on the degree of 
prematurity. All tests were done in SPSS software (version 20.0) and statistical significance of the tests 
was assessed at p = 0.05. 

3. Results 

3.1. Spatial Clustering 

Table 2 summarizes the results of NNH and RNNH clustering. For each race, we started with 
the default setting of 10 points per cluster and lowered it until at least one cluster formed. Monte-
Carlo simulation was also run concurrently to have a measure of statistical significance of these 
clusters. For most iterations of spatial randomization, zero clusters were produced, but for some—
only one spatial cluster was produced. For the final result we chose the runs that produced the largest 
number of clusters from the observed data and zero clusters by chance. Spatial clusters are 
represented by ellipses which correspond to one standard deviation from the mean center of the 
cluster [47]. We report results by race below.  

There were 136 PTB to non-Hispanic Black mothers, and NNH clustering produced two spatial 
clusters of high volume of PTB:  one cluster with 12 and the other with 9 PTBs. Figure 2 shows PTB 
density for non-Hispanic Black mothers with two clusters overlaid. Of the 21 PTBs in clusters, seven 
are located in the areas designated as environmental justice areas due to low income level and high 
minority population, and 14 are located within EJ areas that received this designation due to high 
percent of low income, minority and linguistically isolated people. RNNH clustering produced one 
spatial cluster of high PTB risk area. Interestingly, this cluster is different from the two clusters 
identified by the NNH routine, and contains five PTBs located at the same address. Close 
examination of the data reveals that two of the five births were to the same mother; and two were 
also extremely preterm. Through web search we discovered that an affordable housing apartment 
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complex is located at this address.  

Table 2. Sensitivity analysis for NNH and RNNH. Numbers in bold correspond to settings that 
produced the highest number of statistically significant clusters. 

Min number of points 
per cluster 

Number of clusters 
identified

Clusters obtained by 
chance (95%) 

Non-Hispanic Black-NNH 
10 1 0
9 1 0
8 2 0
7 2 0 
6 3 1

Non-Hispanic Black-RNNH 
4 1 0
3 1 0 

Non-Hispanic White-NNH 
10 1 0
9 1 0
8 3 0
7 4 0 
6 5 1
Non-Hispanic White-RNNH : No clusters found 

Hispanic-NNH 
7 4 0
6 8 0 
5 9 1

Hispanic-RNNH : No clusters found 

There were 265 preterm births to non-Hispanic white mothers, 37 of them formed 4 spatial 
NNH clusters, containing between 8 and 11 births each (Figure 3). All of these clusters were inside 
EJ areas. More specifically, 11 births were located in high minority EJ areas, 12 in the low income 
and high minority EJ areas, and 14 births within areas that satisfy all three EJ criteria (high poverty, 
high level of linguistic isolation and high minority). When RNNH technique was applied, no spatial 
clusters of high risk were produced.  

There were 212 PTB to Hispanics mothers, and 71 of those formed 9 spatial clusters, with 7 to 
13 PTB each (Figure 4). As with non-Hispanic white PTBs, all of these spatial clusters fell inside the 
EJ areas. Six births are in minority EJ areas, 25 in high minority and low income areas, and 40 births 
are from the EJ areas with high poverty, high levels of linguistic isolation and high minority 
populations. When RNNH technique was applied, no spatial clusters of high risk were produced.  
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Figure 2. Density of PTB for non-Hispanic Black mothers and statistically significant NNH clusters. 

 

Figure 3. Density of PTB for non-Hispanic white mothers and statistically significant NNH clusters. 
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Figure 4. Density of PTB for Hispanic mothers and statistically significant NNH clusters. 

3.2.  Analysis of associations with air pollution and environmental amenities 

Table 3 summarizes the group means and t-test significance for the five variables used in the 
analysis. When all births, regardless of maternal race, are taken together, the t-test shows that the 
mean distance to the nearest polluting site for the preterm births is significantly (p < 0.05) smaller 
than for the full term births (4272 ft vs. 4549 ft). When births to non-Hispanic Black mothers are 
analyzed separately, the t-test shows that preterm births are exposed more to air pollution, as the 
hazard score for this group is significantly (p < 0.05) higher than for the full term births (5.22E + 07 
vs. 1.57E + 07). No significant differences were observed in the mean values for any variables 
between preterm and full term births for non-Hispanic white and Hispanic mothers. 

A closer examination of the preterm births stratified into three groups by EGA reveals (Table 4) 
that the air pollution exposure is significantly higher (p < 0.05) for the extremely preterm births 
(EGA < 28 weeks) in comparison with the other two preterm groups: the mean hazard score for these 
births is at least 5 times higher (1.19E + 08 versus 2.17E + 07). The same pattern holds true when 
three preterm groups are  analyzed separately for the non-Hispanic white and Hispanic mothers – the 
hazards score for the most extreme preterm group in non-Hispanic white mothers is 5.6 time higher 
than for the least preterm group (1.37E + 08 versus 2.44E + 07); it is almost 13 times higher for 
Hispanic mothers (1.01E + 08versus 7.81E + 06). No other statistically significant differences 
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were observed for the other four spatial variables. 

Table 3. Comparison of means for environmental factors for preterm and full-term births by race. All 
distances are measured in feet. Statistically significant values (p < 0.05) are marked with an asterisk. 

 Distance to 
healthy food 

Distance to 
green space

Distance to 
major road

Distance to 
TRI facility 

TRI  modeled 
hazard score

All births
FT 3857 1978 729 4549 2.23E + 07
PT 3819 1930 704 4272 3.24E + 07
T-test 0.323 1.113 0.977 2.387* -1.099

Non-Hispanic Black
FT 3888 2025 740 4676 1.57E + 07
PT 3760 1956 737 4409 5.22E + 07
T-test 0.530 0.683 0.060 1.082 -2.407* 

Non-Hispanic White
FT 4076 2033 744 4769 2.77E + 07
PT 4004 1952 684 4428 3.48E + 07
T-test 0.368 1.204 1.638 1.905 -0.574

Hispanic
FT 3567 1885 706 4207 1.90E + 07
PT 3625 1887 710 3990 1.67E + 07
T-test -0.312 -0.024 -0.093 1.116 0.189

Table 4. Comparison of means for environmental factors for three groups of preterm births by 
race. All distances are measured in feet. Number of cases in each group is in parenthesis. 

Statistically significant values (p < 0.05) are marked with an asterisk. 

 
Distance to 
healthy food 

Distance to 
green space

Distance to 
major road

Distance to 
TRI facility 

TRI modeled 
hazard score

All births 
Moderate PT (430) 3799 1885 692 4325 2.17E + 07
Very PT (158) 3802 1916 700 4178 1.17E + 07
Extremely PT (76) 3799 2048 760 4080 1.19E + 08
F-statistic 0.000 0.844 0.432 0.359 7.632* 

Non-Hispanic Black 
Moderate PT (81) 3933 1932 675 4631 4.37E + 07
Very PT (40) 3420 1753 675 3786 2.90E + 06
Extremely PT (30) 3634 2184 830 4531 1.16E + 08
F-statistic .602 1.323 .620 1.411 .960

Non-Hispanic White 
Moderate PT (185) 4039 1974 696 4524 2.44E + 07
Very PT (69) 3870 1899 685 4447 2.31E + 07
Extremely PT (25) 4114 1928 765 3820 1.37E + 08
F-statistic .091 .134 .194 .711 4.207* 

Hispanic 
Moderate PT (164) 3464 1761 695 3948 7.81E + 06
Very PT (49) 4020 2071 741 4119 2.99E + 06
Extremely PT (21) 3662 1997 655 3746 1.01E + 08
F-statistic .855 2.617 .200 .155 7.033* 
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4. Discussion and Conclusions 

We found statistically significant clusters of high PTB volume for all three racial/ethnic groups. 
They represent high concentrations of incidents that did not happen due to a random chance. All of 
these clusters were located in areas designated as environmental justice areas, meaning that people 
who live in these locations are more vulnerable to potential exposure to harmful effects of 
environmental pollution. When overlaid on top of the PTB density maps (Figures 2–4) these clusters 
cover areas with the highest density of PTB, thus illustrating how complimentary the two approaches 
are to each other for visual representation of point patterns.  

When risk-adjusted NNH routine was applied to the data, only one cluster of high PTB risk 
among non-Hispanic Black women was found, with all PTBs located at one particular address. 
Further exploration of our data in GIS revealed that this cluster is located in close proximity to the 
top air polluter in Worcester (largest number of pounds of HAP released each year between 2006 and 
2010). This facility, KT Acquisition LLC, specializes in iron and steel forging and emits chromium 
compounds, cobalt compounds, lead and nickel compounds. According to the EPA, “exposure to 
chromium (VI) may result in complications during pregnancy and childbirth [51].  

Our results are consistent with the findings of previous studies that industrial air pollution 
exposure has an effect on PTB. We modeled exposure to air pollution using two different measures—
proximity of the polluting facility and its modeled hazard score. The first measure was significant 
when all PTB were compared to full term births. This indicates that proximity to TRI sites has an 
effect on PTB outcome regardless of race. When PTB were analyzed by maternal race, the second 
measure proved significant for non-Hispanic Black PTB as compared to full term non-Hispanic 
Black births. The hazard score was also a statistically significant factor when PTB were split into 
three groups based on the degree of prematurity: the hazard score was much higher for the extremely 
preterm group, both when PTB were considered all together (regardless of maternal race) and when 
split by race (for Hispanic and non-Hispanic white mothers only).  

A major strength of this study was the use of the novel air pollution data set from RSEI. A 
majority of the birth outcomes studies use government monitoring station data to assess exposure. 
However, dense networks of air pollution monitors exist only in large urban centers, and medium-
size cities like Worcester do not have enough stations to be useful in spatial analysis. RSEI data 
provides several advantages. First, it combines source-specific data on release amount, stacks height 
and exit gas velocities and uses a fate-and-transport model to estimate ambient concentrations around 
each facility. Second, RSEI weighs chemicals by their toxicity thus improving the measure of the 
potential health effect due to air pollution. Additional studies utilizing source-specific information on 
pollutants, such as RSEI, could provide further evidence on pollutants impact on pregnancy 
outcomes and may help inform public health policy decisions. 

Another study strength is that exposure to air pollution and access to environmental amenities 
were estimated at the individual level. Very few studies examine the relationship between birth 
outcomes and “positive” elements of the environment, and our study attempted to address this gap in 
the literature. However, we found no association between proximity to major roads, proximity to 
healthy food vendors, and proximity to green space and PTB. Our findings illustrate that even 
sophisticated distance calculation methods (street network-based vs. a straight line) have difficulty 
explaining the variation of birth outcomes because other important individual-level factors are not 
included in the analysis. 
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The unavailability of individual maternal data on behavior (tobacco use, drugs, nutrition, and 
physical activity level), health issues (hypertension, diabetes, uterine abnormalities, infections, etc.), 
socio-demographic factors (age, place of birth, access to prenatal care, and socioeconomic status), 
psychological factors (level of stress, social support network) and neighborhood conditions is the 
major limitation of our study. All of these factors play an important role in pregnancy outcomes, 
including PTB, but they were not available to us. 

A second limitation is that the birth data we used accounts for about a half of all births in the 
city, thus leading to a potential selection bias, smaller sample size and small clusters of outcomes. 
Our findings could have been different if we had access to data on all births in the city. There are 
several reasons why we chose to use birth data from the UMass Memorial Health Care (UMMHC). 
Of relevance, the impetus to this study was a noted public health trend of significant disparities in 
infant mortality rates to black and Hispanic residents of the city in which UMMHC is located 
(Worcester, MA). This notable difference was especially prominent regarding mortality at peri-viable 
gestations and thus prompted our focus on preterm birth.  UMMHC is a tertiary care referral center 
for the region and thus we were confident that these high risk gestations and early deliveries would 
be captured utilizing our health system data.  This study focused on piloting and refining spatial 
clustering methods prompted by this public health issue and hence we used readily available records 
that we knew would capture the deliveries of greatest interest. Future studies would seek to validate 
these methods in larger datasets and would require access to birth certificate data for the entire city. 

A third limitation is related to the fact that we based our assessment on self-reported maternal 
addresses; we assumed that the mothers lived at the reported birth address during the entire 
pregnancy and that their air pollution exposure was constant. Their exposure to pollution could have 
been different at earlier stages of pregnancy if they moved to this address soon before the birth. In 
the study conducted by Brauer et al. [12] 35 % of the population changed residency during 
pregnancy, so future exposure modeling studies should take this factor into consideration. 

An additional limitation is related to the uncertainty associated with the modeled hazard score, 
due to the subjective nature of the parameters in the kernel density technique. While we acknowledge 
that the resulting raster density surface may look somewhat different if the input parameters were 
modified, we are confident that the surface we used represents the general spatial pattern of the 
hazards score accurately.  

Despite the limitations discussed above, we believe that our study provides useful results and 
makes a unique contribution to the existing body of literature. It is the first study to apply two 
hierarchical nearest neighbor clustering techniques in the context of birth outcomes. Our findings 
illustrate the usefulness of these two techniques and their complimentary nature. When used in 
concert they allow the identification of two characteristics of spatial distribution—the high volume 
and high-risk areas of PTB. We hope that in the future these approaches are used more in public 
health studies in general, and in birth outcome studies in particular. Furthermore, our study is 
methodologically unique because it used RSEI to estimate the potential hazard from exposure to 
industrial air pollution. RSEI is a complex and rich model that has been peer-reviewed [40] but so far 
has not been used broadly in the scientific community. 

GIS and spatial statistics are useful tools for studying birth outcomes.  The study’s result 
indicated that there are statistically significant spatial clusters of preterm births in Worcester for non-
Hispanic Black, non-Hispanic white and Hispanic mothers. These clusters were located in areas with 
low income and/or a high percent of linguistically isolated population. Preterm births are located 
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closer to polluting facilities and have higher hazard score than full term births. However, there was 
no evidence of associations between PTB and proximity to the nearest major road, to parks and to 
vendors of healthy foods. Information about traffic density and individual maternal nutritional and 
exercise habits would be necessary to make these associations more meaningful. 
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