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Abstract: Neuromorphic computing has shown great advantages towards cognitive tasks with high
speed and remarkable energy efficiency. Memristor is considered as one of the most promising
candidates for the electronic synapse of the neuromorphic computing system due to its scalability,
power efficiency and capability to simulate biological behaviors. Several memristor-based hardware
demonstrations have been explored to achieve the capacity of unsupervised learning with the spike-
rate-dependent plasticity (SRDP) learning rule. However, the learning capacity is limited and few
of the memristor-based hardware demonstrations have explored the online unsupervised learning
at the network level with an SRDP algorithm. Here, we construct a memristor-based hardware
system and demonstrate the online unsupervised learning of SRDP networks. The neuromorphic
system consists of multiple memristor arrays as the synapse and the discrete CMOS circuit unit
as the neuron. Unsupervised learning and online weight update of 10 MNIST handwritten digits
are realized by the constructed SRDP networks, and the recognition accuracy is above 90% with
20% device variation. This work paves the way towards the realization of large-scale and efficient
networks for more complex tasks.

Keywords: spike-rate-dependent plasticity (SRDP); online unsupervised learning; neuromorphic
computing; memristor

1. Introduction

The human brain is a highly efficient system, which consists of approximately 1011

neurons and 1015 synapses with merely 20 W power consumption [1–3]. Neuromorphic
computing is a new computing paradigm inspired by the brain, with the advantage of
massive parallelism and distributed storage, and is claimed as a promising technology
to enhance information analysis abilities in the data-rich era [4–7]. However, existing
hardware demonstrations are far from competing with the biological ones in terms of
efficiency and power consumption [8–10]. One reason is that the systems are constructed
based on CMOS devices with complex synapses and neuron circuits occupying quite a
large area [11–13]. Therefore, the compact nanoelectronic device which can successfully
simulate the biological elements is essential to construct efficient networks [2]. Recently,
the memristor with high density, low power consumption and tunable conductance has
shown great promise for the synapses [14–17]. Another attribution to the inefficiency is
that the recognition tasks are realized via supervised learning, which demands a large
amount of training data and additional feedback circuits, leading to time latency and
energy consumption [18–21], especially when online training is required [22–24]. Thus,
recent studies focus on unsupervised learning [25–30], where the synaptic weights are
usually updated according to bio-inspired local learning rules [31–33], such as spike-
timing-dependent plasticity (STDP) [34,35] and spike-rate-dependent plasticity (SRDP) [36].
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STDP refers to the learning principle that relative timing between pre-synaptic and post-
synaptic spikes determines the direction of weight update and the magnitude of weight
change [37–39]. SRDP is another learning rule that modulates the synaptic weights by the
frequency of pre- and post-neuron activities, which is one of the most critical learning
algorithms for neuromorphic computing [40–42].

Early research studies have proved that memristor devices can exhibit SRDP-like be-
haviors, including SiOxNy:Ag-based diffusive memristor [43], HfOx-based memristor [44],
TiOx/AlOy-based [45] oxide memristor, AgInSbTe-based chalcogenide memristor [46],
hybrid CMOS/memristor structure [26,28], and devices with many other materials [47–49].
Going beyond the device demonstrations, several hardware implementations of pattern
learning by SRDP have been proposed [26,28]. Milo et al. demonstrated online unsuper-
vised learning of patterns with 8 × 8 pixels by SRDP based on the 4T1R structure [26].
Nevertheless, the learning ability of the small-scale network is limited, which is unable
to accomplish challenging tasks, such as classification of different inputs and recognition
of data sets. Recently, Huang et al. proposed a single-layer fully-connected network to
classify 10 images by SRDP and constructed a CNN-SRDP network to recognize the whole
MNIST images with up to 92% accuracy, which enlarges the learning abilities [4]. However,
only simulation results are presented, and the device demonstration is performed based on
discrete cells. Therefore, hardware demonstration by SRDP at the network level is of great
importance to address more practical tasks [2,50–52].

In this work, we present a neuromorphic hardware system, which is comprised of
multiple memristor arrays, DACs, ADCs and many other assemblies, and is equipped with
inference and training functions. The SRDP characteristic is implemented experimentally
by the memristor synapses and CMOS neurons. A 196 × 10 SRDP neural network is
constructed to demonstrate the online unsupervised learning of 10 MNIST digits, and
about 90% classification accuracy is achieved.

2. Memristor-Based Neuromorphic Hardware System

Here, a memristor-based neuromorphic system is constructed for the hardware demon-
stration of SRDP neural networks. The system consists of three parts, including memristor
crossbar arrays, the customized printed circuit board (PCB) and the personal computer
(PC), as shown in Figure 1a. The memristor array provides hardware synapses, and the
device conductance is considered as the analogy of synaptic weight. The vector-matrix mul-
tiplications and weight update can be performed on the array. The PCB implements partial
functions of the neurons, which primarily consists of Digital-Analog Converters (DACs),
trans-impedance amplifier (TIA), Analog-Digital Converters (ADCs) and multiplexers
(MUX), as shown in Figure 1b. DACs in the pre-neuron module are used to generate input
signal and noise signal to WL of the array under the control of a reference random signal.
The post-neuron is made up of an integrator, a comparator and a multiplexer, as can be seen
in Figure 1c. Therefore, DACs in the post-neuron module are used to generate constant
voltage for inference tasks and spike pulses to BL or SL for weight update. ADCs together
with TIAs are used to read the integral current across the synapses through SL. MUXs are
utilized to select different memristor chips and operation modes including inference and
weight update. MCU controls the discrete components and processes data. Matlab script
running on PC is used to control the generation of signals and perform some calculations
of the leaky-integrate-and-fire (LIF) post-neuron, including the accumulation of membrane
voltage (Vm) and the comparison between Vm and threshold voltage (Vth). The computer
sends control commands and communicates with MCU via a serial port.
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Figure 1. Memristor-based neuromorphic system. (a) Circuit diagram of the system; (b) Photograph 
of the customized printed circuit board; (c) Circuit diagram of the memristor synapse and the cor-
responding CMOS neurons. 

Figure 2a shows the micrograph of the memristor chip. Each packaged chip is inte-
grated with 256 × 16 1T1R cells and multiplexers to control and select word lines. The 
crossbar array is constructed by connecting the gates of transistors in the same row (WL) 
and the top electrodes (TE) of memristors in the same column (BL). The sources of the 
transistor are wired to the same SL, which is parallel to BL, as can be seen in Figure 2b. 
The structure of the array is designed to meet the requirements for the SRDP algorithm, 
where input signals of the pre-neurons are sent to WL and the top electrodes of the 
memristor corresponding to the same post-neuron should be connected for synchronous 
weight update. Figure 2c shows the memristor device with TiN/TaOx/HfOx/TiN structure. 
TiN is used as the bottom electrode, on the top of which an 8-nm HfO2 resistive layer was 
deposited by atomic layer deposition (ALD) at 250 °C. Then, a 45-nm TaOx was deposited 
as a capping layer by magnetron sputtering with an Ar/N2 atmosphere. The TiN top elec-
trode is grown by physical vapor deposition and patterned by the dry etching method. 

Figure 1. Memristor-based neuromorphic system. (a) Circuit diagram of the system; (b) Photograph
of the customized printed circuit board; (c) Circuit diagram of the memristor synapse and the
corresponding CMOS neurons.

Figure 2a shows the micrograph of the memristor chip. Each packaged chip is inte-
grated with 256 × 16 1T1R cells and multiplexers to control and select word lines. The
crossbar array is constructed by connecting the gates of transistors in the same row (WL)
and the top electrodes (TE) of memristors in the same column (BL). The sources of the
transistor are wired to the same SL, which is parallel to BL, as can be seen in Figure 2b. The
structure of the array is designed to meet the requirements for the SRDP algorithm, where
input signals of the pre-neurons are sent to WL and the top electrodes of the memristor cor-
responding to the same post-neuron should be connected for synchronous weight update.
Figure 2c shows the memristor device with TiN/TaOx/HfOx/TiN structure. TiN is used as
the bottom electrode, on the top of which an 8-nm HfO2 resistive layer was deposited by
atomic layer deposition (ALD) at 250 ◦C. Then, a 45-nm TaOx was deposited as a capping
layer by magnetron sputtering with an Ar/N2 atmosphere. The TiN top electrode is grown
by physical vapor deposition and patterned by the dry etching method.
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Figure 2. Memristor chip. (a) The micrograph of the 256 × 16 memristor array; (b) The structure of 
the crossbar array; (c) Schematic illustration of the memristor cell. 
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the post-neuron module sends small constant voltage (Vs) to BL. When the transistor of 
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and read out by TIAs and ADCs. The current data is processed in MCU and then trans-
ferred to the computer, where Vm is calculated and compared with Vth. Once Vm exceeds 
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When the SET spike overlaps with the input spike, the device will be SET to HGS. In other 

Figure 2. Memristor chip. (a) The micrograph of the 256 × 16 memristor array; (b) The structure of
the crossbar array; (c) Schematic illustration of the memristor cell.

3. Memristor Synapse with SRDP Characteristic

The basic properties and SRDP characteristics of the memristor are shown in Figure 3.
The typical I-V characteristic is presented in Figure 3a. The distribution of high conductance
state (HGS) and low conductance state (LGS) of ten memristors selected randomly is shown
in Figure 3b. The result shows that HGS is around 80.0 µS and LGS is 2.7 µS on average,
indicating approximately 30× conductance window. The variation of HGS is below 20%
and that of LGS is about 80%. The SRDP learning rules and the circuit of memristor synapse
and CMOS neurons have been illustrated in Section 2. To prove the feasibility of the SRDP
algorithm, we perform experiments based on the hardware system. According to the
previous work, the learning efficiency and accuracy are sensitive to the circuit parameters
of the post-neuron [4]. Thus, we should select the circuit parameters firstly, which include
the leaky resistance R, the capacitor C of the integrator, the threshold voltage Vth of the
comparator in the post-neuron module, and so on. The various signals are initiated as the
binarized sequences with certain probabilities, where a high level “1” represents a spike
with 1 µs width and “0” represents that there is no spike generated. We randomly select a
device in the array for the demonstration of SRDP behavior. Initially, the device has the
probability Pg = 0.5 to be in HGS. The training process of SRDP is comprised of three stages,
including accumulation, potentiation and depression. When training starts, the system
first enters the accumulation stage. DAC in the pre-neuron module generates Vg according
to the input signal and sends it to the selected WL, while that in the post-neuron module
sends small constant voltage (Vs) to BL. When the transistor of the memristor synapse is
switched on, the current will be generated following Ohm’s law and read out by TIAs and
ADCs. The current data is processed in MCU and then transferred to the computer, where
Vm is calculated and compared with Vth. Once Vm exceeds Vth, a fire event occurs and
Vm will be cleared to zero. If the fire spike coincides with the reference random signal, the
neuron will enter the depression stage. The computer sends the instructions to control
DACs for selecting the proper signals, acting as the MUX. DAC of pre-neuron sends Vg
according to the noise signal to WL, and that of post-neuron generates Vreset to SL and
makes BL grounded. When the RESET spike overlaps with the noise spike, the device will
be RESET to LGS. Otherwise, if the fire spike is not superimposed with a reference random
signal, the neuron will turn to the potentiation stage. Vg is generated according to the input
signal. Vset is sent to BL and SL is switched to the ground. When the SET spike overlaps
with the input spike, the device will be SET to HGS. In other cases, the neuron remains
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in the accumulation stage. After training, the conductance at the final epoch is recorded
as the learned weight. Note that the weight update is performed without write-verify, so
there exists device variation as shown in Figure 3b. Figure 3c presents the measured and
simulated results of SRDP characteristics. The frequency of the input signal is normalized
by 1 MHz. For each frequency point, the weight is the mean of 300 times’ experiments
after 100 training epochs. The outcome of measurement agrees with that of simulation.
Because Pg is 0.5, the initialized weight is about 40.0µS. When the input frequency is higher
than 0.3, the synapse experiences an enhancement process, otherwise, synaptic depression
is triggered. The result shows that the relationship between the trained weights and the
frequency of input signals is identical to the biological SRDP phenomenon, where LTP
(LTD) is achieved with a high (low) frequency of input signal [37,38].
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4. Online Unsupervised Learning of SRDP Network

We partition a 196 × 10 area of the array to construct a single-layer, fully-connected
network consisting of 196 pre-neurons, 1960 synapses and 10 post-neurons. Ten hand-
written digits from the MNIST data set [53] are selected. The input images are rescaled
to 14 × 14 pixels to match the size of the array and then binarized. The input values of
each image are unrolled into 196 × 1 vectors and then mapped to signals with different
frequencies. Before training, the devices are initialized into HGS with the probability Pg.
The training parameters and the corresponding definitions are listed in Table 1, optimized
by the fire-properly principle in ref. [4]. When the training starts, the accumulation process
would be conducted first. DACs corresponding to the pattern pixels in the digit region
send input signals with the same frequency Pin but different temporal sequences to WLs,
and those within the background region generate signals with low-frequency Pb. For
the input signals at a high level, the corresponding transistors in the same row will be
switched on. Meanwhile, Vs is applied to BLs of all post-neurons. The currents sharing
the same column are integrated according to Kirchhoff’s current law. Due to the random
distribution of initialized weights, post-neurons sharing the same input signals will have
different accumulation speeds of membrane voltage and compete with each other. PC
compares every membrane voltage with Vth. Once any Vm exceeds Vth, the corresponding
post-neuron will experience weight update. No matter which post-neuron becomes the
winner, Vm of all the post-neurons will be cleared to zeros. If the reference random signal
with the frequency Pr is at a high level, the system will be in the depression stage. Different
noise signals with certain rates will be generated by DACs. The post-neuron whose Vm
exceeds Vth will send a RESET spike to SL, indicating that only the winner experiences the
depression. The weight of the synapses connected to the winner will be tuned according
to the noise signal. If the reference random signal is at a low level, the system will be in
the potentiation stage and the synapses of the winner will have a certain probability to be
enhanced. During the training process, the images are forwarded to the pre-neurons in
sequence and each image holds for 600 training epochs.
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Table 1. The optimized network parameters.

Parameter Definition Value Unit

Vs Constant voltage to the top electrode 0.2 V
Vth Threshold of the membrane voltage 0.3 V

Pg
Probability to be in HGS of synaptic weights in

the initial state 0.65 a.u.

Pr Frequency of the reference random signal 0.15 a.u.
Pn Frequency of the noise signal 0.04 a.u.
Pin Frequency of the input signal in the pattern pixels 1 a.u.

Pb
Frequency of the input signal in the background

pixels 0 a.u.

tn Training epoch of each image 600 #

Figure 4 shows the experimental learning process of digit “0”. In order to present more
details, the training speed is slowed down by decreasing the parameter Pin and increasing
the training epochs tn. In Figure 4a, the evolution of integral current, membrane voltage
and the voltage of TE is shown during the first 300 epochs. The current across the synapses
charges the capacitor of LIF post-neuron, contributing to the increase of membrane voltage.
When the Vth is reached, a positive spike is transferred to TE and Vm will be cleared to
zeros. Figure 4b shows the change of weights during the whole 1000 epochs, indicating
that the weights in pattern regions get close to HGS and those in background regions
tend to LGS. Figure 4c displays the evolution of mean weight corresponding to pixels in
different regions. The results suggest that the potentiation (depression) occurs at high (low)
frequency due to the larger probability for the weight to be enhanced (depressed), which is
identical with the SRDP phenomenon [40–42].
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rent (top), membrane voltage (middle) and the top electrode voltage (bottom); (b) Change process of
the synapse weights; (c) Evolution of the mean weights in pattern (blue) and background (red) pixels.

The learned synaptic weights of 10 handwritten digits are displayed in Figure 5. As the
training goes on, the images are learned more clearly and the distinctions between inputs
are enlarged, showing the learning ability of the SRDP network. The inference results
before and after training are shown in Figure 6a,b. The post-neurons have been reordered,
according to the fire sequence. The results show that the network fails to distinguish
the inputs before training but succeeds to classify the digits after unsupervised learning.
Figure 6c shows the normalized fire frequency for each digit. As can be seen in the result,
one post-neuron fires for one digit, and 10 digits are learned by different post-neurons,
indicating a successful classification. The gradual evolution process of the post-neuron
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dynamics in Figure 4 and the learned synaptic weights in Figure 5 is consistent with
previous simulation outcomes in ref. [4], proving the SRDP network feasible. Considering
that the synaptic weights are modulated in an unsupervised way without write-verify
operations, the influence of the device variation on accuracy should be taken into account.
Here, the accuracy is defined as the ratio of the number of successful classifications to
the number of total measurements. We perform measurements 10 times and 9 of them
succeed, which is in accordance with the simulation results as shown in Figure 6d. The
result suggests that variation of HGS has more negative effect than that of LGS does. When
HGS variation reaches 20%, the accuracy is 93.5%, which shows the strong robustness of
the SRDP network.
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The influence of the network parameters on training accuracy and energy consumption
is simulated as shown in Figure 7. The accuracy is the most crucial standard for the network.
Pin and Pg control the learning speed and have a great impact on accuracy, as shown in
Figure 7a. These parameters cannot be too small, because the post-neurons will not learn
images if they seldom fire. Pg cannot be too large, because when the number of set events
for devices in HGS is smaller than that of reset events for devices in LGS, the training will
fail, namely, forgetting is faster than learning for the neuron which should have been the
winner at next epoch. The larger the Pin is, the higher the accuracy becomes in terms of
this task. This is because the overlap rate between images is relatively small, thus, the
images will be learned distinctly and the difference between images will be enlarged, if
the training speed is fast. As for more complicated applications, the impact of Pin will be
different, and all of the parameters should be re-optimized. Pr and Pn are also two critical
parameters, and we only discuss the influence of Pr in Figure 7b. The product of Pr and Pn
determines the probability of depression. If Pn is large, too many numbers of depression in
pattern pixels may happen at a single epoch, which will make the learning fail in the worst
case. However, if Pn is small, few reset events at one epoch will make the training process
smoother and the probability of forgetting can remain unchanged by tuning the parameter
Pr. Thus, we adjust the probability of forgetting through the parameter Pr with the fixed
slight value of Pn. Pr cannot be too large in order to avoid catastrophic forgetting and
cannot be too small because it will cause the winner to have no time resetting the devices
in background pixels and continue to be the winner in the following learning period. The
energy consumption shown in Figure 7c,d is calculated by integrating the current across
the memristor array. With the increase of Pin and Pg, the fire frequency is enlarged leading
to more energy cost. Meanwhile, a larger probability of forgetting will decrease the fire
frequency causing the reduction of power consumption. The outcomes indicate that the
network parameters have a crucial impact on accuracy and energy consumption, and need
to be fine-tuned and optimized for hardware demonstration.
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5. Conclusions

In conclusion, we have constructed a neuromorphic hardware system with memristor
synapses and CMOS neurons. The SRDP characteristic of memristor synapse is proved
experimentally. The online unsupervised learning of 10 handwritten digits at a network
level is successfully demonstrated by the SRDP algorithm with above 90% accuracy. The
proposition of a bio-inspired SRDP algorithm and the construction of a neuromorphic
hardware system paves the way towards the realization of large-scale and highly efficient
neuromorphic systems.
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