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Abstract: Flow chemistry is one of the most prominent enabling technologies that has greatly shaped
the way chemists’ approach organic synthesis. Specifically, in drug discovery, the advantages of flow
techniques over batch procedures allow the rapid and efficient assembly of compound libraries to be
tested for biological properties. The aim of the present review is to comment on some representative
examples from the last five years of literature that highlight how flow procedures are becoming of
increasing importance for the synthesis of biologically-relevant molecules.
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1. Introduction

In the past decade, enabling technologies, i.e., all the methodologies that can speed-up chemical
processes as well as simplify work-up procedures have greatly influenced the approach of chemists
toward the development of new synthetic protocols [1–4]. In the broad landscape of enabling
technologies in medicinal chemistry, flow chemistry stands out as one of the most powerful techniques
to discover new active pharmaceutical ingredients or to set up a streamlined process for their
manufacturing. A plethora of articles and reviews well-documented how many chemical processes
could benefit from running reactions in flow [5–9]. In particular, this approach has demonstrated to be
superior to batch protocols in every case where heat transfer and mixing are important, hazardous
or sensitive materials are handled, and high temperatures/pressures are required. Furthermore,
this technology is considered a green synthetic approach as it often delivers better product yields
than those derived from batch protocols, and also it allows easier product purification leading to
minimum waste production [10–12]. In the drug discovery field, the need for novel molecules with
drug-like structures to be used for high-throughput screening required enabling technologies for their
production; in this context, flow chemistry represents the ideal tool for generating compound libraries
in a fast and automated fashion [13]. This short review introduces some examples from the last five
years on the use of flow chemistry for the assembly of pharmaceutically relevant compound libraries.
The advantages of the flow protocols over batch procedures are discussed. The selected papers
described flow procedures employing different types of equipment, either commercial or home-made,
and different types of reactors (chip, coil, and packed bed reactors). This choice has been made to
highlight how flow chemistry has reached a mature age and, therefore, can be reliably employed to
perform reactions in a wide variety of conditions overcoming experimental difficulties that could make
some processes impossible to occur or with a very low yield in batch conditions.

2. N,O-Based Compound Libraries

Urea moiety is of fundamental importance in pharmaceutical and agrochemical sciences thanks to
its ability to interact through hydrogen bonding with biomolecules. In the literature, a wide variety
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of urea-based biologically active compounds are present like vestipitant and trimefluor [14,15]. As a
continuation of previous work [16], Rutjes and co-workers set up a new procedure for the synthesis in
flow of a library made of urea-based molecules based on piperidin-4-ones (Scheme 1) [17]. Optimization
studies have been performed using as test compounds ethylisocianate 2a and piperidin-4-one 1a
employing a microreactor (100 µL effective volume). After using different solvents, temperatures,
and reactants ratios, the authors identified as best reaction conditions those that employed tBuOH as
solvent at 50 ◦C for 17 min. On the other hand, when isocyanate 2c bearing an aryl moiety was allowed
to react with 1a, full conversion was obtained only by using 1,2 dichloroethane (1,2 DCE) at 80 ◦C
for 17 min. Such conditions were applied then to isocyanates (2a–c) and piperin-4-ones (1a–c) for the
synthesis of 15 urea-based products 3 containing different fluorine moieties as it has been shown that
such functionalities could enhance bioactivity and metabolic profile [18]. The urea-based products were
obtained with isolated yields values ranging from 55 to 99%. No further chromatography purification
was necessary. This methodology, therefore, is suitable for the synthesis of a large number of molecules
to be tested for biological activity.
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1,4 Benzoxazines are ubiquitously found in pharmaceutically active compounds as they can 
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co-workers have developed a new strategy in flow for the synthesis of tricyclo-1,4-benzoxazines 
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Scheme 1. Flow synthesis of the urea-containing compound library from the piperidin-4-one moiety.

1,4 Benzoxazines are ubiquitously found in pharmaceutically active compounds as they can
exhibit neuroprotective, anti-inflammatory, antibacterial properties, among others [19,20]. Chen and
co-workers have developed a new strategy in flow for the synthesis of tricyclo-1,4-benzoxazines
through intramolecular cyclization of indole derivatives (Scheme 2) [21]. Previous studies from the
same research group showed that batch reaction suffered from many drawbacks as limited scope,
difficulties in scaling up, and low reaction temperature requirement (−70 ◦C).
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Optimization of the reaction in flow has been performed using a home-made capillary
continuous-flow photoreactor already used in another work from the same authors [22]. It was
assembled by connecting in series two reactors towers made of quartz glass tubes (i.d. 75 mm) with a
fluorinated ethylene propylene FEP tube coiled inside and irradiated by an LEDs corn light bulb (34 W).
The indole derivative 4 in the presence of catalytic methylene blue (MB), O2, and alcohol first yielded
the peroxide intermediate 5, which after a rearrangement, gave the desired tricyclic-1,4-benzoxazine 6
at room temperature. The best acid to be employed resulted in being TsOH; while the reaction didn’t
work in the absence of O2, yields were lower when CH3CN was used as the solvent instead of alcohol.
The scope of reaction was tested by synthesizing a library of 16 products using methanol, ethanol,
propanol, and isopropanol as alcohol. All the products have been obtained in 1–3 h, whilst the batch
procedure required 24 h. The gram-scale reaction was also performed to prove the scalability of the
new synthetic protocol.

An innovative flow-procedure for the synthesis of 2-aminophenoxazin-3-ones has been proposed
by Lanari and co-workers [23]. Such molecules are of interest for their use as antibiotics like
questiomycin A, so a new methodology for their production is indeed of great interest [24].

The proposed synthesis employed substituted o-aminophenols 7, that in the presence of a suitable
oxidant and catalyst underwent C–H oxidative coupling to yield the desired 2-aminophenoxazin-3-ones
8 (Scheme 3).
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Scheme 3. K+ form of octahedral molecular sievesK-OMS-2 catalyzed synthesis in flow of
2-aminophenoxazin-3-ones 8 through the C-H oxidation reaction.

The flow procedure herein discussed is a further improvement of the batch synthesis proposed
by the same authors [25]. The catalyst of choice was the K+ form of octahedrall molecular sieves
(K-OMS-2) first synthesized by Suib [26]. The structure possesses octahedral manganese oxides ions
connected via edges and vertices with an average oxidation state of 3.8. The large surface area (up to
250 m3/g), robustness, and easy of synthesis make this catalyst an optimal candidate for oxidation
processes. Careful optimization has been performed in order to choose the right combination of
oxidant (O2/H2O2), amount of catalyst, and residence time. As a solvent, cyclopentylmethyl ether
(CPME) was selected for its low toxicity profile and low tendency to form peroxides. In this tailor-made
system, the catalyst was safely packed in a polytetrafluoroethylene PTFE tube (15 cm length), and only
minimal leaching of the manganese catalyst was detected; the molecular oxygen line served as a driving
force to move the reaction mixture throughout the reactor. A variety of 2-aminophenoxazin-3-ones 8
has been therefore synthesized with excellent yields (93–98%) and no need for further purification.
The sustainability of the process was highlighted by E-factor values calculation and comparison with
the batch protocol and other literature processes values. From this green metric, it was possible to
evaluate the beneficial effect of the flow methodology that allowed obtaining E-factor values as low as
1.6 in flow, whereas values in the range of 19 were obtained for the corresponding batch procedures;
literature procedures showed even higher E-factor values (68–368).

β-Amino alcohols are often key intermediates for the synthesis of biologically-active molecules;
they are typically synthesized by amine-mediated ring-opening of epoxides. Following this strategy,
McCluskey and co-workers studied the reaction of epichlorohydrin 9 with phenols 10 to yield the
corresponding epoxides 11 (Scheme 4a) [27].
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Scheme 4. (a) Flow synthesis of epoxy ethers 11 from epichlorohydrin 9. (b) Flow synthesis of β-amino
alcohols 13 from amine mediated-epoxide ring-opening process.

The optimal reaction conditions were found by pumping a 0.1 M solution of phenol 10 in DMF
through an Omnifit ® column packed with a 1:1 mixture of Cs2CO3: acid-washed sand, to avoid
the formation of the diol by-product, and then mixing such solution with epoxide 9 in DMF (5 M).
The reactants were allowed to flow through two 10 mL PFA reactor coils at 105 ◦C for 20 min of residence
time. A wide array of epoxides 11 were synthesized using this protocol, with yields ranging from
acceptable to very good (22–89%). The epoxy derivative 11a obtained by the reaction of epichlorohydrin
and 4-nitrophenol was used as starting material to synthesize a library of β-aminophenols 13 through
amine mediated epoxide ring-opening (Scheme 4b). A variety of primary, secondary, and tertiary
amines 12 were used (5–7 equivalents) in flow to open epoxide 11a with a good regiocontrol. Yields
ranged from modest to very good (36–80%), with the most common by-products being the primary
alcohol and bis-alkyl compounds.

Raić-Malić and co-workers published an interesting study on the flow-synthesis of a new series
of molecules containing either the l-ascorbic acid (i.e., Vitamin C) and 1,2,3-triazole moieties [28].
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The idea behind the work was to combine the well-known properties of Vitamin C with those of 1,2,3
triazoles and test such new molecules for biological properties. The authors first synthesized the azide
derivative of l-ascorbic acid 14 to be employed in a click chemistry reaction with a wide array of
alkynes 15 to form the 1,2,3-triazole unit (Scheme 5). Specifically, in a microfluidic system combined
with ultrasound (US) irradiation, 1,2,3-triazolyl appended 4,5-unsaturated l-ascorbic acid derivatives
16 were synthesized through a copper-mediated 1,3 dipolar cycloaddition of C–6 azido l-ascorbic
acid derivatives 14 and terminal alkynes 15. The same transformation has also been performed in
batch condition, but the flow methodology gave superior results either in terms of yields and of
reaction times. In fact, for each of the 14 new products 16 the yield in flow resulted to be significantly
better than that obtained in batch; furthermore, the optimal reaction time in flow resulted in being
in the range of minutes whilst the reaction time in the batch was in the range of hours. Additionally,
from the point of view of the safety profile, the flow protocol was again the preferred option; in fact,
when extremely reactive azides are handled, it is of great advantage to able to let the reaction run
inside proper equipment instead of performing traditional batch procedures [29].

Molecules 2020, 25, 909 6 of 12 

 

triazoles and test such new molecules for biological properties. The authors first synthesized the 
azide derivative of L-ascorbic acid 14 to be employed in a click chemistry reaction with a wide array 
of alkynes 15 to form the 1,2,3-triazole unit (Scheme 5). Specifically, in a microfluidic system 
combined with ultrasound (US) irradiation, 1,2,3-triazolyl appended 4,5-unsaturated L-ascorbic acid 
derivatives 16 were synthesized through a copper-mediated 1,3 dipolar cycloaddition of C–6 azido 
L-ascorbic acid derivatives 14 and terminal alkynes 15. The same transformation has also been 
performed in batch condition, but the flow methodology gave superior results either in terms of 
yields and of reaction times. In fact, for each of the 14 new products 16 the yield in flow resulted to 
be significantly better than that obtained in batch; furthermore, the optimal reaction time in flow 
resulted in being in the range of minutes whilst the reaction time in the batch was in the range of 
hours. Additionally, from the point of view of the safety profile, the flow protocol was again the 
preferred option; in fact, when extremely reactive azides are handled, it is of great advantage to able 
to let the reaction run inside proper equipment instead of performing traditional batch procedures 
[29]. 

Reactor type Features Yields
No of 

examples

Tubular
glass reactor

(MICRO)

Reactor V = 6 μL
Channel width= 250 μm
Channel depth= 50 μm

14 45-99%

 

Scheme 5. A combination of continuous flow and ultrasonic irradiation for the click reaction-based 
synthesis of new 1,2,3-triazolyl appended 4,5-unsaturated L-ascorbic acid derivatives. 

3. N-Based Compound Libraries 

4.,6-Disubstituted pyrimidines are promising molecules to be employed in the field of artificial 
cell differentiation [30]. In particular, VUT-MK142 (Figure 1) has proven to be an efficient 
cardiomyogenesis-inducing agent. Schnürch and co-workers, therefore, proposed a new two-step 
one flow protocol for the synthesis of a small library of 4,6 substituted pyrimidines, as reported in 
Scheme 6 [31]. 

 

Figure 1. Structure of the cardiomyogenesis-inducing agent VUT-MK142. 

In the first step, nucleophilic substitution of 4,6-dichloropyrimidine 17 with aromatic amines 18, 
occurred at 160 °C in a ThalesNano X-Cube Flash at 0.5 mL/min in NMP under base catalysis 

Scheme 5. A combination of continuous flow and ultrasonic irradiation for the click reaction-based
synthesis of new 1,2,3-triazolyl appended 4,5-unsaturated l-ascorbic acid derivatives.

3. N-Based Compound Libraries

4,6-Disubstituted pyrimidines are promising molecules to be employed in the field of artificial
cell differentiation [30]. In particular, VUT-MK142 (Figure 1) has proven to be an efficient
cardiomyogenesis-inducing agent. Schnürch and co-workers, therefore, proposed a new two-step
one flow protocol for the synthesis of a small library of 4,6 substituted pyrimidines, as reported in
Scheme 6 [31].
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Figure 1. Structure of the cardiomyogenesis-inducing agent VUT-MK142.

In the first step, nucleophilic substitution of 4,6-dichloropyrimidine 17 with aromatic amines 18,
occurred at 160 ◦C in a ThalesNano X-Cube Flash at 0.5 mL/min in NMP under base catalysis (DIPEA)
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to yield mono-substituted pyrimidines 19. Such intermediates could be isolated and characterized,
but for a more efficient process, they could also be directly mixed with cyclohexylamine 20 to perform
the second step in the same reactor at 200 ◦C at 0.5 mL/min. Screening of the reaction conditions
such as the concentration of the reactants and temperature were monitored using UHPLC analysis.
In conclusion, a library of 4,6-disubstituted pyridines 21 was successfully synthesized using a flow
system that allowed to obtain good yields (51–81% first step and 42–70% second step) with a residence
time in the range of minutes.
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Scheme 6. Two-step one flow synthesis of cardiomygenesis-inducing compounds.

Tricyclic-tetrahydroquinolines (TC-THQs) are of great interest as they display a wide array of
biological properties. In fact, they are common scaffolds in numerous biologically active natural
compounds as well as drugs [32]. Gioiello and co-workers have set up a flow system for the
multicomponent synthesis of a library of TC-THQs with drug-like properties in order to test their
biological activity [33].

The reaction of choice to build-up the molecular skeleton was the Pavarov cycloaddition in which
p-substituted benzaldehydes 22, anilines 23 and five- or six-member dienophiles 24 dissolved in
MeCN/PEG300 (95:5 v/v) were combined together in a 10 mL PTFE reactor coil in the presence of HCl
as catalyst to yield the desired tricyclic-tetrahydroquinolines 25 (Scheme 7).

The choice of using PEG300 as co-solvent made the purification procedure more complex, but,
on the other hand, it was essential as it prevented the precipitation of the aniline chlorohydrates inside
the system. Furthermore, the flow apparatus was equipped with an inline work-up system. Specifically,
a stream of H2O, and Et2O was added to remove salts and PEG300. The products were purified by an
automatic silica gel chromatography equipped with UV detector for fraction collection. This combined
system allowed the synthesis of 22 products that have displayed biological activity in preliminary
in vitro essays. As a continuation of this work, a study on the synthesis of tetracyclic quinolines, to be
tested as ligands of the Pregnane X receptor (PXR), was performed by the same authors [34].
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4. N,S-Based Compound Libraries

A library of small molecules, namely 1-aminothiazole derivatives, has been synthesized in flow
by John and co-workers in the framework of a wider project concerning Alzheimer’s disease (AD) [35].
In particular, the authors aimed to obtain small molecules that mimic the Humanin (HN) peptide
interaction with the extracellular domain of the gp130 receptor in agonist fashion and ultimately
protect neurons from NMDA-induced neurotoxicity [36]. In order to synthesize 1-aminothiazoles
28 the Hantzsch condensation reaction was chosen, therefore, a set of 1-(4-bromophenyl)thiourea
derivatives 26 and 2-bromo-1-phenylethan-1-ones 27 were allowed to react in a microfluidic system
at 80 ◦C without the aid of any catalyst (Scheme 8). It was possible to obtain eight small molecules
in very good yields and suitable for gaining SAR insights. In particular, the 1-aminothiazole with
R1 = 4-fluoroaryl and R2 = aryl resulted in being the best candidate for neuroprotective activity and,
therefore, will be used for in vivo tests.

NH-Sulfoximines are an interesting class of compounds that, even though not very commonly
found in the literature, are rapidly gaining the attention of the scientific community [37,38]. Such spike
in interest is due to their use in the synthesis of sulfurated products, and in the drug discovery field,
in fact, some sulfoximines-bearing compounds are promising pharmaceutically active molecules [39,40].
Luisi and co-workers set up a new convenient protocol for the synthesis in flow of sulfoximines
starting from sulfides or sulfoxides [41]. The procedure is a modified and improved version of a
batch procedure described by the same group [42]. The conversion of sulfides or sulfoxides occurred
in the presence of an ammonia source and of phenyliodo diacetate (PhI(OAc)2). Careful evaluation
of experimental parameters such as solvent, reactants stoichiometry, and concentrations and source
of ammonia was performed in order to set up a flow system able to smoothly afford the desired
NH-sulfoximines. All the optimization studies were performed using the commercial apparatus
Vapourtec R2 system equipped with a 10 mL PTFE coil. Methanol was chosen as solvent as it proved
to be ideal in the batch reaction, an aqueous solution of ammonia (28% w/w, 3 equiv.) was selected as N
source. Other reagents proved to be effective but more difficult to handle. The amount of PhI(OAc)2

employed was lowered to 2 equivalents compared to 2.5 equiv. used in the batch procedure. When
sulfides were used as starting material, the concentration was set to 0.2 M in order to avoid clogging of
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the reactor, but when sulfoxides were employed more concentrated solution was needed (0.4 M) for
the reaction to occur. In the latter case syringe pumps were employed to feed the reactor. Finally, with
the optimized conditions in hand, the authors were able to employ different sulfides 29 and sulfoxides
30 to yield 11 NH-sulfoximines 31 with yields ranging from 37 to 99% (Scheme 9).Molecules 2020, 25, 909 9 of 12 
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5. Conclusions

Over the past two decades, continuous flow chemistry has proven to be an ideal methodology
for running reactions that underperform in batch. Among the advantages of this technology are
to be mentioned better control over heat and mass transfer, automation of operation, and a safer
environment. These features are indeed of great interest in the drug discovery field, where the need
for screening a wide array of compounds demands fast and reliable synthetic protocols. This review
exemplified such a concept by discussing flow chemistry papers from recent literature. Regardless of
the type of equipment used and of the reaction scale, this enabling technology showed its prominent
role in the rapid and efficient assembly of compound libraries.
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