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ABSTRACT 

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which causes COVID-

19, utilizes angiotensin-converting enzyme 2 (ACE2) for entry into target cells. ACE2 has been 

proposed as an interferon-stimulated gene (ISG). Thus, interferon-induced variability 

in ACE2 expression levels could be important for susceptibility to COVID-19 or its outcomes. 

Here, we report the discovery of a novel, primate-specific isoform of ACE2, which we designate 

as deltaACE2 (dACE2). We demonstrate that dACE2, but not ACE2, is an ISG. In vitro, dACE2, 

which lacks 356 N-terminal amino acids, was non-functional in binding the SARS-CoV-2 spike 

protein and as a carboxypeptidase. Our results reconcile current knowledge on ACE2 expression 

and suggest that the ISG-type induction of dACE2 in IFN-high conditions created by treatments, 

inflammatory tumor microenvironment, or viral co-infections is unlikely to affect the cellular 

entry of SARS-CoV-2 and promote infection.  
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INTRODUCTION  

Cells expressing ACE2 are potential targets of SARS-CoV-2 infection1,2. Studies based on 

single-cell RNA-sequencing (scRNA-seq) of lung cells have identified type II pneumocytes, 

ciliated cells, and transient secretory cells as the main types of ACE2-expressing cells3,4. 

Furthermore, ACE2 was proposed to be an ISG, based on its inducible expression in cells treated 

with interferons (IFNs) or infected by viruses that induce IFN responses, such as influenza4,5. 

These findings implied that the induction of ACE2 expression in IFN-high conditions could 

result in an amplified risk of SARS-CoV-2 infection4,5. Concerns could also be raised about 

possible ACE2-inducing side effects of IFN-based treatments proposed for COVID-196-9. 

ACE2 plays multiple roles in normal physiological conditions and as part of host tissue-

protective machinery during damaging conditions, including viral infections. As a terminal 

carboxypeptidase, ACE2 cleaves a single C-terminal residue from peptide hormones such as 

angiotensin II and des-Arg9-bradykinin. Angiotensin II is generated from its precursor 

angiotensin I by ACE, and is proteolytically converted into another biologically active peptide, 

angiotensin-(1-7) by ACE210,11. ACE and ACE2 belong to the renin-angiotensin-aldosterone 

system, which regulates blood pressure and fluid-electrolyte balance; dysfunction of this system 

contributes to comorbidities in COVID-1910,12. des-Arg9-bradykinin is generated from 

bradykinin and belongs to the kallikrein-kinin system, which is critical in regulating vascular 

leakage and pulmonary edema, early signs of severe COVID-1913,14.  

High plasma angiotensin II levels were found responsible for coronavirus-associated acute 

respiratory distress syndrome (ARDS), lung damage and high mortality in mouse models15,16 and 

as a predictor of lethality in avian influenza in humans17,18. ACE2, which decreases the levels of 

angiotensin II, was identified as a protective factor in the same conditions. The hijacking of the 

normal host tissue-protective machinery guarded by ACE2 was suggested as a mechanism 

through which SARS-CoV could infect more cells4,5. Thus, it is critically important to identify 

factors affecting ACE2 expression in normal physiological processes and during viral infections 

and associated pathologies, such as in COVID-19. 

Herein, aiming to explore the IFN-induced expression of ACE2 and its role in SARS-CoV-2 

infection, we identified a novel, primate-specific isoform of ACE2, which we designate as 

deltaACE2 (dACE2). We then showed that dACE2, but not ACE2, is induced in various human 
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cell types by IFNs and viruses; this information is important to consider for future therapeutic 

strategies and understanding susceptibility and outcomes of COVID-19. 

 

RESULTS 

dACE2 is a novel inducible and primate-specific isoform of ACE2 

To address the extent to which IFNs induce the expression of ACE2 in human cells, we used our 

existing RNA-seq dataset (NCBI SRA: PRJNA512015) of a breast cancer cell line T47D 

infected with Sendai virus (SeV), known to be a strong inducer of IFNs and ISGs19-21. 

Accordingly, no IFNs were expressed in T47D cells at baseline, but SeV strongly induced 

IFNB1, a type I IFN and all type III IFNs (IFNL1, 2, 3, and 4). Several well-known ISGs (ISG15, 

MX1 and IFIT1) were moderately expressed at baseline but were strongly induced by SeV 

(Table S1). ACE2 was not expressed at baseline but was strongly induced by SeV, exclusively as 

an isoform initiated from a novel first exon in intron 9 of the full-length ACE2 gene (Figure 1A, 

B).  

RNA-seq analysis in additional cell lines demonstrated that ACE2 exists as two full-length 

transcripts initiated from two independent first exons, which we designated as Ex1a and Ex1b 

(the latter is shared between these transcripts). Additionally, a truncated transcript was initiated 

from this novel first exon in intron 9, which we designated as Ex1c (Figure 1B). The 

combination of ENCODE chromatin modification marks (H3K4me1, H3K4me3, H3K27ac, and 

a cluster of DNase I hypersensitivity sites, Figure 1A) suggests that Ex1c, but not Ex1a and 

Ex1b, is located within a putative regulatory region that might affect gene expression. Analysis 

of corresponding promoters for binding motifs for transcription factors relevant for IFN signaling 

predicted multiple motifs within the promoter of ACE2-Ex1c (P3) (Figure S1). In contrast, no 

ISG-type motifs were predicted in promoters of ACE2-Ex1a (P1) and Ex1b (P2), and only one 

ISG-type motif was predicted within the 5’UTR of Ex1b (Figure S1). 

The novel ACE2 isoform at 5p22.2 locus of human chromosome X is predicted to encode a 

protein of 459 aa, in which Ex1c encodes the first 10 aa, which are unique. Compared to the full-

length ACE2 protein of 805 aa, the truncation eliminates 17 aa of the signal peptide (SigP) and 

339 aa of the N-terminal peptidase domain (PD, Figure 1C). We designate this novel transcript 
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as deltaACE2 (dACE2, NCBI GenBank accession number MT505392). Of the 100 vertebrate 

species with genomic sequences available through the UCSC Genome Browser, the 140-bp 

sequence of dACE2-Ex1c is highly conserved only in primates (Figure 1D, E and Figure S2A, 

B).  

dACE2 is induced by in vitro treatment with IFNs  

We confirmed the SeV-induced expression of the full-length dACE2 by RT-PCR (Figure 2A, B) 

and verified the corresponding PCR products by Sanger-sequencing. Using custom-designed 

assays, we explored ACE2 and dACE2 expression in multiple cell lines (Figure 2C, Table S2A). 

In most cell lines tested, dACE2 but not ACE2 was strongly upregulated by SeV infection 

(Figure 2B, C). To directly address whether IFN was responsible for the induced expression of 

dACE2, we performed expression analysis in primary normal human bronchial epithelial 

(NHBE) cells22 and human intestinal (colon and ileum) organoid cultures23. In NHBE cells from 

5 healthy donors, baseline expression levels of dACE2 and ACE2 were comparable, but only 

dACE2 was significantly induced by treatment with IFN-α or IFN-λ3 (Figure 2D, Table S2B). 

In contrast, ACE2 was highly expressed already at baseline both in colon and ileum organoid 

cultures, while the expression of dACE2 was very low. Treatments with IFN-β or a cocktail of 

IFNλ1-3 significantly induced only expression of dACE2 and not ACE2 (Figure 2E, Table 

S2C). In both cell models, the expression pattern of dACE2 was similar to that of the known 

ISGs – MX1 (Figure 2D, Table S2B) and IFIT1 (Figure 2E, Table S2C). 

dACE2 is induced in virally infected human respiratory epithelial cells 

To investigate whether dACE2 expression is induced by RNA viruses, which are potent inducers 

of the IFN response, we de novo quantified the expression of ACE2-Ex1a, Ex1b, and the newly 

annotated dACE2-Ex1c in several public RNA-seq datasets of virally infected human respiratory 

epithelial cells. In an RNA-seq dataset of human nasal airway epithelial cells from asthmatic 

patients ex-vivo infected with respiratory rhinovirus strains RV-A16 and RV-C15 (NCBI SRA: 

PRJNA627860), both ACE2 and dACE2 were expressed (Figure 3A). Compared to uninfected 

cells, dACE2-Ex1c expression was strongly induced by both viruses – by RV-A16 (2.58-fold; P 

= 2.52E-13) and RV-C15 (2.42-fold; P = 2.52E-12), while expression of ACE2-Ex1b was weakly 

induced only by RV-C15 (1.13-fold; P = 0.032) (Figure 3B). Only dACE2 expression strongly 

correlated with multiple ISGs and IFNs (Figure 3C). Similarly, in human lung explants infected 
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with influenza A/H3N2 virus (NCBI SRA: PRJNA557257), only dACE2 was induced by 

infection, and its expression correlated with the levels of IFNs and ISG (Figure 3D, E).  

It was reported that in contrast to ACE2 expression in human cells, Ace2 was not induced in 

primary mouse tracheal basal cells in response to in vitro and in vivo IFN-stimulation, and upon 

in vivo viral infection4. To explore this further, we analyzed a dataset for human and mouse lung 

cells infected with the respiratory syncytial virus (RSV, NCBI SRA: PRJNA588982). Indeed, we 

did not observe induction of Ace2 in mouse lung cells (Figure S3A), while dACE2 but not ACE2 

was induced in RSV-infected human pulmonary carcinoma cell line (H292) (Figure S3B). These 

results illustrate that the identification of ACE2 as an ISG4,5 was likely based on the detection of 

inducible expression of dACE2, since 3’-scRNA-seq would detect both ACE2 and dACE2. The 

significant differences between the human and mouse sequences corresponding to dACE2-Ex1c 

and corresponding promoters might be responsible for the lack of ISG-type ACE2 expression in 

the mouse (Figure 1D, Figure S2A, B).  

dACE2 is enriched in squamous epithelial tumors  

We explored the expression patterns of dACE2 in various human tissues. In a dataset of 95 

normal human tissues of 27 types, dACE2-Ex1c was detectable in select tissues but at very low 

levels (≤ 10 RNA-seq reads), while ACE2-Ex1b expression was common (Figure S4). In the 

Genotype-Tissue Expression (GTEx) set of normal human tissues, only total gene expression 

was available for ACE2, with the highest expression observed in the testes and small intestine 

(Figure S5). We hypothesized that as an ISG, dACE2 might be absent or expressed at low levels 

in normal tissues, but could be induced by the inflammatory tissue microenvironment. We 

explored the data from The Cancer Genome Atlas (TCGA), which represents the largest 

collection of tumors and tumor-adjacent normal tissues. Expression of both ACE2 and dACE2 

was detectable in many tumor-adjacent normal tissues (Figure 4A, Figure S6). In the set of 

10,185 TCGA tumors of 33 types, ACE2-Ex1a, Ex1b and dACE2-Ex1c were expressed in 

12.6%, 38.0% and 16.8% of tumors, respectively, with ≥5 RNA-seq reads/sample. dACE2 was 

most expressed in the sets of head and neck squamous carcinoma (HNSC) and lung squamous 

carcinoma (LUSC), which represent oral and bronchial mucosal epithelial surfaces, while ACE2 

was most expressed in kidney tumors (Figure S7).  
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Generally, dACE2 expression was enriched in squamous tumors representing epithelial tracts.  

Squamous carcinomas of the lung (LUSC) and head and neck (HNSC) represent respiratory 

tract, esophageal cancer (ESCA) - upper gastrointestinal, and bladder cancer (BLCA) and 

cervical squamous carcinoma (CESC) - urogenital tract (Figure 4A). In each tumor type, dACE2 

expression was significantly higher in squamous compared to non-squamous tumors and 

adjacent-normal tissues (Figure 4B). Because tumors represent results of clonal expansion of 

individual cells, this analysis highlighted the differential etiology (squamous vs. non-squamous) 

of ACE2- and dACE2 expressing cells in various tissues.  

dACE2 expression is IFN-γ-inducible 

In addition to cell type origin, the observed enrichment of dACE2 expression in some tumors 

might reflect persistent IFN exposure due to an inflammatory tumor microenvironment or 

underlying infection. IFN-γ-induced signature emerged as a prominent feature in airway 

epithelial cells of COVID-19 patients, and this signature was linked with enrichment of cytotoxic 

T lymphocytes (CTLs)5. Unlike normal tissues, tumors are extensively infiltrated by immune 

cells, making TCGA dataset particularly informative for the analysis of IFN signatures. IFNG 

was the most commonly expressed IFN in TCGA tumors (with 61% of all tumors expressing 

IFNG at RSEM ≥ 1, mean RSEM = 19.8), while other IFNs were poorly expressed (mean RSEM 

≤ 1.3, Figure S8A). dACE2-Ex1c levels significantly correlated (P ≤ 0.01, r ≥ 0.2) with IFNG 

expression in 8 out of 32 tumor types tested (Figure S8B), while ACE2-Ex1b showed only 

moderate and predominantly negative correlations with IFNG expression in some tumor types 

(Figure S8C). Furthermore, in vitro treatment with IFN-γ significantly induced dACE2, but not 

ACE2 (Figure S8D). Thus, in addition to type I and type III IFNs (Figure 2E-G), dACE2 

expression might be partly driven by IFN-γ contributed by tumor-infiltrating immune cells or 

inflamed virally infected tissues.  

However, in TCGA-LUSC dataset (n=501), which represents ACE2- and dACE2-expressing 

tumors of bronchial origin (Figure 4B), IFNG expression did not correlate with dACE2 (Figure 

S8B). Using a curated list of 270 ISGs24, we used an unsupervised machine learning approach to 

assign all LUSC tumors to 6 clusters based on their ISG expression profiles (Figure S9A, B). A 

set of ISGs (n=100) that most strongly contributed to the definition of these clusters was used for 

correlation analysis. The analysis in a cluster that included 114 LUSC tumors with the highest 
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ISG expression showed that dACE2 was strongly and significantly (FDR p-value < 0.05) 

correlated with expression of 20 ISGs and ACE2 - with 5 ISGs (Figure S9C, D). Thus, in LUSC 

tumors, dACE2 was expressed as an ISG but unlikely driven by IFN-γ, suggesting multiple 

factors might be contributing to this expression.  

dACE2 is induced by SARS-CoV-2 in vitro  

Once we established that dACE2 is an ISG in multiple human cells under various conditions, we 

tested whether its expression could also be induced by SARS-CoV-2. There was a noticeable 

difference in baseline expression levels of ACE2 and dACE2 in three cell lines tested (Calu3, 

Caco-2 and T84). Expression of ACE2 and dACE2 was much higher in a lung adenocarcinoma 

cell line Calu3 compared to both colon adenocarcinoma cell lines Caco2 and T84 (Figure 5A, 

Table S2D). Baseline dACE2 expression in T84 was higher than in Caco-2, in line with the RT-

PCR results (Figure 1B). All cell lines were successfully infected with SARS-CoV-2 (Figure 

5B, Table S2D), but ACE2 expression was not affected by infection in any cell line tested 

(Figure 5A, Table S2D). Induction of dACE2 expression tracked with previously reported 

SARS-CoV-2 infectivity rates in these cells23. Specifically, dACE2 was most strongly induced in 

Caco-2 cells, in which over 80% of cells were infected by 24 hrs, moderately induced in T84 

cells (20% of infected cells), and not induced in Calu3 cells (10% of infected cells). A similar 

expression pattern was observed for an ISG IFIT1 except for Calu3 cells, in which IFIT1 was 

significantly induced (Figure 5A, Table S2D). We performed a similar analysis in human colon 

and ileum organoid cultures derived from two donors. There was more variability in expression 

of the three genes tested but, overall, the expression of dACE2 and IFIT1 but not ACE2 was 

significantly induced by SARS-CoV-2 infection (Figure 5C, Table S2E), despite comparable 

SARS-CoV-2 infection load (Figure 5D, Table S2E), and a similar infection rate (10% of the 

cells)23. These results confirm that dACE2 is inducible by SARS-CoV-2 infection. 

dACE2 is non-functional as SARS-CoV-2 receptor and carboxypeptidase 

Despite the strong induction of dACE2 mRNA expression, we were unable to detect endogenous 

dACE2 in SeV-infected cell lines by Western blotting with commercial ACE2 antibodies (data 

not shown). However, in the proteome database of mass spectrometry data available for breast, 

colon, and ovarian TCGA tumors25, we detected human-specific peptides matching the 10 aa 
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encoded by the dACE2-Ex1c (Figure S10), suggesting that dACE2 protein could be expressed in 

some conditions.   

The substantial N-terminal truncation by 356 aa in the peptidase domain of the putative dACE2 

protein is expected to have significant functional consequences compared to the activity of the 

full-length ACE2 protein of 805 aa. For example, decreased or no binding by the SARS-CoV-2 

spike receptor-binding domain (RBD) would be expected for dACE2. Indeed, when we treated 

cells overexpressing GFP or Myc-DDK-tagged dACE2 or ACE2 with biotinylated spike protein 

RBD (Figure 6A), dACE2 failed to bind and internalize the RBD (Figure 6B, C) or affect the 

RBD binding by ACE2 (Figure 6D-F). The N-terminal truncation is also predicted to affect 

carboxypeptidase activity of dACE2, which is important for its ability to cleave angiotensin II, 

des-Arg9-bradykinin, and other substrates of ACE2. Indeed, we observed carboxypeptidase 

activity in lysates of cells transfected with ACE2-GFP but not dACE2-GFP (Figure 6G, H). 

Thus, the main activities that involve the peptidase domain of ACE2 appear to be abrogated in 

dACE2.  

 

DISCUSSION 

ACE2 was recently proposed to be an ISG due to its induction in IFN-high conditions, raising 

concerns about its potential role in increasing SARS-CoV-2 infection4,5 and the safety of IFN-

based treatments proposed for COVID-19. Our discovery of dACE2, a primate-specific version 

of ACE2, demonstrates that it is dACE2 and not ACE2 that is induced by IFNs and viruses, 

including SARS-CoV-2. dACE2, however, did not appear to bind SARS-CoV-2 spike protein or 

affect the binding of ACE2 in our in vitro experiments, thus assuring that ISG-type induction of 

dACE2 would not increase viral entry.  

Our findings highlight that in the presence of dACE2, ACE2 expression is likely to be 

misinterpreted when detected by methods such as 3’-scRNA-seq and gene-based assays that 

target shared dACE2 and ACE2 sequences. However, in non-primate species or in human cells 

that do not express dACE2, the same detection methods would correctly quantify Ace2 (ACE2), 

but not finding it is an ISG. These considerations are also important when using non-primate 
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species to study SARS-CoV-2 infection and COVID-19 because any possible effects contributed 

by dACE2 will not be captured in these animal models. 

By analyses in multiple human cell types and tissues, we showed that expression of dACE2, but 

not ACE2, is inducible by IFNs (type I, II and III) and viruses that induce IFN responses. 

Suppression of IFN signaling by SARS-CoV-2 has been reported by several studies26,27, possibly 

explaining only a moderate effect of SARS-CoV-2 infection on dACE2 induction in our 

experiments. While type I and type III IFNs are barely detectable in COVID-19 patients28,29, high 

levels of IFN-γ have been reported29,30. Specifically, a 3’-scRNA-seq analysis showed ACE2 

induction by SARS-CoV-2 infection in ciliated epithelia, where high levels of IFN-γ producing 

immune cells were also detected5. Our results strongly suggest that the induction of dACE2 and 

not ACE2 was detected in these COVID-19 patients.  

IFN-γ-driven ISG signatures are contributed by immune cells that infiltrate tumors and inflamed 

virally infected tissues. We could not study the involvement of dACE2 in these signatures in cell 

culture models because they lack the immune component; in tissues by 3’-scRNA-seq because 

this method does not differentiate ACE2 and dACE2; and in mice – because they lack dAce2. 

Instead, we explored the extensive TCGA dataset of more than 10,000 tumors in which we de-

novo quantified dACE2 expression based on RNA-seq data. We believe the conclusions of these 

analyses can be extended to inflamed virally infected tissues, for which comparable RNA-seq 

data is limited by small sample sets; low percentage of mappable reads due to substantially 

degraded input RNA, or raw data is not provided due to patient privacy restrictions. 

Although all IFNs (type I, II and III) appeared to be potent inducers of dACE2 expression in 

vitro, IFN-γ might be an important driver of dACE2 expression in tissues with significant 

infiltration by immune cells, such as in tumors or virally infected tissues. Furthermore, the 

expression patterns observed in TCGA indicated that dACE2 expression might be intrinsically 

enriched in squamous epithelial cells, which give rise to corresponding tumors of the respiratory, 

gastrointestinal, and urogenital tracts. 

While our experiments did not yet identify a clear functional role for dACE2, the absence in non-

primate species and the high degree of dACE2-Ex1c sequence conservation over 43 million years 

of primate evolution31 argues for a potentially important role of dACE2. Endogenous dACE2 was 

not detected in cell lines by Western blotting with anti-ACE2 antibodies and may require the 
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development of dACE2-specific antibodies. However, the detection of dACE2-specific peptides 

in some TCGA tumors suggests that the protein production occurs, but might require some 

specific conditions or better detection tools. However, based on our in vitro data, it is unlikely 

that dACE2 protein would affect the binding and cellular access of SARS-CoV-2.  

Although possible ISG-type ACE2 induction was considered as a risk for increasing SARS-CoV-

2 infection, ACE2 deficiency rather than overexpression is discussed as a major factor 

contributing to COVID-19 morbidity12-14,32. Functional ACE2 deficiency occurs due to 

internalization of the SARS-CoV-2 -ACE2 complex2,33, which restricts ACE2 from performing 

its physiological functions, including its role as carboxypeptidase for angiotensin II and des-

Arg9-bradykinin and other peptide hormones. ACE2 deficiency might also be created due to its 

regulation at the mRNA level, which needs to be explored.  

Cancer patients are considered to be at a higher risk of more severe COVID-19 outcomes 

compared to the general population34,35 due to older age, comorbidities and effects of cancer and 

cancer treatments. Lung cancer patients are at a specifically increased risk of severe COVID-19 

outcomes34. In our analysis, dACE2 expression was common in tumors and particularly enriched 

in lung tumors of bronchial origin (LUSC), where the proper function of ACE2 is essential for 

protection from virus-induced tissue damage. The possible role of dACE2 expression and 

COVID-19 outcomes, specifically in cancer patients, should be further explored. ACE inhibitors 

(ACEIs) and angiotensin-receptor blockers (ARBs) are widely used to control hypertension and 

treat heart disease and chronic kidney disease10. Significant concerns were raised that ACEIs and 

ARBs could induce ACE2 expression, leading to increased SARS-CoV-2 infection and possibly 

accounting for COVID-19 severity and high mortality in those who are likely to use these 

medications - the elderly and patients with cardiovascular disease. We demonstrated that ACE2 

expression is not inducible by IFNs, but it would be important to explore the effects of ACEIs 

and ARBs on dACE2 expression to properly assess this risk. The effects of other factors, such as 

smoking on dACE2 expression, should also be considered.  

In conclusion, we present the first report of the discovery and functional annotation of dACE2, 

an IFN-inducible isoform of ACE2. The existence of two functionally distinct ACE2 isoforms 

reconciles several biological properties previously attributed to ACE2, with dACE2 being an 

ISG, and ACE2 acting as the SARS-CoV-2 entry receptor and carboxypeptidase, without being 

and is also made available for use under a CC0 license. 
was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 

The copyright holder for this preprint (whichthis version posted July 20, 2020. . https://doi.org/10.1101/2020.07.19.210955doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.19.210955


   
 

12 
 

regulated by IFNs. While our understanding of the functional role of dACE2 is still unfolding, 

we believe these insights will clarify our knowledge on ACE2 and provide new research leads in 

understanding COVID-19 susceptibility, mechanisms, and outcomes. 

 

MATERIALS AND METHODS 

Cells 

All cell lines and primary cells used are listed in Table S3. Cell lines were either used within 6 

months after purchase or were periodically authenticated by microsatellite fingerprinting 

(AmpFLSTR Identifiler, Thermo Fisher) by the Cancer Genomics Research Laboratory/NCI). 

All cell lines were regularly tested for mycoplasma contamination using the MycoAlert 

Mycoplasma Detection kit (Lonza). The previously described22 normal human bronchial 

epithelial cells (NHBE) were isolated from normal lungs that were not used for transplantation. 

The lungs were obtained from 5 de-identified donors via a tissue retrieval service (International 

Institute for the Advancement of Medicine, Edison, NJ) with ethical approval from the Conjoint 

Health Research Ethics Board of the University of Calgary and the Internal Ethics Board of the 

International Institute for the Advancement of Medicine. Anonymized human tissue from colon 

resections was obtained from the University Hospital Heidelberg, in accordance with the 

recommendations of the University Hospital Heidelberg and written informed consent obtained 

from all subjects in accordance with the Declaration of Helsinki. The protocol (S-443/2017) was 

approved by the Ethics Commission of the University Hospital Heidelberg. Organoids were 

generated from these tissues as previously described23.  

Viral infections  

Stocks of Sendai virus (SeV) Cantell strain were purchased from Charles River Laboratories. 

Cells listed in Table S3 were infected in duplicates or triplicates with SeV (7.5×105 CEID50/ml) 

for 12 or 24 hrs as previously described19-21. 

Infections with SARS-CoV-2 in colon cancer cell lines (Caco2 and T84) and lung cancer cell 

line (Calu3) and colon and ileum organoid cultures were previously described23. Briefly, the 

infections were performed using the MOI=1 for cell lines. Organoids were infected with 3x105 

FFU of the virus, based on titers in Vero E6 cells. Culture media was removed from 
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cells/organoids and the virus was added for 1 hr at 37°C. After virus removal, cells were washed 

1x with PBS, and media was added back to the cells. Viral replication and ISG induction were 

monitored for 24 hrs post-infection. The percentage of infected cells was determined by 

immunofluorescence staining and quantification of the number of nuclei vs. the number of 

infected cells. It was determined that infection rates were 80% in Caco2 cells, ~20% in T84 cells, 

~10% in Calu3 cells, and 10% in organoids. 

PCR, cloning and Sanger sequencing 

cDNA was synthesized from 250 ng of total RNA per 20 µl reactions using the RT2 First-Strand 

cDNA kit and random hexamers (Qiagen). PCR for the full-length dACE2 was performed using 

primers and conditions listed in Table S4. PCR-amplified products were resolved on 1% agarose 

gel, cut, purified, and Sanger-sequenced. After cDNA sequences were validated, constructs for 

dACE2 with C-terminal Myc-DDK and GFP tags cloned in pcDNA3.4 vector were custom-

synthesized by Thermo Fisher. ACE2 with C-terminal GFP-tag (RG208442) and Myc-DDK tag 

(RC208442) were purchased from Origene. Empty vectors pMax-GFP (Lonza) and pCMV6-AC-

Myc-DDK (Origene) were used as controls. 

Treatments with IFNs  

All IFNs used are listed in Table S5. The IFN-treated NHBE cells were previously described22. 

Briefly, the cells were cultured in BEGM with supplements (Lonza), plated in 6-well plates and 

utilized at ~70% confluence (typically after 10–11 days with media change every 2 days). Cells 

were left untreated or treated with IFN-α2b (INTRON A, Merck, 100 IU/ml) or IFN-λ3 (R&D 

Systems, 100ng/ml) for 24 hrs. Cells were washed with PBS, resuspended in TRIzol (Thermo 

Fisher) and stored at -80°C for future RNA isolation. Total RNA was extracted with Direct-zol 

mini RNA isolation kits (Zymo Research). The IFN treatment of human colon and ileum 

organoids was previously described23. Briefly, cells were seeded 24 hrs prior to IFN treatment to 

reach a confluency of 70% at the time of treatment. Media was removed from cells and replaced 

with a cocktail of IFN-λ1-3 (100ng/mL of each for a total of 300ng/mL). Media was removed 24 

hrs post-treatment, and RNA was extracted using the RNAeasy kit (Qiagen). 250ng of RNA was 

used to prepare cDNA using iSCRIPT (BioRad) and qRT-PCR was performed using iTaq SYBR 

Green (BioRad). T84 and Caco-2 cells were treated with IFN-γ (2 ng/ml) for 48 hrs, followed by 

cell harvesting, RNA extraction and expression analysis. 
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qRT-PCR 

cDNA was synthesized from the total RNA with the RT2 First Strand Kit (Qiagen), Superscript 

VILO IV (Thermo Fisher), or iSCRIPT cDNA kit (BioRad), always with an additional DNase I 

treatment step. qRT-PCR assays were performed in technical duplicates in 96- or 384-well plates 

on QuantStudio 7 (Life Technologies) or Bio-Rad CFX 96 instrument, with RT² SYBR Green 

(Qiagen), POWER SYBR (Thermo Fisher), iTaq SYBR (BioRad) or TaqMan (Thermo Fisher) 

expression assays (Table S4). The expression of target genes was normalized by geometric 

means of endogenous controls (GAPDH, HPRT1, TBP or ACTB, as indicated in Table S2), and 

presented as dCt values relative to endogenous controls (log2 scale). 

RNA sequencing (RNA-seq) of T47D and RT4 cells 

Total RNA was extracted from T47D and RT4 cells using RNeasy Mini Kit with an on-column 

DNase digestion (Qiagen) and treated with Ribo-Zero (Illumina). RNA-seq libraries were 

prepared from high-quality RNA samples (RIN scores >9.0) with KAPA Stranded RNA-seq Kit 

with RiboErase (Roche). Paired 150-bp reads (21.2 - 118.8 million reads per sample) were 

generated with HiSeq 2500 (Illumina) by the Cancer Genomics Laboratory (DCEG/NCI). The 

reads were aligned with STAR alignment tool version 7.1.2a (21) using the GRChg37/hg19 

genome assembly and visualized using the Integrative Genomics Viewer (IGV). 

RNA-seq analysis of data from NCBI Sequence Read Archive (SRA) and TCGA 

RNA-seq datasets (Table S6) were downloaded from NCBI SRA using SRA tools. The FASTQ 

files were compressed using GZIP and aligned with STAR version 7.1.3a to the GRChg38/hg38 

genome assembly. BAM files with less than 80% of mappable reads were excluded. BAM files 

were indexed and sliced using SAM tools to include 51.6 Kb of the ACE2 genomic region 

(chrX:15,556,393-15,608,016, hg38). For mouse RNA-seq data sets, the alignment was done 

with reference genome mm10. For TCGA STAR-aligned RNA-seq data, BAM slices for the 

ACE2 region were acquired for 11, 041 TCGA samples (10,328 tumors and 713 tumor-adjacent 

normal tissues) through the NCI Genomics Data Commons (GDC) portal accessed on May 12, 

2020, using workflow https://docs.gdc.cancer.gov/API/Users_Guide/BAM_Slicing/.  

Estimation of RNA-seq read counts for ACE2 exons 
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RNA-seq reads corresponding to the three first exons, ACE2-Ex1a and Ex1b and dACE2-Ex1c, 

were counted by processing RNA-seq BAM slices using R package ASpli version 1.5.1 with 

default settings. Genomic coordinates were manually curated in the GTF file and the ‘counts’ 

function was used to generate and export RNA-seq reads for the selected exons in a tab file 

format. The reads were normalized by dividing by the exon length (Table S7) and multiplying 

by the geometric mean of the total reads of the three exons (Ex1a, Ex1b and Ex1c) across all 

samples as a scaling factor to adjust for variability in sequencing coverage between samples. The 

analysis of exon expression patterns within tissue subtypes was based on log 2-transformed raw 

reads for each exon. Correlation analysis of normalized expression of ACE2-Ex1a and Ex1b and 

dACE2-Ex1c with TPMs of IFNs, STATs, IRFs and select ISG controls (ISG15 and ISG20) was 

performed in R using package dplyr.  

Expression values for all IFN genes for all tumors in TCGA PanCancer Atlas were downloaded 

as RSEM values from cBioPortal for Cancer Genomics (https://www.cbioportal.org/). 

Expression of IFNL4, a most recently discovered IFN36, was not available in TCGA dataset 

based on hg19/GRCh37 reference. Because IFNG was expressed in most samples compared to 

other IFN genes (Figure S8A), it was used for further analysis. Correlation analyses of the 

normalized expression of ACE2-Ex1b and dACE2-Ex1c were performed with log2(RSEM+1) 

values for IFNG. Correlation patterns between IFNG and ACE2-Ex1a were similar to those 

between IFNG and ACE2-Ex1b (data not shown). 

Unsupervised clustering and correlation analyses in TCGA 

Gene expression Z-scores in the lung squamous cell carcinoma (TCGA-LUSC, n=501) dataset 

were calculated for 270 ISGs from a previously curated list24. ISGs with low expression values, 

(below 10 reads), or expressed in less than 5% of tumors were excluded. The data was used for 

self-organizing maps (SOM) clustering, which is an unsupervised machine learning approach 

enabling data dimensionality reduction without relying on any assumption about the data 

structure37,38. The SOM algorithm was iterated 100,000 times with Euclidean distance, linearly 

decreasing the learning rate from 0.05 to 0.01 using the “Kohonen” R package. The ISG 

expression patterns were projected onto a two-dimensional 10x10 hexagonal map. Thus, each 

node in this map is an expression profile representing a subset of the samples. SOM output, 

trained based on 100,000 iterations, was used to estimate the contribution of each ISG to 
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defining the clusters as a variance weighted according to the size of each node. A total of 6 

clusters were estimated by kmeans algorithm and used to generate an expression heatmap. 

Expression Z-scores of the top 100 ISGs ranked based on their contribution to defining the 

clusters were plotted using the “pheatmap” R package. Pearson correlation coefficients and 

corresponding FDR-adjusted p-values were calculated between Z-scores for the top 100 ISGs 

and both ACE2 and dACE2 in cluster 5, which included 114 tumors with the highest ISG 

expression. The analysis was performed using the “Hmisc” R package.  

In silico analysis of promoter regulatory elements relevant for IFN signaling 

Promoters were defined within the -800 bp/+100 bp window from the corresponding 

transcription start sites (TSS). The window was limited by 800 bp, based on the intronic distance 

between TSS of Ex1c and its upstream exon. Promoters of ACE2-Ex1a (P1) and Ex1b (P2) and 

dACE2-Ex1c (P3) were analyzed using Nsite tool39 from online bioinformatics gateway 

Softberry (www. softberry.com) to predict transcription factor binding sites. The search was set 

against the ooTFD (Object-oriented Transcription Factors Database) of human and animal 

transcription factor binding sites largely curated according to the functional data from the 

literature. The parameters were set to allow a maximum of 1 or 2 mismatches with the known 

motifs. ISG-type motifs were manually curated from ~300 predicted and annotated motifs per 

promoter.  

Mining of proteomics datasets 

Mass-spectrometry datasets generated for TCGA colon, breast and ovarian tumors 

(http://www.pepquery.org/) were mined for matches to the 36-aa fragment of dACE2, including 

the unique 10 aa encoded by dACE2-Ex1c. The analysis was done with PepQuery peptide-centric 

search engine25, using the following parameters: MS dataset of a specific cancer type; target 

event as protein; scoring algorithm as Hyperscore and not selecting for Unrestricted modification 

filtering. The identified peptides for each cancer type were exported as CSV files and manually 

analyzed for further assessment of peptide quality.  

Transient transfections 

Transient transfections were performed with Lipofectamine 3000 (Thermo Fisher). Unless 

specified, bladder cancer cells (T24), in which no baseline expression of ACE2 or dACE2 was 
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detected (Table S2), were used for transfections at 70–90% confluency in 12- or 6-well plates 

for 24 hrs. 

Western blot 

Cells were lysed with RIPA buffer (Sigma) supplemented with protease inhibitor cocktail 

(Promega) and PhosSTOP (Roche) and placed on ice for 30 min, with vortexing every 10 min. 

Lysates were pulse-sonicated for 30 sec, with 10-s burst-cooling cycles, at 4°C, boiled in 

reducing sample buffer for 5 min and resolved on 4–12% Bis-Tris Bolt gels and transferred using 

an iBlot 2 (Thermo Fisher). Blots were blocked in 2.5% milk in 1% TBS-Tween before staining 

with antibodies (Table S5). The signals were detected with HyGLO Quick Spray (Denville 

Scientific) or SuperSignal West Femto Maximum Sensitivity Substrate (Thermo Fisher) and 

viewed on a ChemiDoc Touch Imager with Image Lab 5.2 software (BioRad).  

Confocal microscopy 

T24 cells were transiently transfected with ACE2-GFP, dACE2-Myc-DDK, or co-transfected 

with both constructs in 4-well chambered slides (2x104 cells/well, LabTek). After 24 hrs, cells 

were treated with 2 ng/ml of recombinant biotinylated SARS-CoV-2 spike protein RBD (spike 

protein-RBD, Sino Biological) for 1 hour at 37°C. Cells were washed twice with media and then 

stained with 5µg/ml streptavidin PE (Thermo Fisher) for 30 min at 37°C. Cells were then washed 

twice with PBS and fixed with 4% paraformaldehyde (BD Biosciences) for 30 min. After rinsing 

twice in PBS and permeabilization buffer (BD Biosciences), cells were incubated with 

permeabilization buffer for 1hr. Fixed cells were incubated with rabbit anti-FLAG antibody 

(1:250 dilution, Thermo Fisher) overnight, washed and then stained with anti-rabbit Alexa Fluor 

680 (1:500 dilution, Thermo Fisher). Slides were mounted with antifade mounting media with 

DAPI (Thermo Fisher) and imaged at 40X magnification on an LSM700 confocal laser scanning 

microscope (Carl Zeiss) using an inverted oil lens.  

Flow cytometry analysis of SARS-CoV-2 spike protein-RBD binding  

T24 cells were transiently transfected with ACE2-GFP, dACE2-Myc-DDK, or co-transfected 

with both constructs in 12-well plates (1x105 cells/well). After 24 hrs, cells were stained with 

recombinant biotinylated spike protein RBD as described above and analyzed with 
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multiparametric flow cytometry on a FACS Aria III (BD Biosciences) and FlowJo.v10 software 

(BD Biosciences). 

Peptidase activity assays 

T24 cells were transiently transfected with ACE2-GFP, dACE2-GFP, or empty GFP-vector in 

triplicates. After 24 hrs, cells were pelleted and lysed with 400 μl of Lysis Buffer provided with 

the ACE2 activity kit (#K897, BioVision). Cell lysates were analyzed by Western blots with C-

terminal anti-ACE2 antibody (Abcam), and the amounts of recombinant ACE2-GFP and 

dACE2-GFP proteins in lysates were quantified by densitometry analysis (Imagelab, BD 

Biosciences) of Western blots. The amounts of ACE2 and dACE2 lysates to be used in protease 

assays were determined based on protein quantification. Protein lysates were processed in 

duplicates using the kit reagents and according to protocol. The activity was measured as 

fluorescence (Ex/Em = 365/410-460 nm) using Promega GlowMax plate reader for two time 

points between 30 mins and 2 hrs after adding the corresponding substrate mix and normalizing 

for baseline level. Positive control was provided by the kit.  

Statistical analysis  

Expression of ACE2-Ex1a and Ex1b and dACE2-Ex1c between groups of samples was evaluated 

by the non-parametric Mann–Whitney U test. Student’s T-test was used for small groups of 

samples. Statistical tests for other analyses are indicated in corresponding sections. FDR 

adjustment was applied when indicated. P-values <0.05 were considered significant.  

Computational resources 

We used the NIH Biowulf supercomputing cluster and specific packages for R version 3.6.2.  
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FIGURES 

 

Figure 1. dACE2 is a novel primate-specific and virally-induced isoform of ACE2. 

A) UCSC genome browser view of the human ACE2 region (chrX:15,560,521-15,602,580, 

GRCh38/hg38) showing alternative first exons ACE2-Ex1a and Ex1b and a novel Ex1c that 

creates a short isoform designated as deltaACE2 (dACE2). ENCODE epigenetic markers 

(H3K4me1, H3K4me3, H3K27ac, and cluster of DNase I hypersensitivity sites) indicate that 

dACE2-Ex1c is located within a putative regulatory region that can affect gene expression. B) 

RNA-seq Sashimi plots depict splicing patterns defining ACE2 and dACE2 isoforms in 

SeV/mock-infected T47D cells and uninfected RT-4 cells. C) ACE2 is a single-span 
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transmembrane protein with a signal peptide (SigP) of 17 aa and four functional domains – 

peptidase domain (PD, aa 18-615), collectrin-like domain (CLD, aa 616-740), transmembrane 

domain (TM, aa 741-761), and intracellular domain (ICD, aa 762-805). In dACE2, no signal 

peptide is predicted; the extracellular domain (ECD) starts from aa R357; the first 356 aa are 

replaced by 10 aa of a unique protein sequence; * and ** - cleavage sites by membrane-bound 

proteases ADAM17 and TMPRSS2, respectively. D) Alignments of the dACE2 5’UTRs in 

primates. E) Alignments of protein sequences encoded by dACE2-Ex1c and part of the 

downstream exon. dACE2 is not predicted to be encoded in any non-primate species. 
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Figure 2. dACE2 is induced by IFNs in vitro.   

A) Schematic representation of ACE2 and dACE2 transcripts and the position of the forward (F) 

and reverse (R) PCR primers to generate full-length dACE2 amplicons. B) Agarose gel showing 

an RT-PCR product of 1535 bp corresponding to full-length dACE2 in several cell lines 

with/without SeV infection. C) Heatmap of ACE2 and dACE2 expression and a positive control 

ISG (ISG15) measured by TaqMan expression assays in human cell lines infected with SeV for 

12 hrs; colors represent expression differences as ddCt (log2) normalized by endogenous 

controls (GAPDH and ACTB) and comparing SeV-infected to uninfected samples. D) Expression 

of ACE2 and dACE2 and the positive control ISG MX1 in primary normal human bronchial 

epithelial (NHBE) cells treated with IFNα or IFN-λ3 for 24 hrs vs. untreated cells. E) Expression 

of ACE2 and dACE2 and the positive control ISG IFIT1 in colon and ileum organoid cultures 

from one donor; the organoids were treated with IFNβ or a cocktail of IFN-λ1-3 for 24 hrs. P-

values are for Student’s T-test. 
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Figure 3. dACE2 is induced in virally infected human respiratory cells.  

Expression patterns of ACE2, represented by Ex1a and Ex1b and dACE2, represented by Ex1c in 

A-C) mock (ctrl) and rhinovirus (RV)-infected human nasal epithelial cells and D-E) in 

uninfected (ctrl) and influenza H5N2-infected cells from human lung explants. A) RNA-seq 

Sashimi plots B) Expression levels C) Correlation coefficients with select ISGs and IFNs in the 

full dataset of 90 samples. D) Expression levels E) Correlation coefficients with select ISGs and 

IFNs in the full dataset of 20 samples. FC – fold change compared to mock. P-values are for the 

non-parametric Mann–Whitney U test. 
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Figure 4. Expression of dACE2 is enriched in squamous epithelial tumors. 
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A). Bubble plot showing mean expression levels (RNA-seq read counts) and proportions of 

samples (%) with dACE2-Ex1c in TCGA tumor-adjacent normal (AN) tissues and 33 tumor 

types. dACE2-Ex1c is expressed at relatively high levels and in many tumors of the bladder 

(BLCA), cervix (CESC), esophagus (ESCA), head and neck (HNSC), and lung squamous 

carcinoma (LUSC). B) RNA-seq counts of ACE2-Ex1a and Ex1b and dACE2-Ex1c in tumor-

adjacent normal (AN), squamous tumors (SQ) and non-squamous tumors (NSQ). Expression of 

dACE2 is significantly higher in SQ compared to NSQ tumors of the same tissue origin and 

corresponding AN tissues. Specifically – dACE2-Ex1c is expressed similarly in AN tissues 

adjacent to LUSC and LUAD, while it is significantly higher in corresponding tumors and higher 

in LUSC than in LUAD, due to clonal origin of these tumors from cells with differential 

expression of dACE2. P-values are for the nonparametric Mann–Whitney U test. 
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Figure 5. dACE2 is induced by SARS-CoV-2 in human cell lines and organoid cultures. 

Expression of ACE2, dACE2 and a control ISG IFIT1 in A) colon cancer cell lines Caco2 and 

T84 and a lung cancer cell line Calu3 and C) colon and ileum organoid cultures derived from 

two donors; B and D) SARS-CoV-2 viral loads in corresponding cells. P-values are for Student’s 

T-test. 
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Figure 6. dACE2 is non-functional for binding SARS-CoV-2 spike protein RBD and as a 

carboxypeptidase.  
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A) Representative confocal images of T24 cells transiently overexpressing dACE2-Myc (white), 

ACE2-GFP (green) and treated with receptor-binding domain (RBD) of SARS-CoV-2 spike 

protein (red), nuclei (DAPI)-blue; bars=20µM. B-D) Representative flow cytometry histogram 

B) and mean fluorescence intensity (MFI) values from 3 biological replicates  C) of spike-RBD 

binding to the surface of ACE2-GFP but not dACE2-Myc expressing T24 cells. D) 

Representative flow cytometry plot showing gates for T24 cells co-transfected with dACE2-Myc 

and ACE2-GFP. Gates were drawn to identify cells expressing dACE2-Myc, ACE2-GFP, or 

both proteins. E) Histogram and F) plot depicting MFI of spike protein-RBD binding in gated 

cells from plot E, based on 3 biological replicates. Data represent one of two independent 

experiments. G) A representative Western blot showing detection of ACE2-GFP and dACE-GFP 

in protein lysates of T24 cells transfected with equal amounts of plasmids. Based on Western 

blot densitometry, equal estimated amounts of ACE2 and dACE2 proteins were used in peptidase 

activity assays in H. Results are based on 3 biological replicates.  
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