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ABSTRACT 

DNA methylation, an epigenetic modification, is mediated by DNA methyltransferases (DNMTs), a family of 

enzymes. Inhibitions of these enzymes are considered a promising strategy for the treatment of several diseases. 

In this study, a quantitative structure-activity relationship (QSAR) modeling was employed to understand the 

structure-activity relationship (SAR) of currently available non-nucleoside DNMT1 inhibitors (i.e., indole and 

oxazoline/1,2-oxazole scaffolds). Two QSAR models were successfully constructed using multiple linear regres-

sion (MLR) and provided good predictive performance (R2
Tr = 0.850-0.988 and R2

CV = 0.672-0.869). Bond infor-

mation content index (BIC1) and electronegativity (R6e+) are the most influential descriptors governing the ac-

tivity of compounds. The constructed QSAR models were further applied for guiding a rational design of novel 

inhibitors. A novel set of 153 structurally modified compounds were designed in silico according to the important 

descriptors deduced from the QSAR finding, and their DNMT1 inhibitory activities were predicted. This result 

demonstrated that 86 newly designed inhibitors were predicted to elicit enhanced DNMT1 inhibitory activity when 

compared to their parent compounds. Finally, a set of promising compounds as potent DNMT1 inhibitors were 

highlighted to be further developed. The key SAR findings may also be beneficial for structural optimization to 

improve properties of the known inhibitors.  

 

Keywords: DNA methyltransferase 1, QSAR, computer-aided drug design, rational design, structural modifica-

tion, epigenetic modulators 

 

 

INTRODUCTION 

Epigenetics is an alteration of gene ex-

pression without changing the genomic struc-

ture. Epigenetics machinery includes DNA 

methylation, histone modification (e.g., acet-

ylation and methylation) and non-coding 

RNAs (Handy et al., 2011). Epigenetic regu-

lation can be altered by exogenous factors 

such as diet and exposing environment (Kan-

herkar et al., 2014). Thus, epigenetic altera-

tion serves as dynamic flexible responses 

which can be reversibly modified throughout 

the lifetime (Schuebel et al., 2016). Epige-

netic regulation has been recognized to play 

an important role in driving cells toward nor-

mal cellular phenotypes and functions. An al-

teration of epigenetic regulation also has been 
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noted in pathogenesis of many diseases in-

cluding cardiovascular diseases (Abi Khalil, 

2014), neurological diseases (Landgrave-

Gómez et al., 2015), metabolic disorders 

(Kuneš et al., 2015) and cancers (Verma, 

2013). Among all, DNA methylation is con-

sidered to be one of the most common modi-

fications found in many diseases (Jin and Liu, 

2018).  

DNA methylation is a process by which a 

methyl group (-CH3) is transferred from S-

adenosyl-L-methionine (SAM) to the C-5 po-

sition of cytosine residue of CpG islands, 

which are regions of large repetitive CpG di-

nucleotides (Wang and Leung, 2004). This re-

action requires a key catalytic enzyme namely 

DNA methyltransferases (DNMTs). DNMTs 

are categorized into 5 types i.e., DNMT1, 

DNMT2, DNMT3A, DNMT3B and 

DNMT3L (Zhang and Xu, 2017). However, 

DNMT1 is considered to be the most stable 

epigenetic mark and is abundantly found in 

human cells (Hermann et al., 2004). DNMT1 

acts as a maintenance methyltransferase 

which functions to control level of gene ex-

pressions by inhibiting gene transcription 

leading to gene silencing (Heerboth et al., 

2014). An aberration of DNMT1 function (ei-

ther hyper- or hypo-methylation) has been ob-

served for many diseases. For example, an al-

teration of DNMT1 leads to an inactivation of 

several key genes in cancer cells (Esteller, 

2008; Lee et al., 2010; Xu et al., 2011). Ex-

cessive DNMT1 activity and hypermethyla-

tion are also found in many neurological dis-

orders (Wüllner et al., 2016; Yokoyama et al., 

2017). Notably, these diseases are multifacto-

rial disorders in which exogenous factors play 

crucial roles. Along with its reversible nature, 

a modification of DNMT1 activity serves as 

an attractive treatment strategy toward these 

diseases. 

Recently, several DNMT inhibitors 

(DNMTi) have been reported to successfully 

treat many diseases (e.g., breast cancer 

(Gupta et al., 2019; Luo et al., 2018), pancre-

atic carcinoma (Li et al., 2010), Huntington’s 

disease (Pan et al., 2016), acute myeloid leu-

kemia (Benetatos and Vartholomatos, 2016), 

myelodysplastic syndrome (Stresemann et al., 

2008), sickle cell anemia (Fathallah and At-

weh, 2006; Saunthararajah et al., 2003) and β-

thalassemia (Ley et al., 1982)). In addition, a 

demethylation by DNMTi displayed prefera-

ble clinical outcome against chemoresistance 

cancer cells which are not responsive to 

standard chemotherapy (Clozel et al., 2013). 

To date, two inhibitors (e.g., 5-azacitidine and 

decitabine) have been approved by the U.S. 

Food and Drug Administration (FDA) and 

European Medicines Agency for treatment of 

acute myeloid leukemia (AML) and myelo-

dysplastic syndrome (MDS) (European Med-

icines Agency, 2009; Nieto et al., 2016; Saba, 

2007). Despite their high efficiency, these nu-

cleoside inhibitors are unstable compounds 

with poor bioavailability and cytotoxicity 

(Erdmann et al., 2015). The cytotoxicity has 

been noted to be derived from their mecha-

nisms of action which incorporates into DNA 

and RNA of the cells. Therefore, there is a 

growing interest of developing alternative 

non-nucleoside inhibitors to avoid these limi-

tations. Some non-nucleoside inhibitors are 

along the way of development, however, their 

potencies are still lower than those of nucleo-

side inhibitors and none of them have been 

approved for clinical uses (Chuang et al., 

2005; Valente et al., 2014; Zhong et al., 

2016). Recently, quinoline scaffold has been 

reported to exhibit DNMT1 inhibitory activ-

ity (Zwergel et al., 2020). 

Indole and oxazoline are attractive scaf-

folds for drug discovery. Indole analogs have 

been reported to exhibit anticancer (Kumar et 

al., 2010; Prakash et al., 2018), antimicrobial 

(Hong et al., 2017), antioxidant (Demurtas et 

al., 2019) and anti-inflammatory (Abdellatif 

et al., 2016; Rani et al., 2004) activities. Oxa-

zoline derivatives have been documented for 

their anticancer (Kumar et al., 2010), antimi-

crobial (Zhang et al., 2011), antioxidant (Par-

veen et al., 2013) and antidiabetic (Ashton et 

al., 2005) activities. Additionally, both of 

these derivatives have been reported to inhibit 

DNMT1 activity by reducing the affinity of 

the enzyme toward SAM competition (As-

gatay et al., 2014; Castellano et al., 2008, 
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2011; Castillo-Aguilera et al., 2017; Siedlecki 

et al., 2006).  
Computational approaches have been rec-

ognized for their facilitating roles in drug de-

velopment process (Prachayasittikul et al., 

2015). Quantitative structure-activity relat-

ionship (QSAR) is a method to find a relation-

ship between chemical structures of com-

pounds and their biological activities and is 

one of the most commonly used approaches 

to increase success rate and reduce time of 

drug development (Nantasenamat et al., 

2009). QSAR modeling reveals a set of key 

chemical features and physicochemical prop-

erties that are essential for potent activity 

which would be beneficial for guiding the 

structural design and optimization to obtain 

potential compounds with preferable proper-

ties (Prachayasittikul et al., 2015, 2017; 

Pratiwi et al., 2019; Worachartcheewan et al., 

2020). 

In this study, QSAR modeling was per-

formed to reveal structure-activity relation-

ship (SAR) of indole-based (scaffold A) and 

oxazoline/1,2-oxazole-based (scaffold B) 

DNMT1 inhibitors (Figure 1). Multiple linear 

regression (MLR) algorithm was used for 

model construction to allow effective SAR 

analysis. To expand structural diversity, an 

additional set of 153 structurally modified 

compounds were rationally designed accord-

ing to key descriptors obtained from QSAR 

findings and their activities were predicted. 

SAR analysis was performed to gain insights 

toward essential key features required for po-

tent activity. Additionally, chemical space 

plots were generated to illustrate drug-like-

ness of the studied compounds. Finally, a set 

of promising novel DNMT1 inhibitors were 

highlighted to be further developed. SAR 

findings also would be useful for screening, 

guiding design and structural optimization of 

the related compounds for DNMT1 inhibi-

tion. 
 

 

Figure 1: Chemical structures of DNMT1 inhibitors and their pIC50 values; scaffold A (indoles) and scaf-
fold B (oxazoline and 1,2-oxazoles) 
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MATERIALS AND METHODS 

A schematic summary of QSAR modeling 

process is presented in Figure 2. 

 

Data collection 

A set of bioactive compounds with 

DNMT1 inhibitory activity were collected 

from ChEMBL25 database (EMBL-EBI, 

2019). The datasets have been thoroughly cu-

rated according to the established protocol 

(Fourches et al., 2010). The main steps of data 

curation are as followed (i) removal of inor-

ganics, salts and mixtures, (ii) structural vali-

dation and cleaning, (iii) normalization of 

specific chemotypes, (iv) deletion of dupli-

cates and (v) final checking. As a result, a fi-

nal data set of DNMT1 inhibitors, comprising 

chemical structures of 15 inhibitors (in 

SMILES format) and their bioactivity (IC50 

values), was primarily compiled from 5 orig-

inal articles (Asgatay et al., 2014; Castellano 

et al., 2011; Erdmann et al., 2015; Siedlecki 

et al., 2006; Valente et al., 2014). Afterwards, 

these compounds were manually grouped ac-

cording to their core structures into 2 groups 

i.e., scaffold A (indole derivatives) and scaf-

fold B (oxazoline/1,2-oxazole derivatives), to 

obtain data sets consisted of 8 and 7 com-

pounds belonging to scaffolds A (1a-8a) and 

B (1b-7b), respectively (Figure 1). Bioactivi-

ties of DNMT1 inhibitors (IC50 values) were 

converted to pIC50 values by taking the nega-

tive logarithm based 10. 

 

Geometry optimization 

Chemical structures in SMILES format 

were converted into MOL format using mol-

convert (ChemAxon, 2018). All compounds 

were geometrically optimized using Gaussian 

09 software (Frisch et al., 2009) to obtain low 

energy conformation by density functional 

theory (DFT) computation using Becke’s 

three-parameter Lee–Yang–Parr hybrid func-

tional (B3LYP) in concomitant with the 

LanL2DZ basis set. 

 

  
 

 

 

 

Figure 2: Workflow of QSAR modeling for investigating DNMT1 inhibitor 
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Molecular descriptors 

Molecular descriptors are a set of numeri-

cal values representing the molecules in terms 

of their connectivity, constitution and physi-

cochemical properties (Nantasenamat et al., 

2010). Two types of descriptors (i.e., quantum 

chemical descriptors and dragon descriptors) 

were used for QSAR modeling due to their in-

terpretable nature.  

Optimized structures were extracted to 

obtain a set of 13 quantum chemical de-

scriptors using an in-house developed script. 

A set of quantum chemical descriptors in-

cludes the total energy of the molecule, high-

est occupied molecular orbital (HOMO) en-

ergy, lowest unoccupied molecular orbital 

(LUMO) energy, dipole moment (μ), electron 

affinity (EA), ionization potential (IP), energy 

difference of HOMO and LUMO states 

(HOMO–LUMO), Mulliken electronegativity 

(χ), hardness (η), softness (S), electrophilicity 

(ω), electrophilic index (ωi), most negative 

atom in the molecule (Qneg), most positive 

atom in the molecule (Qpos) and the mean ab-

solute atomic charge (Qm). Furthermore, op-

timized structured were used as input files for 

calculation of molecular descriptors using 

Dragon 5.5 software (Mauri et al., 2006) to 

obtain a set of 3,224 molecular descriptors, 

comprising 22 categories: 48 constitutional 

descriptors, 119 topological descriptors, 47 

walk and path counts, 33 connectivity indices, 

47 information indices, 96 2D autocorrela-

tion, 107 edge adjacency indices, 64 Burden 

eigenvalues, 21 topological charge indices, 44 

eigenvalue-based indices, 41 randic molecu-

lar profiles, 74 geometrical descriptors, 150 

RDF descriptors, 160 3D-MoRSE de-

scriptors, 99 WHIM descriptors, 197 GETA-

WAY descriptors, 154 functional group 

counts, 120 atom-centred fragments, 14 

charge descriptors, 29 molecular properties, 

780 2D binary fingerprints and 780 2D fre-

quency fingerprints. 

 

Feature selection 

To reduce overfitting and improve accu-

racy of prediction, correlation-based feature 

selection was employed for selecting a set of 

informative descriptors. Initially, Pearson’s 

correlation coefficient (r) values were calcu-

lated for each pair of descriptor and bioactiv-

ity (pIC50). A cutoff value of 0.8 was used to 

select an initial set of correlated descriptors 

(with |r| ≥ 0.8) for further selection with mul-

tiple linear regression (MLR) method using 

SPSS (IBM Corp., 2011).  

As a result, final sets of informative de-

scriptors were obtained for further QSAR 

modeling. 

 
QSAR model construction 

MLR is one of the commonly used ma-

chine learning algorithms to reveal a linear re-

lationship between a set of independent vari-

ables (i.e., molecular descriptors; Xn) and the 

dependent variable of interest (i.e., DNMT1 

inhibitory activity; Y). In this study, two 

QSAR models were separately constructed 

according to their distinct scaffolds (i.e., scaf-

folds A and B). For each input data set, a set 

of selected descriptor values of the com-

pounds along with their bioactivities (pIC50 

value) were provided to train the machine. 

MLR models were constructed using Weka 

software (Hall et al., 2008) as shown in Equa-

tion 1: 

 Y = B0 + 𝛴BnXn (1) 

where Y is the pIC50 values of compounds, 

B0 is the intercept and Bn are the regression 

coefficient of descriptors Xn. 

 
Model validation 

The data set was divided into training set 

and testing set by leave-one-out cross valida-

tion (LOO-CV) (Roy et al., 2015). N is the 

number of samples in the data set. One sample 

was removed from the whole data set to be 

predicted, whereas the remaining samples (N-

1) were used as the training set. The same 

sampling process was continued until every 

sample was leaved out to be predicted as Y 

variable (activity). 
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Evaluation of the predictive performance of 

QSAR model 

Two statistical parameters such as corre-

lation coefficient (R) and root mean square er-

ror (RMSE) values were calculated to assess 

the predictive performance of the constructed 

QSAR models (Prachayasittikul et al., 2017; 

Pratiwi et al., 2019). 

 

Prediction of modified compounds 

A set of 153 structurally modified com-

pounds were rationally designed according to 

key descriptors of the constructed QSAR 

models. All newly designed compounds were 

drawn, geometrically optimized and calcu-

lated, in the same manner as the original com-

pounds, to obtain a set of key descriptor val-

ues. Then, these key descriptor values were 

replaced in the QSAR equation (as X varia-

bles) to calculate predicted pIC50 values of the 

modified compounds. 

 

RESULTS AND DISCUSSION 

QSAR models 

A set of bioactive compounds with 

DNMT1 inhibitory activity were collected 

from ChEMBL25 database (EMBL-EBI, 

2019) and were preprocessed according to the 

established protocol (Fourches et al., 2010). A 

set of curated compounds were divided into 2 

groups (i.e., scaffolds A and B) according to 

their core structures (Figure 1). All com-

pounds were optimized and calculated to ob-

tain their descriptor values (as a set of struc-

tural representatives). Correlation-based fea-

ture selection followed by MLR method were 

performed to obtain a final set of 6 informa-

tive descriptors. Definitions of selected de-

scriptors (Table 1) and descriptor values 

(Supplementary Tables 1-2) of the investi-

gated compounds are provided. Values of se-

lected descriptor together with the bioactivity 

(pIC50 values) were used as input data sets to 

construct the QSAR models using MLR algo-

rithm. Herein, two QSAR models were sepa-

rately constructed based on core structure of 

the compounds (i.e., scaffold A and scaffold 

B). 

For scaffold A, two informative de-

scriptors (i.e., BIC1 and F06[N-O]) were used 

to construct QSAR model (Equation 2). An 

influence of each descriptor on pIC50 value 

was demonstrated by its regression coeffi-

cient value. The QSAR model revealed that 

bond information content (BIC1 with regres-

sion coefficient = 3.9879) is the most influen-

tial descriptor for predictive DNMT1 inhibi-

tory activity of indoles. 

 
 

 

Table 1: Definition of informative descriptors for QSAR modeling 

Descriptor Type Definition 

BIC1 Information  
indices 

Bond information content index (neighborhood symmetry of 1-or-
der) 

F06[N-O] 2D Atom pairs Frequency of N-O at topological distance 6 

R8e GETAWAY  
descriptors 

R autocorrelation of lag 8 / weighted by Sanderson electronegativity 

RDF045v RDF descriptors Radial distribution function - 045 / weighted by van der Waals vol-
ume 

R6e+ GETAWAY  
descriptors 

R maximal autocorrelation of lag 6 / weighted by Sanderson elec-
tronegativity 

B09[N-N] 2D Atom pairs Presence/absence of N - N at topological distance 9 

 

https://www.excli.de/vol19/Prachayasittikul_02042020_supplementary_information.pdf


EXCLI Journal 2020;19:458-475 – ISSN 1611-2156 

Received: January 31, 2020, accepted: March 24, 2020, published: April 02, 2020 

 

 

464 

pIC50 = 3.9879(BIC1) + 0.1381(F06[N-O]) 

+1.4564 (2) 

Four selected descriptors were used to 

build the QSAR model of scaffold B (Equa-

tion 3) including electronegativity (R8e and 

R6e+), van der Waals volume (RDF045v) and 

topological distance (B09[N-N]) descriptors. 

R6e+ and B09[N-N]) descriptors had positive 

effects on the activity of oxazoline and 1,2-

oxazole inhibitors as shown by positive re-

gression coefficient values, whereas negative 

effects were observed for those with negative 

regression coefficient (i.e., R8e and 

RDF04v). The R6e+ was shown to be the 

most influential descriptor with regression co-

efficient value of 10.1847. 

pIC50 = – 1.1904(R8e) – 0.3896(RDF045v)  

+10.1847(R6e+) + 0.4018(B09[N-N]) 

+ 5.423 (3) 

In overview, the constructed QSAR mod-

els provided acceptable predictive perfor-

mance, as shown by high R2
 (0.672-0.988) but 

low RMSE (0.041-0.224) values. The calcu-

lated parameters representing model’s perfor-

mance are summarized in Table 2. Good pre-

dictive performance of the models was ob-

served with low difference between experi-

mental and predicted activities of scaffolds A 

and B (Table 3). Comparative plots of the ex-

perimental and predicted pIC50 values of the 

scaffolds A and B are shown in Figure 3. 
 

 

Table 2: Summary of predictive performance of QSAR models 

Scaffold 

Training set LOO-CV 

R2
Tr RMSETr

 R2
CV RMSECV

 

A 0.850 0.136 0.672 0.224 

B 0.988 0.041 0.869 0.145 

 

R2
Tr       = Coefficient of training set 

RMSETr    = Root mean square error of training set 
R2

CV = Coefficient of cross-validation set  
RMSECV   = Root mean square error of cross-validation set 

 

 

Table 3: Experimental and predicted bioactivities (pIC50) of scaffolds A and B 

Compound Exp. Pred. Compound Exp.  Pred.  

1a 4.70 5.08 1b 3.82 4.02 

2a 4.30 4.21 2b 3.82 3.71 

3a 4.70 4.43 3b 2.80 2.96 

4a 4.40 4.41 4b 3.57 3.38 

5a 4.10 4.09 5b 3.24 3.21 

6a 3.92 3.78 6b 3.51 3.63 

7a 4.00 3.86 7b 2.95 2.80 

8a 3.64 4.01 
   

Exp. = Experimental activity 
Pred. = Predicted activity 
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Figure 3: Plots of experimental versus predicted pIC50 values of DNMT1 inhibitors generated by QSAR 
models: (A) scaffold A and (B) scaffold B. Training set: compounds are denoted by black circle and 
regression line is solid line; LOO-CV Testing set: compounds are denoted by white circle and regression 
line is dashed line. 

 

Application of QSAR models for the  

rational design and prediction of novel 

DNMT1 inhibitors 

The constructed QSAR models were fur-

ther applied for the rational design of a novel 

series of 153 structurally modified com-

pounds with relevant scaffolds. The important 

descriptors presented in the model were used 

as a guide for structural modification strategy. 

Finally, 153 derivatives of scaffolds A (80 

modified compounds) and B (73 modified 

compounds) were virtually designed (Supple-

mentary Figures 1-2), in which their de-

scriptor values were calculated and subse-

quently applied to the QSAR equations for 

predicting their activities (Supplementary Ta-

bles 3-4). As a result, a series of modified 

compounds with improved activity (when 

compared to their parent compounds) are 

summarized in Figures 4 and 5. The promis-

ing novel compounds with the most potent 

predicted activities are highlighted such as 

compounds 3a11 and 2b8 (Figure 6). 

 

Understanding structure-activity  

relationship (SAR) 

In-depth SAR analysis was performed to 

consider the important chemical features gov-

erning bioactivity of the original scaffolds A 

and B as well as the modified compounds. 

Scaffold A 

Scaffold A is a series of indole-amino 

compounds (Figures 1 and 7) which contain 

ring A (indole and its analogs) substituted by 

2-aminocarboxylic acid side chain (1a-5a and 

8a) and aza-indole ring A (6a and 7a). Bioac-

tivity of these compounds (Table 3) was 

ranked as 1a~3a > 4a > 2a > 5a > 7a > 6a > 

8a. Two most potent compounds (1a and 3a) 

displayed the same activity with pIC50 value 

of 4.70. These two compounds had propanoic 

acid (three carbon atoms) linker between the 

indole ring A and 2-amino group (as imide 

ring for compound 1a, as aminothiopyridine 

substituted by 3-NO2 group for compound 

3a). For 2,4-dinitrobenzene analog 4a, it 

showed lower activity (pIC50= 4.40) when 

compared with nitropyridine 3a. Compound 

2a (amino group as fused ring of imide) dis-

played a lower activity (pIC50= 4.30) when 

compared with the imide ring (1a). With the 

longer linker (four carbon atoms), compound 

https://www.excli.de/vol19/Prachayasittikul_02042020_supplementary_information.pdf
https://www.excli.de/vol19/Prachayasittikul_02042020_supplementary_information.pdf
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5a containing 2-aminobutanoic acid side 

chain was shown to be less active (pIC50= 

4.10) when compared to dinitrophenyl com-

pound 4a. When N atom of the indole ring 

was replaced by S atom, benzothiophene ana-

log (ring A) 8a was obtained with the lowest 

activity (pIC50 = 3.64). Aza-indoles 6a and 7a 

(derived from replacing C atoms in the indole 

ring by one N and two N atoms, respectively) 

showed lower activity than the others (1a-5a), 

but higher than the thioindole (8a). 

 

 

Figure 4: Structurally modified compounds in scaffold A with improved activities (* The most potent 
compound in the modified subseries, ** The most potent compound of scaffold A). 
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Figure 4 (cont.): Structurally modified compounds in scaffold A with improved activities (* The most 
potent compound in the modified subseries, ** The most potent compound of scaffold A). 
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Figure 5: Structurally modified compounds in scaffold B with improved activities (* The most potent 
compound in the modified subseries, ** The most potent compound of scaffold B). 
 

 

Figure 6: Novel compounds with the most potent predicted activity of scaffolds A (3a11) and B (2b8). 

 

The QSAR model (Equation 1) showed 

that two descriptors (Supplementary Table 1), 

BIC1 and F06[N-O] are involved in the SAR. 

BIC1 is a more influential descriptor than that 

of F06[N-O] as noted from their regression 

coefficient values of 3.9879 and 0.1381, re-

spectively. The most potent compounds 1a 

and 3a displayed the highest values of BIC1 

(0.696 and 0.710) and of F06[N-O] (2 and 4), 

respectively compared with the less active 

compounds i.e., 8a (B1C1 = 0.616, F06[N-O] 

= 0). This could be due to the chemical struc-

ture (Figure 8A) of indole (3a) bearing 2-ami-

nopropanoic moiety substituted by thiopyri-

dine, which may display the highest neighbor-

hood symmetry (BIC1 = 0.710) compared 

with the thioindole (8a, BIC1 = 0.616) con-

taining 2-imide propanoic acid. In addition, 

the indole 3a constituting propanoic moiety 

could involve in the highest frequency of N-

O at topological distance 6 (F06[N-O] = 4) 

whereas the thioindole 8a had the F06[N-O] 

= 0. Such high topological distance of com-

pound 3a could be accounted by N atom of 

indole ring connecting to O atom of carbox-

ylic group as shown in Figure 8A. 

 

https://www.excli.de/vol19/Prachayasittikul_02042020_supplementary_information.pdf


EXCLI Journal 2020;19:458-475 – ISSN 1611-2156 

Received: January 31, 2020, accepted: March 24, 2020, published: April 02, 2020 

 

 

469 

 
Figure 7: Structural feature of scaffolds A and B

Figure 8: The most potent and least potent compounds in each series. (A) Scaffold A: Two most potent 
compounds 1a, 3a and the least potent compounds 8a involved in BIC1 (circle color) and F06[N-O] (red 
color bonds) descriptors; (B) Scaffold B: The most potent compounds 1b, 2b and the least potent com-
pound 3b (red bond indicate carbon linker). 
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To achieve compounds with more im-

proved activity, core structure or scaffold of 

the compound and its functional substituents 

could be modified. For scaffold A (Figures 1 

and 7), compounds 1a-5a were structurally 

modified in which the indole ring A is either 

conserved or changed to pyrrole ring as well 

as the 2-amino moiety was substituted by Z 

group (NO2, NH2, OH, SH, OCH3, CH3, CF3 

and F). The results (Supplementary Figure 1 

and Supplementary Table 3) of indole ring 

and substitution at imide ring by the corre-

sponding Z groups provided derivatives 1a1-

1a8. When the indole ring A was changed to 

pyrrole ring and imide ring was substituted by 

Z groups, the modified compounds 1a9-1a16 

were achieved. In 1a series, most of the com-

pounds showed less potent activity than the 

parent compound. Pyrrole derivatives with 

Z= NO2 (1a9) and NH2 (1a10) displayed the 

most improved activity with comparable ac-

tivity (pIC50 = 4.88 and 4.86, respectively) 

when compared with the indole series (1a1, 

pIC50 = 4.79, Z = NO2 and 1a2, pIC50 = 4.77, 

Z = NH2). This indicated that NO2 group (Z) 

is the most effective substituent on the imide 

ring of both indole (1a1) and pyrrole (1a9) an-

alogs. 

Similar results were noted for modified 

series 2a (2a1-2a16), most compounds 

showed the improved activity, except for 

compound 2a6. Both indole (2a1) and pyrrole 

(2a9) bearing Z = NO2 displayed the most im-

proved activity (pIC50 = 4.82 and 4.98, re-

spectively). This indicated that the pyrrole ex-

erted higher activity than the indole.  

In modified compounds 5a (5a1 to 5a15), 

most compounds showed the improved activ-

ity, except for 5a5. Pyrrole compound (5a9) 

was the most improved one with pIC50 = 4.43 

whereas the parent compound 5a showed the 

pIC50 of 4.10. 

In case of compounds 3a and 4a, all mod-

ified compounds (3a1-3a16 and 4a1-4a15) 

displayed the improved effect. It was shown 

that aminothiopyridine 3a11 was the most po-

tent modified compound (pIC50 = 5.09), 

which is the pyrrole analog bearing 2-amino 

moiety substituted by SH (Z) group. In addi-

tion, the most improved modified 4a9 (pIC50 

= 4.81) was pyrrole derivative containing 2-

amino moiety substituted by OH (Z) group. 

Notably, the structurally modification of 

fused indole ring (1a-5a) provided the im-

proved compounds as the single ring (pyrrole) 

compounds.  

Compound 7a (as bis-triazole condensed 

ring, pIC50 = 4.00) was transformed to pyrrole 

(7a1) and indole (7a2) analogs with the re-

maining one triazole ring. The improved ef-

fect was noted for the indole analog 7a2 

(pIC50 = 4.10). Modified compounds (Supple-

mentary Figure 1) in series 1a-5a and 7a, 

mostly showed the improved activity (Sup-

plementary Table 3) when compared with 

their parent compounds. Particularly, the 

most potent 3a (pIC50 = 4.70) provided the 

most improved compound (3a11) with the 

predicted pIC50 of 5.09 (BIC1 = 0.772, 

F06[N-O] = 4). The high predicted pIC50 

value of 4.98 was observed for compound 2a9 

(BIC1 = 0.710, F06[N-O] = 5). In addition, 

compounds 1a9 and 1a10 also displayed the 

improved activity (pIC50 =4.88, BIC1 = 

0.721, F06[N-O] = 4 and pIC50 = 4.86, BIC1 

= 0.714, F06[N-O] = 4, respectively). In se-

ries 4a, compound 4a9 was the most im-

proved one (pIC50 = 4.81, BIC1 = 0.737, 

F06[N-O] = 3). Compound 5a9 of series 5a 

displayed the most improved effect (pIC50 = 

4.43, BIC1 = 0.712, F06[N-O] = 1). Com-

pound 7a2 showed slightly improved activity 

(pIC50 = 4.10, BIC1 = 0.663, F06[N-O] = 0) 

comparing with the parent compound 7a 

(pIC50 = 4.00, BIC1 = 0.612, F06[N-O] = 0). 

It should be noted that the most potent modi-

fied compound 3a11 (Figure 6) had the high-

est value of B1C1 = 0.772 and high value of 

F06[N-O] = 4 when compared with its parent 

compound (3a) as well as with other modified 

compounds in scaffold A. The highest neigh-

borhood symmetry (BIC1) of compound 3a11 

could be resulted from the single pyrrole (ring 

A) and a smaller group (Z = SH) on the thi-

opyridine moiety, which make the molecule 

even more symmetry than the indole ring A 

https://www.excli.de/vol19/Prachayasittikul_02042020_supplementary_information.pdf
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bearing the larger group (Z = NO2) of com-

pound 3a. Structural features of 3a and 3a11 

(Figure 6) showed that these compounds had 

the same value of F06[N-O] = 4 representing 

by 6 bonds, which are a part of linkage be-

tween N atom (indole/pyrrole rings) and O 

atom of carboxylic moiety, whereas such 

property was not seen in the thioindole 8a 

(Figure 8A). 

Scaffold B 

Scaffold B is a series of bioactive 1,2-ox-

azoles (Figures 1 and 7) with 3,5-disubstitu-

tion pattern including compounds 2b-7b, 

whereas compound 1b represents oxazoline. 

It was found that both nitro analog (R = NO2) 

of oxazoline 1b and oxazole 2b exerted the 

highest bioactivity (pIC50 = 3.82). On the 

other hand, nitro compound 3b with one car-

bon linker (n=1) between 1,2-oxazole and 

phenyl group displayed the lowest activity 

(pIC50 = 2.80). These compounds (1b, 2b and 

3b) are shown in Figure 8B. Amino (R = NH2) 

compound 4b (pIC50 = 3.57) showed weaker 

activity when compared with its nitro analog 

(2b). Nitro compound 6b (R = NO2, pIC50 = 

3.51) exhibited higher activity than amino 

compound 5b (pIC50 = 3.24). With the same 

core scaffold, methoxy compound (R = 

OCH3, 7b) displayed lower activity (pIC50 = 

2.95) when compared with the nitro com-

pound 6b. Bioactivities of these compounds 

(Table 3) are ranked as followed: 1b ~ 2b > 

4b > 6b > 5b > 7b > 3b. 

The QSAR study (Equation 2) showed 

that the two most potent compounds 1b and 

2b displayed significant descriptors (Supple-

mentary Table 2) with low values of R8e = 

0.356, RDF045v = 4.874, but high values of 

R6e+ = 0.035, B09[N-N] = 1 and with low 

values of R8e = 0.437, RDF045v = 4.693, but 

high values of R6e+ = 0.031, B09[N-N] = 1, 

respectively. On the other hand, the least ac-

tive compound 3b displayed the high values 

of R8e = 0.516 and RDF045v = 5.677, but the 

low values of R6e+ = 0.026, B09[N-N] = 0. It 

should be noted that the oxazole 2b had the 

lowest van der Waals volume (RDF045v = 

4.693) and low value of electronegativity 

(R8e = 0.437) when compared with the oxa-

zole 3b having the highest van der Waals vol-

ume (RDF045v = 5.677) and high electroneg-

ativity (R8e = 0.516). The highest RDF045v 

value of compound 3b could be due to the 

presence of CH2 group (n = 1, Figure 8B) 

linking between the oxazole and nitro phenyl 

rings whereas the compound without CH2 

group had the lowest van der Waals volume 

as noted for the most potent compound 2b. 

The improved activity of scaffold B com-

pounds was performed (Supplementary Fig-

ure 2 and Supplementary Table 4) as fol-

lowed. 

Oxazoline 1b was structurally modified 

by replacing NO2 (R) group with various sub-

stituents (i.e., NH2, OH, SH, OCH3, CH3, CF3 

and F) to obtain compounds 1b1-1b7. When 

O atom in the oxazoline scaffold was replaced 

by N atom, a new imidazole core was 

achieved as shown by derivatives 1b8-1b15. 

The imidazole 1b8 (R = NO2) was shown to 

be the most potent one. However, all of these 

modified compounds 1b1-1b15 displayed 

lower activity (pIC50 = 2.79-3.57) than their 

parent compound (1b, pIC50 = 3.82). 

Oxazole 2b was similarly modified to 

give compounds 2b1-2b14 (pIC50 = 2.92-

3.91), in which 1,2 diazole 2b8 (R = NH2) was 

shown to be the most improved compound 

(pIC50 = 3.91) when compared with the parent 

compound 2b (pIC50 = 3.82) 

R group (NO2) of 3b and its oxazole scaf-

fold were transformed as mentioned above to 

obtain compound 3b1-3b15. The results 

showed that oxazole compound 3b7 (R = F) 

exerted improved activity (pIC50 = 3.01) com-

paring to the parent compound 3b (pIC50 = 

2.80). 

For compound 5b, its oxazole scaffold 

and R group were structurally modified to af-

ford compounds 5b1-5b15 (pIC50 = 2.92-

3.86). Compound 5b3 (R = SH) exerted the 

most improved activity (pIC50 = 3.86) when 

compared with its parent (5b, R = NH2, pIC50 

= 3.24).  

Similarly, compound 6b (pIC50 = 3.51) 

was modified as described for compound 5b 

to obtain compounds 6b1-6b14 (pIC50 = 2.40-
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3.58). It was found that compound 6b6 (R = 

F) displayed the most improved DNMT1 in-

hibitory effect with the predicted pIC50 value 

of 3.58 when compared with the parent 6b (R 

= NO2). 

Notably, the most improved compound 

2b8 displayed the lower values of R8e = 

0.421 and RDF045v = 4.547, but higher value 

of R6e+ = 0.035 as compared to the parent 

compound 2b (R8e = 0.437, RDF045v = 

4.693 and R6e+ = 0.031). The lower van der 

Waals volume (RDF045v) and lower electro-

negativity (R8e) of the most improved com-

pound 2b8 (Figure 6) could be due to the 

smaller size and less electronegativity of the 

NH2 (R) group comparing with the nitro 

group of its parent 2b. 

 

Chemical space of the studied compounds 

Not only potent bioactivity but also drug-

like properties of the compounds are essential 

for successful drug development. Chemical 

space exploration is a method to investigate 

the drug-likeness of the compounds in which 

the Lipinski ‘rule of five’ is used as a guide-

line to determine drug-like properties (Rey-

mond and Awale, 2012). The chemical space 

plots of the inhibitors and the related discus-

sion are provided in Supplementary Infor-

mation (Supplementary Figures 3-4). It was 

demonstrated that most of the investigated 

compounds were distributed within a space of 

the Lipinski ‘rule of five’, which indicate their 

potential to be further developed as drugs. 

 

CONCLUSION 

Current attention has been given to the ep-

igenetic targets due to their modifiable nature 

throughout lifetime. Among these targets, 

DNMT1 is a promising target which plays 

roles in many diseases. In this study, QSAR 

modeling of indole-based and oxazoline/oxa-

zole-based DNMT1 inhibitors was performed 

along with in-depth SAR analysis. Two mod-

els were successfully constructed providing 

good predictive performance. A set of key 

structural features influencing the DNMT1 

inhibitory effect of the compounds were re-

vealed such as bond information, frequency 

of [N-O], electronegativity, van der Waals 

volume and topological distance. To increase 

structural diversity, the QSAR findings were 

further applied as a guide for in silico struc-

tural modification to design a set of 153 novel 

inhibitors and their activities were predicted. 

Finally, a set of promising newly designed in-

hibitors were highlighted to be further devel-

oped as potential DNMT1 inhibitors for ther-

apeutics. In summary, this study demonstrates 

the facilitating role of QSAR modeling to-

ward effective drug development in terms of 

rational design, screening and structural opti-

mization. However, further synthesis of 

promising modified inhibitors and experi-

mental studies are required to confirm 

DNMT1 inhibitory activity. 
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