
fgene-11-00311 April 23, 2020 Time: 11:41 # 1

ORIGINAL RESEARCH
published: 22 April 2020

doi: 10.3389/fgene.2020.00311

Edited by:
Starling Emerald Bright,

United Arab Emirates University,
United Arab Emirates

Reviewed by:
Tetsuya S. Tanaka,

Elixirgen Scientific, Inc., United States
Patompon Wongtrakoongate,

Mahidol University, Thailand

*Correspondence:
Chengliang Huang
hcl0428@163.com

Xianming Fan
fxm129120@sina.com

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Stem Cell Research,
a section of the journal

Frontiers in Genetics

Received: 24 December 2019
Accepted: 16 March 2020

Published: 22 April 2020

Citation:
Liao Y, Wang Y, Cheng M,

Huang C and Fan X (2020) Weighted
Gene Coexpression Network Analysis
of Features That Control Cancer Stem

Cells Reveals Prognostic Biomarkers
in Lung Adenocarcinoma.

Front. Genet. 11:311.
doi: 10.3389/fgene.2020.00311

Weighted Gene Coexpression
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Yi Liao†, Yulei Wang†, Mengqing Cheng, Chengliang Huang* and Xianming Fan*

Department of Respiratory and Critical Care Medicine II, The Affiliated Hospital of Southwest Medical University, Luzhou,
China

Purpose: We aimed to identify new prognostic biomarkers of lung adenocarcinoma
(LUAD) based on cancer stem cell theory.

Materials and Methods: RNA-seq and microarray data were obtained with clinical
information downloaded from The Cancer Genome Atlas (TCGA) and the Gene
Expression Omnibus (GEO) databases. Weighted gene coexpression network analysis
(WGCNA) was applied to identify significant module and hub genes. The hub genes were
validated via microarray data from GEO, and a prognostic signature with prognostic hub
genes was constructed.

Results: LUAD patients enrolled from TCGA had a higher mRNA expression-based
stemness index (mRNAsi) in tumor tissue than in adjacent normal tissue. Some clinical
features and prognoses were found to be highly correlated with mRNAsi. WGCNA found
that the green module and blue module were the most significant modules related to
mRNAsi; 50 key genes were identified in the green module and were enriched mostly in
the cell cycle, chromosome segregation, chromosomal region and microtubule binding.
Six hub genes were revealed through the protein-protein interaction (PPI) network
and Molecular Complex Detection (MCODE) plugin of Cytoscape software. Based on
external verification with the GEO database, these six genes are not only expressed
at different levels in LUAD and normal tissues but also associated with different clinical
features. In addition, the construction of a prognostic signature with three hub genes
showed high predictive value.

Conclusion: mRNAsi-related biomarkers may suggest a new potential treatment
strategy for LUAD.
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INTRODUCTION

Lung cancer remains the leading malignancy in terms of
morbidity and mortality according to the latest large-scale
epidemiological survey of 20 regions on five continents, and
lung cancer incidence (31.5%) and mortality (27.1%) are the
highest in men from both developed and developing countries
(Bray et al., 2018). Moreover, a survey from China showed that
both worldwide and in China, the cancer type with the highest
total incidence and mortality is lung cancer, which accounts for
11.6% (global) and 20% (China) of total cancer-related morbidity
and 18.4% (global) and 27.3% (China) of total cancer-related
mortality (Chen et al., 2018). Among the pathological types of
lung cancer, non-small-cell lung cancer (NSCLC) accounts for the
majority of cases (approximately 80%), and lung adenocarcinoma
(LUAD) is one of the most common types (Barlesi et al., 2016).

There is still no definite conclusion about the origin of
LUAD and its pathological mechanism. However, an increasing
number of studies have shown that tumor stem cells are
valuable in research and play an important role in tumor
differentiation, metastasis and drug resistance (Friedmann-
Morvinski and Verma, 2014; Leon et al., 2016; Shibue and
Weinberg, 2017). Based on these theories, Malta et al. (2018)
proposed a new concept – the stemness index – to measure tumor
development and evaluate the reliability of stem cell indices for
analyzing tumors using TCGA data. These researchers calculated
the mRNA expression-based stemness index (mRNAsi) and
epigenetically regulated-mRNAsi (EREG-mRNAsi) using TCGA
data. The mRNAsi is calculated based on expression data
and ranges from 0 to 1, with values closer to 1 indicating
low differentiation and strong stem cell characteristics. This
previous study also confirmed that the stem cell index is related
to clinical and molecular cancer typing, biological processes,
cancer metastasis, intratumoral heterogeneity, and the immune
microenvironment, providing new ideas and strategies for cancer
research (Malta et al., 2018).

Weighted gene coexpression network analysis (WGCNA) is a
systematic biological method used to describe the patterns of gene
associations between different samples. This method can identify
candidate biomarker genes or therapeutic targets based on the
interconnectivity of gene sets and the association between gene
sets and phenotypes (Langfelder and Horvath, 2008). Instead of

Abbreviations: AJCC, American Joint Committee on Cancer; ANOVA, analysis
of variance; BP, biological process; CC, cellular component; CHEK1, checkpoint
kinase 1; CSCs, cancer stem cells; DEGs, differentially expressed genes;
EREG, epigenetically regulated; FC, fold change; FEN1, flap structure-specific
endonuclease 1; GEO, gene expression omnibus; GO, gene ontology; GS, genetic
significance; GSVA, gene set variation analysis; KEGG, Kyoto Encyclopedia of
Genes and Genomes; KIF18B, Kinesin family member 18B; KIFC1, Kinesin
family member C1; LUAD, lung adenocarcinoma; LUSC, lung squamous cell
carcinoma; MCODE, molecular complex detection; MEs, module eigengenes; MF,
molecular function; MM, module membership; mRNAsi, mRNA expression-based
stemness index; MS, module significance; NSCLC, non-small-cell lung cancer; OS,
overall survival; PFS, progression-free survival; PPI, protein-protein interaction;
RAD51, recombination protein A 51; RAD54L, DNA repair and recombination
protein RAD54-like; ROC, receiver operating characteristic; ssGSEA, Single simple
gene set enrichment analysis; TCGA, The Cancer Genome Atlas; TIICs, tumor
immune-infiltrating cells; TNM, tumor node metastasis; WGCNA, weighted gene
coexpression network analysis.

focusing on only differentially expressed genes (DEGs), WGCNA
uses information from thousands of the most varied genes or all
the genes to identify gene sets of interest and identifies significant
associations with phenotypes. By converting thousands of genes
associated with phenotypes into dozens of gene sets associated
with phenotypes, the problem of multiple hypothesis testing and
correction is eliminated. Moreover, according to the methods and
principles of WGCNA and miRNA, some scholars have found
hub genes related to bladder cancer (Pan et al., 2019).

Considering the strong association between tumor stem cells
and tumor pathogenesis, this study aimed to identify target
genes related to the regulation of LUAD stem cells. We used
WGCNA to analyze high-throughput sequencing data from
relevant public databases, obtained the module with the highest
correlation with mRNAsi and identified relevant biomarkers.
Another data set generated from multiple chips was used to
verify the correlations between these biomarkers and the clinical
characteristics of LUAD. In addition, the prognostic ability of
these biomarkers was examined.

MATERIALS AND METHODS

Data Processing
We downloaded the RNA-seq data and clinical information for
LUAD from the TCGA database1. Then, we converted Ensembl
IDs to gene names using the Ensembl database2 and performed
log2 processing of the data. Malta et al. (2018) used an innovative
single-class logistic regression machine learning algorithm to
extract sets of transcriptome and epigenetic characteristics from
non-transformed pluripotent stem cells and their differentiated
progeny in TCGA. Moreover, we can download the data
for the calculated mRNAsi belonging to the TCGA database.
Therefore, we downloaded the calculated mRNAsi and EREG-
mRNAsi of each LUAD patient from https://www.ncbi.nlm.nih.
gov/pmc/articles/PMC5902191/ (Malta et al., 2018). Any LUAD
sample from the TCGA database with incomplete clinical patient
information was excluded.

To verify the connection between the stem cell index and
clinical characteristics, we obtained corresponding data from the
GEO database. The inclusion criteria were as follows: (1) the
sample size of the GEO data set was greater than 100, and the
research focus was human LUAD; (2) each sample had adequate
clinical information; (3) all data sets contained the corresponding
hub genes identified for validation; and (4) a platform was
available to convert probe names into gene names. After defining
the gene set according to the inclusion criteria, we downloaded
the series matrix files and platform from the GEO database and
transformed the probe names into gene names.

Correlations of mRNAsi With Clinical
Characteristics
We studied the significant differences in mRNAsi between
normal and LUAD tissues and between patients with and without

1https://portal.gdc.cancer.gov
2http://asia.ensembl.org/index.html
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recurrence by the unpaired t test with GraphPad Prism version 7
(64 bit). Since postoperative adjuvant therapy may affect tumor
recurrence (Kaplan et al., 2016), we did not include patients
who received radiotherapy or chemotherapy when comparing
recurrent and non-recurrent patients. One-way ANOVA was
used to compare mRNAsi differences between groups of patients
based on TNM stage.

For prognostic comparisons, we compared the overall survival
(OS) and progression-free survival (PFS) rates. OS is defined
as the time between tumor diagnosis and death (from any
cause), and PFS is defined as the time between tumor diagnosis
and disease progression (in any way) or death (due to any
reason). We used X-tile software to identify the best cutoff
value and divided the cohort into high and low groups based
on the mRNAsi value relative to the cutoff. The working
principle of X-tile is to conduct a statistical analysis by grouping
different values as truncation values. The result with the smallest
P-value can be considered the best truncation value, and the
optimal truncation value for survival data can be quickly
found (Camp et al., 2004). We generated survival curves using
Kaplan-Meier analysis and calculated the P-value by the log
rank test for two groups in the survminer package of R
software (v 3.6.0). P < 0.05 was considered to indicate a
significant difference.

Differentially Expressed Genes (DEGs)
The limma package (Ritchie et al., 2015) was used to identify
genes that differ between LUAD and normal tissues. For genes
with multiple probes, we averaged the values. Genes with a
log2 fold-change (FC) > 1 and an adjusted P < 0.05 were
considered DEGs.

WGCNA
Construction of a Coexpression Network
The WGCNA package (Langfelder and Horvath, 2008) was used
to construct a coexpression network. The goodSamplesGenes
function was used to remove genes with large deletions and
outliers after building the sampleTree. Pearson correlation
coefficients between each group of genes were also calculated,
and their absolute values were used to construct the gene
expression similarity matrix: the formula for that is Eq. 1,
where xi and xj are the nodes i and j of the network. The
best β value was selected to build the proximity matrix so that
our gene distribution conformed to a scale-free network based
on connectivity. The adjacent and topological matrices were
obtained from the β values. The obtained topological overlap
matrix (TOM) was clustered by dissimilarity between genes, and
in Eq. 2, Lij represents the sum of the product of the adjacency
coefficients of the nodes joined by gene i and gene j. K represents
the sum of the adjacency coefficients of all nodes connected
individually by the gene. Then, the trees were divided into
different modules by the dynamic shear method (the minimum
number of genes in each module was 50). We incorporated
all DEGs into the coexpression network after excluding outlier
samples. β = 3 met the soft-threshold parameters of the
construction requirements for a scale-free distribution, and the

curve reached R2 = 0.97. MEDissThres was set to 0.7 to merge
similar modules.

aij = |cor(xi, xj)|β (1)

TOM =
1ij + aij

min(ki, kj)+ 1− aij
(2)

Identification of Significant Modules
We selected the hierarchical clustering module closely related
to mRNAsi and EREG-mRNAsi as the module for subsequent
analysis. Genetic significance (GS), module significance (MS),
and module eigengenes (MEs) were calculated. GS is defined
as the level of correlation between gene expression and clinical
information and is calculated by log10 transformation of the
P-value in the linear regression. MS is the average of the
significance of all genes in the module. ME is the first principal
component obtained by principal component analysis of the gene
expression matrix of each module. In addition, to clarify the
relationship between modules and the immune landscape, we
adopted a single simple gene set enrichment analysis (ssGSEA)
method by the GSVA package in R. The analysis of 28 types
of immune infiltrating cells (TIICs) in tumor tissues by this
algorithm depends on the specific labeled genomes of immune
cells in each subgroup. Through this algorithm, we can obtain
corresponding scores to reflect the TIICs infiltration abundance
of a single sample. Among all the modules, the one with the
highest absolute MS value was considered to be related to clinical
characteristics (mRNAsi, EREG-mRNAsi, and ssGSEA scores);
this module deserves further discussion.

Identification of Key Genes
After identifying significant modules, we calculated the GS and
module membership (MM, correlation between the module’s own
genes and gene expression profiles) for each key gene. MM is used
to describe the degree of association between nodes in a particular
module and other nodes in the module, that is, the degree of
internal connectivity of the module. To further identify genes
related to the trait of mRNAsi, we selected genes with MM > 0.8
and cor. gene GS > 0.6 as key genes.

Functional Enrichment
The clusterProfiler package (Yu et al., 2012) was used to perform
functional enrichment for Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG); the GO categories
were biological process (BP), cellular component (CC), and
molecular function (MF). The threshold was set at adjusted
P < 0.05. Functional enrichment analysis was used for significant
modules and key genes obtained by WGCNA.

Protein-Protein Interaction (PPI) Network
and Hub Gene Identification
We used key genes identified by coexpression network analysis
to build PPI networks using the String database3. The String
database searches for known and predicted protein interactions
and studies the interaction networks between proteins to help

3https://string-db.org/
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identify core regulatory genes. The inclusion criteria of the hub
genes are as follows: the genes with the highest MCODE_Score
performed by screening with MCODE (Saito et al., 2012) with
a default parameter setting that is degree cut-off = 2, node score
cut-off = 0.2 and K-core value = 2 by Cytoscape (version 3.6.1; 64-
bit; www.cytoscape.org/) (Smoot et al., 2011). We also calculated
coexpression relationships among key genes based on the gene
expression levels to determine their strength at the transcriptional
level. The Pearson correlation between genes was calculated using
the R corrplot package.

Validation of Hub Genes
To further verify the connection between the hub genes and
clinical characteristics, we analyzed corresponding data from the
GEO database for verification. The inclusion criteria for the
qualified samples of GEO database were as follows: (1). The
samples were belong to human LUAD or human normal tissue.
(2). each sample had adequate clinical information. (3). The
sample all contain the corresponding hub genes for validation.
After defining the gene set according to the inclusion criteria, we
downloaded the series matrix files and platform from the GEO
database and transformed the probe name into the gene name. An
unpaired t test was used to compare two groups, and comparisons
among multiple groups were performed with one-way ANOVA.
To analyze the correlation of TIICs with each hub gene, we used
the TIMER4 online database. It also uses RNA-seq expression
profile data to detect the infiltration of immune cells in tumor
tissues. Moreover, TIMER provided infiltration of six types of
immune cells (B cells, CD4+ T cells, CD8+ T cells, neutrophils,
lymphocytes and dendritic cells).

Survival Analysis
Establishment of a Risk Assessment Model
A multivariate Cox proportional hazards regression analysis was
carried out for hub genes significantly associated with OS in
univariate proportional hazards regression analysis to further
identify independent hub genes with the best prognostic efficacy
using the Akaike information criterion (Yamaoka et al., 1978).
A risk score formula was created using the hub genes that
P< 0.05 obtained through multivariate Cox proportional hazards
regression analyses. In Eq. 3, n denotes the number of prognostic
hub genes, Gi represents the expression value of the ith hub
genes, and weight i denotes the coefficient of each significant hub
gene. With the median risk score as the dividing line, we divided
the patients into high-risk (>median risk score) and low-risk
(<median risk score) groups, and the Kaplan–Meier method was
used to estimate the survival of high-risk and low-risk patients.
To validate the effect of the risk assessment model, we used a
time-dependent receiver operating characteristic (ROC) curve
for verification.

Risk score =
n∑

i=1

Gi × weighti (3)

4https://cistrome.shinyapps.io/timer/

Construction of a Nomogram
Univariate and multivariate Cox regression analyses were
performed for clinical factors and risk scores, and factors with
P < 0.05 were considered to be independent prognostic factor
and used to construct the nomogram with a 1-, 3-, and 5-year
survival rate using the R rms package (Frank and Harrel, 2019).
To verify the accuracy of the nomogram in predicting patient
survival, we used a calibration, time-dependent ROC curve and
Harrell’s C statistics (Heagerty and Zheng, 2005).

RESULTS

The Correlation of mRNAsi and Clinical
Characteristics in LUAD
After excluding unqualified samples from the TCGA database
(Table 1), we compared the mRNAsi with the clinical
characteristics. As shown in Figure 1A, a significant difference
between the mRNAsi values of the LUAD tissues and normal
tissues was observed. The mRNAsi of tumor tissues was higher
than that of normal tissues. Significant differences were also
found for T stage (Figure 1D), M stage (Figure 1C) and AJCC
stage (Figure 1F). There were significant differences between the
T1 and T2 stages (P = 0.010), stage I and stage IV (P = 0.009).
However, there was no significant difference in the mRNAsi
values between the relapse groups (Figure 1B) and N stages
(Figure 1E). Furthermore, there was no significant difference in
pairwise comparisons of the N stages. In terms of prognosis,
LUAD patients with a high mRNAsi showed significantly worse
outcomes than those with a low mRNAsi for both OS and PFS
(Figures 1G,I).

Screening of DEGs
There were significant differences between mRNA levels in
normal tissues and LUAD tissues; thus, we identified DEGs based
on the comparison between the two groups. After normalization
and log2 processing of the data, we found a total of 4340 DEGs,
including 2571 upregulated genes and 1769 downregulated genes.
The volcano map is shown in Figure 1H.

Identification of the Most Significant
Modules and Key Genes
The best soft-threshold parameters and the scale-free distribution
are shown in Figure 2A. Finally, we obtained 15 modules
(Figure 2B). The green (R2 = 0.82, P = 1e-87) and blue
(R2 = −0.62, P = 7e-40) modules were found to be associated
with the mRNAsi of LUAD (Figure 2C). In addition, the genes in
the green (cor = 0.94, P < 1e-200) and blue modules (cor = 0.77,
P = 1e-200) showed high GS and MM based on an intramodular
analysis (Figures 2D,E). In addition, the green module has a
negative correlation with ssGSEA scores, while the blue module
has a positive correlation (Supplementary Figure S1). The green
module was selected for subsequent research due to the highest
positive correlation with mRNAsi. The 51 key genes that are
MM > 0.8 and cor. gene GS > 0.6 were considered key genes
for the green module.
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TABLE 1 | Basic characteristics of the gene expression profile data. LUAD, lung adenocarcinoma.

Record Platform Normal LUAD Number of excluded samples Country Year

TCGA IIIumina HiSeq 57 385 134 United States 2018

GSE13213 GPL6480 Agilent-014850 Whole Human Genome
Microarray 4 × 44K G4112F (Probe Name version)

0 117 0 Japan 2009

GSE31210 GPL570 [HG-U133_Plus_2] Affymetrix Human Genome
U133 Plus 2.0 Array

0 226 0 Japan 2011

GSE26939 GPL9053 Agilent-UNC-custom-4 × 44K 0 116 0 United States 2012

GSE32867 GPL6884 Illumina HumanWG-6 v3.0 expression beadchip 58 58 0 United States 2012

GSE41271 GPL6884 Illumina HumanWG-6 v3.0 expression beadchip 0 182 93 United States 2013

GSE43458 GPL6244 [HuGene-1_0-st] Affymetrix Human Gene 1.0 ST
Array [transcript (gene) version]

30 80 0 United States 2013

FIGURE 1 | (A) Differences in mRNAsi between normal (57 samples) and LUAD (385 samples) tissues. (B) Differences in mRNAsi between LUAD patients without
recurrence (154 samples) and with recurrence (46 samples) after primary treatment without adjuvant therapy. (C) Differences in mRNAsi between LUAD patients with
M0 (370 samples) and M1 (15 samples) stage. (D) Comparison of mRNAsi in four different T stages (T1, 124 samples; T2, 75 samples; T3, 32 samples; T4, 9
samples). (E) Comparison of mRNAsi in four different N stages (N0, 260 samples; N1, 75 samples; N2, 48 samples; N3, 2 samples). (F) Comparison of mRNAsi in
four different AJCC stages (Stage I, 215 samples; Stage II, 99 samples; Stage III, 56 samples; Stage IV, 15 samples). (G) Kaplan–Meier curves show that the low
mRNAsi group had a better prognosis than the high mRNAsi group for OS. (H) Volcano map of differentially expressed genes; green indicates downregulated genes,
and red indicates upregulated genes. (I) Kaplan–Meier curves show that the low mRNAsi group had a better prognosis than the high mRNAsi group for PFS. LUAD,
lung adenocarcinoma; mRNAsi, mRNA expression-based stemness index; AJCC, American Joint Committee on Cancer; OS, overall survival; PFS, progression-free
survival.
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FIGURE 2 | Weighted gene coexpression network of LUAD. (A) Clustering of samples and removal of outliers. (B) Analysis of network topology for various
soft-thresholding powers. The left panel shows the scale-free fit index, signed R2 (y-axis) and the soft threshold power (x-axis). β = 3 was chosen for the subsequent
analysis. The right panel shows that the mean connectivity (y-axis) is a strictly decreasing function of the power β (x-axis). (C) The cluster dendrogram of genes of
LUAD patients. Each branch in the figure represents one gene, and every color below represents one coexpression module. (D) Correlation between the gene
module and clinical characteristics, including mRNAsi and EREG-mRNAsi. The correlation coefficient in each cell represented the correlation between the gene
module and the clinical characteristics, which decreased in size from red to blue. (E) Scatter diagram for module membership vs. gene significance for mRNAsi in
the green module. (F) Scatter diagram for module membership vs. gene significance for mRNAsi in the blue module. LUAD, lung adenocarcinoma; mRNAsi, mRNA
expression-based stemness index; EREG, epigenetically regulated.
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Functional Enrichment of Significant
Modules and Key Genes
For the significant modules and key genes, GO and KEGG
pathway enrichment analyses were performed. The top five
enriched results are presented in Supplementary Figure S2 for
green and blue modules. Figure 3 shows 51 key genes. These
key genes are mostly enriched in chromosome segregation,
chromosomal region and microtubule binding, and these
findings are strongly related to the cell cycle.

PPI Network and Hub Gene Identification
A PPI network consists of 51 nodes and 1212 edges (Figure 4A).
The recombination protein RAD54-like (RAD54L) is the seed

node judged by the MCODE plugin of Cytoscape software, and
the following genes with MCODE scores = 40 and nodes > 40
degrees will be considered hub genes: checkpoint kinase 1
(CHEK1), recombination protein A 51 (RAD51), kinesin family
member 18B (KIF18B), kinesin family member C1 (KIFC1)
and flap structure-specific endonuclease 1 (FEN1). Furthermore,
the six hub genes were significantly correlated with each
other (Figure 4B).

Validation of Hub Gene Expression
According to our inclusion criteria, we analyzed six chips
(Table 1 and Supplementary Table S1) that contain qualified
samples from the GEO database, namely, GSE13213 (Tomida

FIGURE 3 | Circular plot of LUAD DEG enrichment analysis. (A) Biological processes, (B) molecular function (MF), and (C) cellular component. (D) KEGG pathway
enrichment analysis. DEGs, differentially expressed genes; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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et al., 2009), GSE31210 (Okayama et al., 2012; Yamauchi et al.,
2012), GSE26939 (Wilkerson et al., 2012), GSE32867 (Selamat
et al., 2012), GSE41271 (Sato et al., 2013; Riquelme et al., 2014;
Girard et al., 2016; Parra et al., 2016), and GSE43458 (Kabbout
et al., 2013). In GSE41271, 93 samples were excluded because
they belonged to LUSC. There were significant differences in

the expression of the six hub genes in both chips (GSE32867,
GSE43458). However, RAD54L was inconsistently expressed
between LUAD and normal tissues, and the remaining five genes
were highly expressed in LUAD tissues compared to normal
tissues (Figures 5A,B). The patients with LUAD in GSE31210
and GSE13213 did not receive any adjuvant radiotherapy or

FIGURE 4 | (A) The protein-protein interaction between key genes. The thickness of the solid line represents the strength of the relationship. (B) Correlation between
the top 20 key genes according to MCODE scores at the transcriptional level. MCODE, Molecular Complex Detection.

FIGURE 5 | The six hub genes were verified in the GEO database. (A) In GSE43458, the expression of the five hub genes was higher in LUAD than in normal tissue,
except RAD54L. (B) In GSE32867, the expression of the six hub genes was higher in LUAD than in normal tissue. (C) In GSE13213, the expression of the six hub
genes was higher in the LUAD patients with recurrence than in those without recurrence. (D) In GSE31210, the expression of the six hub genes was higher in the
LUAD patients with recurrence than in those without recurrence. (E) In GSE26939, statistically significant differences existed in six hub genes of different grades.
(F) In GSE26939, statistically significant differences exist in six hub genes of different molecular subtypes. (G) In GSE41271, RAD54L, RAD51 and KIFC1 were
significantly differentially expressed in different AJCC grades. LUAD, lung adenocarcinoma; AJCC, American Joint Committee on Cancer. *means P < 0.05, **means
P < 0.01, ***means P < 0.001.
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chemotherapy after the operation. We found that the six hub
genes were highly expressed in patients with tumor recurrence
(Figures 5C,D). For GSE26939, we found that there were
significant differences in the expression of the six hub genes
in LUAD patients with different grades, and with the increase
in staging, the gene expression also increased (Figure 5E).
However, for different AJCC grades, only RAD54L, RAD51,
and KIFC1 were significantly expressed with regard to different
grades (Figure 5G). Notably, in LUAD molecular subtypes
(bronchioid, magnoid, and squamoid), 6 of the hub genes showed
differences in expression. Magnoid subtype expression was the
highest and lowest compared to bronchioid subtype expression
(Figure 5F). As shown in Supplementary Figure S3, six hub
genes were all moderately negatively correlated with B cells, and
all moderately negatively correlated macrophages except CHEK1.
As the expression of these genes increased, the amount of TIICs
decreased, while RAD54L was positively correlated with CD4+ T
cells. High expression of this immune cell also increased.

Survival Analysis
Establishment of a Risk Assessment Model
This model consists of three prognostic hub genes that are
independent risk factors and were used with Eq. 3 to calculate the
risk scores (Table 2). The risk score is (0.411∗ expression level
of CHEK1) + (−0.367∗ expression level of KIFC1) + (0.326∗
expression level of RAD54L). The risk score distribution with
the survival status of all included LUAD patients from TCGA is
shown in Figure 6A. Kaplan-Meier analysis showed that LUAD
patients with high risk scores had significantly shorter OS times
than patients with low risk scores (Figure 6B). Time-dependent
ROC analysis showed that the risk assessment model had good
predictive performance for the 1-, 3-, and 5-year predictive
probability (Figure 6C).

Construction of a Nomogram
After Cox regression analysis combined with the clinical
information, we found that the risk score was still a significant
risk factor affecting prognosis (Table 3). Because there were
relatively few patients in the N3 and T4 stages, we set the
T\N stage as a binary variable (T1–T2/T3–T4 and N1–N2/N3–
N4) to facilitate subsequent analysis. The nomogram contains
five prognostic risk factors, namely, race, T stage, N stage,
chemotherapy and risk score (Figure 7A). The C index is
0.724, and the ROC curves (Figure 7B) and calibration curve

(Figure 7C) of the 1-, 3-, and 5-year OS all indicate that our
model has good predictive ability.

DISCUSSION

NSCLC is the king of cancers due to its extremely high mortality
and morbidity, but its pathogenesis is still unclear. However, an
increasing number of studies have found that cancer stem cells
(CSCs) play an important role in the development and drug
resistance of NSCLC (Herreros-Pomares et al., 2019; Huang et al.,
2019). In this study, we identified the significance of the mRNAsi
in the clinical characteristics of patients with LUAD with the
help of the TCGA database and the mRNAsi corresponding to
each sample. At the same time, hub genes related to the mRNAsi
were obtained by the WGCNA method and verified with external
data from the GEO database. The results also indicated that
these 6 genes are important factors in clinical characteristics and
that these genes are highly correlated with each other. Finally,
after adjusting for possible prognostic factors, we obtained a
predictive model containing three prognostic genes with good
predictive power.

We used WGCNA to obtain a green module of interest related
to the mRNAsi, and functional enrichment analysis suggested
that most of the gene functions were enriched in the cell cycle
and DNA replication pathway. GO analysis also indicated that
most of the functions of this module are enriched in chromosome
segregation, chromosomal region, and microtubule binding.
These pathways were confirmed to be related to the occurrence,
development and drug resistance of NSCLC (Liu et al., 2019;
Sun et al., 2019). These functional pathways are similar to the
biological functions of CSCs (Wang et al., 2019). The hub genes
identified by WGCNA may serve as new therapeutic targets or
biomarkers for LUAD research.

CHEK1 plays a central role in DNA damage. CHEK1 also
regulates the cell cycle, coordinates cellular activities, and
participates in DNA repair. CHEK1 is highly expressed in
breast cancer, colon cancer, liver cancer, gastric cancer and
other tumors, and CHEK1-related signaling pathways have been
confirmed in a wide variety of tumors. CHEK1 is regarded as
a target gene for potential tumor treatment (McNeely et al.,
2014). In addition, Doerr et al. (2017) confirmed that CHEK1
is highly expressed in small-cell lung cancer (SCLC) compared
with LUAD. In vivo studies in mice showed that blocking

TABLE 2 | Univariable and multivariable Cox regression analysis of the three-hub gene signature.

Genes Univariate analysis Multivariate analysis Coefficients

HR 95%CI P-value HR 95%CI P-value

CHEK1 1.361 1.149–1.613 <0.001 1.490 1.131–1.963 0.005 0.411

RAD51 1.243 1.049–1.474 0.012 1.018 0.712–1.454 0.523 –

KIF18B 1.117 1.074–1.280 0.016 1.008 0.753–1.349 0.058 –

KIFC1 0.775 0.426–0.848 0.042 0.662 0.460–0.952 0.026 −0.367

FEN1 1.224 1.079–1.531 0.012 1.116 0.649–1.921 0.691 –

RAD54L 1.187 1.024–1.375 0.023 1.338 1.011–1.771 0.042 0.326
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FIGURE 6 | The three-hub mRNA signature in the prognosis of OS of LUAD patients. (A) The distribution, patient survival status and heatmap of the three-hub mRNA
expression profiles. (B) Kaplan–Meier survival estimates OS of LUAD patients according to the three-hub mRNA signature. (C) ROC analysis for OS prediction within
1–, 3–, and 5–year as the defining point of the three-hub mRNA signature. LUAD, lung adenocarcinoma; ROC, receiver operating characteristic; OS, overall survival.

TABLE 3 | Univariable and multivariable Cox regression analysis of patient clinical characteristics.

Variable Univariate analysis Multivariate analysis

HR 95%CI P-value HR 95%CI P-value

Age 1.010 0.991–1.030 0.296 –

Sex (female/male) 0.670 0.633–1.342 0.921 –

Race (Caucasian/non-Caucasian) 2.330 1.246–4.355 0.008 2.327 1.222–4.429 0.016

Smoke history (no/yes) 0.671 0.337–1.335 0.256 –

T stage (T1-T2/T3-T4) 1.449 1.134–1.851 0.003 1.241 1.032–1.492 0.021

N stage (N1-N2/N3-N4) 1.709 1.367–2.136 <0.001 2.800 1.796–4.366 <0.001

M stage (M0/M1) 1.654 0.804–3.403 0.172 –

Chemotherapy (No/Yes) 0.780 0.065–0.098 0.041 0.634 0.410–0.980 0.040

Radiotherapy (No/Yes) 2.025 1.310–3.130 0.001 1.369 0.828–2.265 0.221

Risk score (Low/High) 2.707 1.782–4.112 <0.001 2.533 1.645–3.901 <0.001

the CHEK1-related pathway can induce genotoxic damage and
apoptosis in SCLC cells but not in LUAD (Doerr et al., 2017).
However, Yu et al. (2012) demonstrated in mice that miR-195
regulates the response of NSCLC cells to microtubule-targeting
agents (MTAs) by targeting CHEK1. The overexpression of
CHEK1 contributes to the development of resistance to MTAs,
while the knockout of CHEK1 contributes to the enhancement of
MTAs and inhibition of the growth of NSCLC cells.

RAD51 is also highly expressed in many cancers (Lee et al.,
2019; Zhang W. et al., 2019) and has been identified as a
radiosensitive target for many cancers (Chen et al., 2012). Sanada
et al. (2019) evaluated the miR-143-5p molecular network in
LUAD using whole-genome sequencing combined with miRNA
database analysis and identified 11 prognostic target genes,
including RAD51. Another study showed that the abnormal
expression of other genes, such as cancer testis antigen (CTA),
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FIGURE 7 | (A) The nomogram for predicting probabilities of patients with 1–, 3–, and 5–year OS. (B) ROC curve based on the nomogram for 1–, 3–, and 5–year OS
probability. (C) The calibration plots for predicting patient 1–year OS. Nomogram–predicted probability of survival is plotted on the x–axis; actual survival is plotted on
the y–axis. (D) The calibration plots for predicting patient 3–year OS. (E). The calibration plots for predicting patient 5–year OS. LUAD, lung adenocarcinoma; ROC,
receiver operating characteristic; OS, overall survival.

can also promote RAD51 filament formation and simultaneously
enhance the sensitivity to DNA damaging agents (Nichols et al.,
2018). Dong et al. (2019) revealed that RAD51 plays an important
role in radiation reactions. The expression of RAD51 is positively
regulated by speckle-type POZ protein (SPOP), while ionizing
radiation can lead to the downregulation of SPOP and influence
the DNA damage response (DDR) pathway through RAD51
(Dong et al., 2019).

The KIF gene family, which encodes proteins, is involved in
many important physiological processes, especially intracellular
transport, chromosome separation, mitotic spindle formation
and cytokinesis. Some studies have suggested that mutations
in the KIF gene family are involved in the formation of many
cancers (Sheng et al., 2018; Xia et al., 2018; Xie et al., 2018).
There are few studies on KIF18b and LUAD, and only Zhang L.
et al. (2019) confirmed that LUAD patients with high KIF18b
expression have a poor prognosis. Itzel et al. (2015) identified
the regulatory role of KIF18 in hepatocellular carcinoma (HCC)
by performing an oncogenic microarray meta-analysis. In vitro
experiments also confirmed that the downregulation of KIF18B
could induce G1 phase arrest of the cell cycle and inhibit
the proliferation, migration and invasion of cervical cancer
cells, while its overexpression could promote the proliferation,
migration and invasion of cervical cancer cells (Wu et al., 2018).

KIFC1 is a c-type terminal kinesin that plays an indispensable
role in the centrosomal aggregation of tumor cells (Farina et al.,
2013). Using RT-qPCR and Western blot detection of NSCLC
and adjacent normal lung tissue samples, Liu et al. (2016)
found that KIFC1 is highly expressed in NSCLC tissues and that
silencing KIFC1 inhibits NSCLC cell proliferation. Using flow
cytometry to examine the cell cycle, we found that silencing
KIFC1 could arrest the cell cycle in G2/M phase, suggesting that
KIFC1 can be used as a biomarker for lung cancer diagnosis and
treatment (Liu et al., 2016). In addition, Han et al. (2019) found
that KIFC1 is highly expressed in HCC and induces epithelial-
mesenchymal transformation and HCC metastasis both in vitro
and in vivo.

FEN1 is an important component of the basal resection
repair pathway of the DNA repair system and maintains
genomic stability through DNA replication and repair (Shen
et al., 2005). He et al. (2017) found that FEN1 plays a key
role in the rapid proliferation of NSCLC cells and confirmed
in a mouse model that treatment with an FEN1 inhibitor
enhanced the sensitivity of NSCLC cells to DNA damaging agents
and that combined therapy with cisplatin could significantly
inhibit the progression of cancer cells. Using quantitative RT-
PCR and immunohistochemical analysis, Zhang et al. (2018)
revealed that FEN1 is highly overexpressed in NSCLC tissues
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and that the higher the expression of FEN1 is, the poorer
the tumor differentiation and prognosis. In vitro experiments
also confirmed that the downregulation of FEN1 could lead to
G1/S or G2/M cell cycle arrest in NSCLC cells and inhibit cell
proliferation in vitro (Zhang et al., 2018). Therefore, inhibitors
targeting FEN1 may be a promising anticancer strategy.

RAD54L plays an important role in homologous
recombination-related repair or DNA double-strand breakage
(Rencic et al., 1996). There are few studies on this gene and
NSCLC, especially the LUAD subtype, and only one report
has indicated that it is highly expressed in NSCLC (Valk
et al., 2010). Interestingly, two hub genes, including RAD54L,
were shown to play an important role in the pathological
mechanism of glioblastoma (GBM) in our study. Bai et al. (2018)
confirmed experimentally in mice that CHEK1 could induce the
radioresistance of GBM cells by upregulating the expression of
RAD54L, while CHEK1 increased GBM cell apoptosis during
radiotherapy by downregulating the expression of RAD54L.

Since NSCLC includes both LUAD and LUSC, their
pathological mechanisms and immunoinfiltrating cells are
different, so the therapeutic targets between the two may also
be different (Faruki et al., 2017). It is interesting to note the
WGCNA used to look for the hub gene that is correlated with
miRNA, but the authors used samples from lung squamous cell
carcinoma (LUSC) in the TCGA database and found another
gene from the KIF family, KIF15 (Qin et al., 2020). The two
modules found in WGCNA were correlated with the enrichment
scores of 28 types of immune cells, while the modules positively
correlated with mRNAsi were negatively correlated with the
enrichment scores, suggesting that mRNAsi-related genes may
inhibit tumor immune cell infiltration. At the same time, as
the expression level of the hub gene increases, the content of B
cells and macrophages decreases. This finding suggests that these
hub genes may be involved in tumor immunity, which warrants
further research.

Our research has some limitations that should be mentioned.
First, we used data from a public database to confirm our
findings and did not perform further experiments to confirm
the expression of related genes or research on the molecular
mechanisms and pathways involved. Second, since our study
examined data from a public database, the quality may not be
guaranteed. At the same time, the results obtained by different
chips may not be accurate due to differences between batches.
Finally, most of the data we studied were obtained from the
United States or Japan and are not representative of patients
worldwide. Therefore, further well-designed biological studies
with large sample sizes are needed to confirm our findings.

CONCLUSION

CHEK1, RAD51, KIF18B, KIFC1, FEN1, and RAD54L may have
a strong influence on LUAD stem cell maintenance. These hub
genes may serve as control targets for LUAD CSCs, and further
study of these genes may lead to the development of new
anticancer therapies.
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FIGURE S1 | Enrichment analysis of green and blue module. (A) GO analysis of
green module, (B) GO analysis of blue module, (C) KEGG pathway enrichment
analysis of green module. (D) KEGG pathway enrichment analysis of blue module.
GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.

FIGURE S2 | Correlation between the gene module and ssGSEA scores of 28
immune cells, The correlation coefficient in each cell represented the correlation
between the gene module and the scores, which decreased in size from red to
blue. The corresponding P-value is also annotated. ssGSEA, Single simple gene
set enrichment analysis.

FIGURE S3 | Correlation of gene expression with immune infiltration level in
LUAD. (A) CHEK1, (B) RAD51, (C) KIF18B, (D) KIFC1, (E) FEN1, (F) RAD54L.
LUAD, lung adenocarcinoma.

TABLE S1 | Clinical characteristics of GEO datasets.
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