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The study of neurodegenerative diseases, particularly
tauopathies like Pick’s disease (PiD) and Alzheimer’s dis-
ease (AD), offers insights into the underlying regulatory
mechanisms. By investigating epigenomic variations in these
conditions, we identified critical regulatory changes driving
disease progression, revealing potential therapeutic targets.
Our comparative analyses uncovered disease-enriched non-
coding regions and genome-wide transcription factor (TF)
binding differences, linking them to target genes. Notably, we
identified a distal human-gained enhancer (HGE) associated
with E3 ubiquitin ligase (UBE3A), highlighting disease-specific
regulatory alterations. Additionally, fine-mapping of AD risk
genes uncovered loci enriched in microglial enhancers and
accessible in other cell types. Shared and distinct TF binding
patterns were observed in neurons and glial cells across PiD
and AD. We validated our findings using CRISPR to excise
a predicted enhancer region in UBE3A and developed an
interactive database (http://swaruplab.bio.uci.edu/scROAD) to
visualize predicted single-cell TF occupancy and regulatory
networks.

Introduction
Neurodegeneration is a key aspect of many neurological dis-
orders, each with distinct molecular mechanisms and etiolo-
gies. Alzheimer’s disease (AD) is the most prevalent neu-
rodegenerative disorder and is pathologically characterized
by progressive accumulation of amyloid-beta plaques and
neurofibrillary tangles (NFTs) of tau1. Alternatively, Pick’s
disease (PiD) is a rare behavioral variant of frontotempo-
ral dementia (FTD)2,3, which has a prevalence of 15 to 22
per 100,000 individuals and an incidence of 2.7 to 4.1 per
100,000 individuals per year4. PiD is characterized by the
presence of pathological tau aggregates known as Pick bod-
ies5. Abnormal tau aggregates like NFTs and Pick bodies
alter cellular and molecular functions in the brain, but we cur-
rently do not understand the differences and similarities be-
tween these cellular changes across different tauopathies like
AD and PiD6. The rare prevalence of PiD, combined with
the challenges of clinical diagnosis, has hindered comprehen-
sive research on this neurodegenerative condition, leaving its
genetic and epigenetic etiology unclear. With these difficul-
ties, comparative functional genomics analyses of different
tauopathies may reveal shared and distinct molecular mecha-

nisms underlying these disorders.
While recent genome-wide association studies (GWAS)

and fine-mapping analyses have implicated numerous genetic
loci in neurodegeneration7–12, much of the attention in this
area is currently focused on AD over other disorders6, and
the functional roles of these loci are often ambiguous since
they frequently reside in non-coding regions13–15. The ad-
vent of single-cell epigenomics has allowed us to provide
additional context for these genetic risk variants in specific
cell types16, while single-cell transcriptomics has provided
insights into the molecular states of NFT-bearing neurons and
NFT susceptibility in AD17. While these technologies have
broadened our understanding of altered cellular states and
gene regulatory programs in AD16,18–26, much work remains
to characterize these changes in other neurodegenerative dis-
orders and to understand their shared and unique molecular
signatures.

In this study, we employed single-nucleus assay
for transposase-accessible chromatin using sequencing
(snATAC-seq) to characterize the open chromatin landscape
and single-nucleus RNA-seq (snRNA-seq) to profile the gene
expression of the frontal cortex in Pick’s disease donors and
cognitively normal controls. We performed parallel compar-
ative analyses of PiD datasets with our previous AD datasets
to facilitate our understanding of PiD. We leveraged cell-
type-specific chromatin accessibility information to model
the gene-regulatory landscape of PiD and AD, identifying
sets of promoter-gene links for each disease in each cell type.
We intersected these links with our internally conducted fine-
mapping analyses, considering linkage disequilibrium (LD),
at selected disease risk loci to nominate candidate cell types
and genes associated with non-coding risk SNPs. Further,
we modeled transcription factor (TF) binding activity in each
cell type for disease and control to characterize regulatory
networks and key gene-regulatory mechanisms mediated by
enhancer-promoter links, allowing us to focus our attention
directly on the regulators of these GWAS genes, differentially
expressed genes and TFs. Furthermore, snRNA-seq of PiD
donors corroborated some of our findings at the transcrip-
tome level. To validate the robustness of our insights, we
highlighted a previously unknown human-gained enhancer
(HGE) in excitatory neurons regulating UBE3A, known for
its role in regulating synaptic activity, that is altered in both
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Figure 1. snATAC-seq for the study of cellular diversity in the PiD and AD brain. a, Immunofluorescence characterization of PiD, AD and Control; and Schematic
representation of the samples used in this study, sequencing experiments and downstream bioinformatic analyses, created with BioRender.com. Representative quadruple
immunofluorescence images for Iba1 (red), GFAP (magenta), amyloid plaque (blue), and AT8/p-tau (green) from prefrontal cortex region of postmortem human brain tissues
of age- and sex-matched control (n=3), AD (n=5) and Pick’s (n=5) cases. Images were captured using Nikon ECLIPSE Ti2 inverted microscope (20X). b,c, Uniform Manifold
Approximation and Projection (UMAP) visualizations for single-nucleus ATAC-seq data (b) and single-nucleus RNA-seq data (c) from Pick’s disease and age-matched
control. Caption continues on the next page −→
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Figure 1. snATAC-seq for the study of cellular diversity in the PiD and AD brain. d, Uniform Manifold Approximation and Projection (UMAP) visualizations for
single-nucleus ATAC-seq and RNA-seq data from Alzheimer’s disease and age-matched control. e, Coverage plots for canonical cell-type markers: GFAP
(chr17:44905000-44916000) for astrocytes, SYNPR (chr3:63278010-63278510) for neurons, SLC17A6 (chr11:22338004-22345067) for excitatory neurons, GAD2
(chr10:26214210-26241766) for inhibitory neurons, CSF1R (chr5:150056500-150087500) for microglia, MOBP (chr3:39467000-39488000) for oligodendrocytes, PDGFRA
(chr4:54224871-54300000) for pericytes and endothelial cells in PiD dataset. The grey bar within each box highlights the promoter regions.

PiD and AD. Using CRISPR-Cas9, we excised this HGE in
induced pluripotent stem cell (iPSC) derived neurons, and
we observed a subsequent downregulation of UBE3A using
RNA-seq. Our data suggests both shared and distinct pat-
terns of gene regulation in PiD and AD, particularly evident
in the disease-enriched and specific TF activity. Furthermore,
disruption in the imputed enhancer accessibility provides val-
idation for the accurate identification of enhancer regions lo-
cated more than 40kbp away from the UTR region of the
disease-relevant gene.

Results

Single-nucleus ATAC and RNA profiling of the pre-
frontal cortex in PiD and AD.

We applied snATAC-seq in frontal cortical tissue sec-
tions of PiD and cognitively normal control cases (10x Ge-
nomics; n = 7 PiD; n = 9 control), and snRNA-seq on the
same PiD and control cases (Parse Bio; n = 5 PiD; n =
3 control). Notably, our study is the first to delineate the
molecular landscape within frontal cortical regions of PiD at
the single-cell level. We processed our single-nucleus data
separately in PiD and our previously generated snATAC-seq
of AD (10x Genomics; n = 12 late-stage AD; n = 8 con-
trol)16 and snRNA-seq (10x Genomics; n = 11 late-stage
AD; n = 7 control)16,27 (Figure 1a). After quality control fil-
tering, 83,938 snATAC-seq and 66,661 snRNA-seq profiles
come from the newly generated PiD dataset (Figure 1b,c,d,
S1a,b, Methods), and 114,784 nuclei originated from pre-
viously generated AD snATAC-seq and 57,950 nuclei were
from AD snRNA-seq. In snATAC-seq, clustering analyses
revealed seven major brain cell types in this dataset — ex-
citatory neurons (EX), inhibitory neurons (INH), astrocytes
(ASC), microglia (MG), oligodendrocytes (ODC), oligoden-
drocyte progenitor cells (OPC), and pericytes and endothelial
cells (PER-END) — annotated based on chromatin accessi-
bility at the promoter regions of known marker genes (Figure
1b,d,e). We performed label transfer using AD dataset16 as a
reference and then confirmed the annotation of our excitatory
and inhibitory neurons based on previously identified marker
genes, SYNPR for both EX and INH neurons, SLC17A for
EX, GAD2 for INH. Similarly, we sought to annotate our
glial subpopulations, our astrocyte cluster based on GFAP
promoter, which has been shown to increase in disease28; mi-
croglia cluster based on CSF1R promoter; oligodendrocyte
cluster based on MOBP promoter; OPC cluster on PDGFRA
promoter; and PER-END cluster on CLDN5 promoter (Fig-
ure 1e and S1f). Additionally, we further confirmed cell
type identities by gene activity shown in the panel of canon-
ical cell-type marker genes (Table S1)29. In the snRNA-seq
dataset, we first clustered and identified seven major brain
cell types in PiD using a panel of canonical cell-type marker

genes (Figure 1c,d and S1d,e, Table S1, Methods). These
robust cell type identifications laid a critical foundation for
subsequent analyses, enabling us to explore cell type-specific
alterations and molecular mechanisms underlying PiD patho-
genesis with a high degree of confidence.

Promoter-enhancer linkages enable better characteri-
zation of chromatin accessibility in PiD and AD.

From these single-nucleus ATACseq libraries, we com-
piled a combined set of 609,675 reproducible peaks29 (Table
S2a). To identify cis-regulatory elements (CREs) with altered
chromatin accessibility in disease, we systematically per-
formed differential chromatin accessibility analyses in each
cell type comparing PiD vs. controls and AD vs. controls,
yielding a set of differentially accessible peaks (Table S2c).
Our chromatin accessibility regions were broadly categorized
by genomic features, including gene promoter, exonic, in-
tronic, or distal regions, and we investigated these differential
peaks in PiD and AD based on these categories (Figure 2a).
The majority of the differential peaks in PiD (54%) and AD
(53%) are located within intronic regions. Approximately
30% of the differential peaks in both PiD and AD are dis-
tal, while 9% and 10% correspond to promoters specifically
in PiD and AD, respectively. Less than 10% of the identi-
fied differential peaks are exonic in both PiD and AD (Figure
2a and Table S2a). These percentages are more or less con-
sistent with the peak type distribution of the entire peakset,
where distal peaks comprise approximately 32%, promoter
peaks make up 5%, intronic peaks constitute 55%, and ex-
onic peaks represent 7% (Table S2a). Similar percentages
were also observed in other published studies, reinforcing the
robustness and consistency of our findings across different
datasets26,30. Although EX was not the most sampled cell
types in PiD, our differential analyses revealed that the most
significant variance in the activity of CREs in the PiD dataset
was observed in EX. Conversely, ASC exhibited the highest
differential activity in the AD dataset (Figure S2a).

We next sought to provide functional context for non-
coding distal regulatory elements with respect to cell type
and disease status by performing cis co-accessibility anal-
yses with Cicero31, revealing linkages between promoters
and distal elements (Figure 2b, Methods). Using this infor-
mation, we compared the co-accessibility strength of chro-
matin peak links from PiD and AD samples in the major
cell lineages (Figure 2c). These analyses revealed relatively
higher correlations between PiD and AD in ODCs (Pearson
R=0.35) and ASCs (R=0.32), with weaker correlations in
the other cell types, overall revealing a substantial amount
of conserved epigenomic linkages across PiD and AD as
well as those unique to each condition. We next applied
non-negative matrix factorization (NMF) to pseudobulk chro-
matin accessibility profiles of all distal regulatory elements
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Figure 2. Open chromatin classification and epigenetically distinct cell types through putative promoter–enhancer links in the human PiD and AD prefrontal
cortex. Caption on the next page −→
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Figure 2. Open chromatin classification and epigenetically distinct cell types through putative promoter–enhancer links in the human PiD and AD prefrontal
cortex. a, Peaktype and biotype classification of differential open accessible peaks (P-value < 0.05). b, Schematics of promoter – putative enhancer linkage. c, Correlation
heatmap of promoter – putative enhancer co-accessibility. d, NMF heatmap of putative enhancer scaled chromatin activity in PiD, AD and their matching controls. e,
Heatmaps of fold changes (Disease vs. Control) on normalized chromatin accessibility of differential accessible promoters and distal in excitatory neurons, astrocytes,
microglia and oligodendrocytes (FDR adjusted P-value < 0.05 and abs(log2FC) > 0.5), gene ontology acquired from GREAT and examples of promoters and distal regions’
cis-regulatory linked gene as in panel (b).

that were linked to gene promoter regions, and we identified
matrix factors corresponding to epigenetic signatures of bi-
ological processes and specific cell states (Figure 2d). We
grouped CREs into discrete epigenetic modules based on the
matrix factor with the highest loading for each CRE, and
we performed gene ontology analyses of the regulatory tar-
get genes of each of these modules, revealing the cell-type-
function related pathways and processes regulated by these
non-coding CREs, such as pathways associated with postsy-
naptic and synaptic activity in EX and INH, cell proliferation
and migration-linked ERBB2 signaling pathway in ODC, and
processes such as apoptotic cell clearance in MG, among oth-
ers.

Using this cis-regulatory linkage approach coupled with
differential analyses, we used heatmaps to depict the fold
changes of normalized chromatin accessibility for differential
accessible promoters, distal and intronic regions across cell
types EX, ASC, MG, and ODC (Figure 2e and S2c). Addi-
tionally, we incorporated gene ontology information obtained
from GREAT, presenting cluster numbers alongside specific
gene names as examples below. Notably, by inspecting the
distal, intronic, and promoter chromatin regions and their
linked regulatory target genes, we identified changes contain-
ing AD and FTD genetic risk loci, including TMEM106B,
ADAM10, SORL1, KAT8, CLU, BIN1 and genes involved in
essential cellular activity, such as UBE3A. Moreover, while
examining the absolute fold change of normalized chromatin
accessibility, genes in EX in PiD exhibited much more robust
changes than those in AD (Figure 2e). This potentially indi-
cates that the neuronal changes are more pronounced in PiD,
probably due to age-associated regional changes in frontal
cortical regions2,3, and patients with frontotemporal lobar de-
generation progress more rapidly than AD32.

Frontotemporal dementia and Alzheimer’s disease
fine-mapping with cell-type-specific epigenomic anno-
tations.

Given that the majority of variants reside in non-coding
regions, around 80% of the deferentially accessible peaks in
distal and intronic regions (Figure 2a), and the limited re-
search on disease gene identification for PiD, we assert the
importance of utilizing closely related FTD and AD GWAS
data as reference points. Our analysis approach involves
overlapping snATAC-seq accessible peaks with fine-mapped
GWAS SNPs, enabling us to determine whether chromoso-
mal regions surrounding these pathogenic-related SNPs ex-
hibit accessibility in our dataset. However, it’s important to
acknowledge the inherent limitations of our study, particu-
larly the rarity of PiD and the consequent unavailability of
specific PiD GWAS summary data with sufficient statistical
power. This limitation restricts our analyses to leveraging

existing knowledge and datasets to explore potential gene
targets for PiD, rather than conducting direct PiD GWAS
analyses. We conducted comprehensive fine-mapping, an-
notation, and cell-type-specific gene expression analyses, in
addition to collecting publicly available predicted loss-of-
function data33 (gnomAD v4.0 UCSC; See Methods). These
efforts aimed to identify causal variants and explore the asso-
ciation of genetic variant-related genes with the risk of AD11

and FTD12 (Figure 3a). The fine-mapping analyses identi-
fied 72 lead GWAS risk SNPs with 113 credible sets and
716 SNPs in LD within the AD and FTD brain (posterior
inclusion probability (PIP) > 0.95) overlapping with acces-
sible peaks from the seven major cell types. Interestingly,
we found that 36 out of 113 fine-mapped causal credible sets
overlap with accessible peaks of a single or two cell type, and
16 out of 113 are present in all cell types (Figure 3b,c, Table
S3a), suggesting that some disease risk variants are relevant
to a particular cell type while others influence gene regula-
tion across several cell types. To reinforce this notion, we
integrated the snRNA-seq dataset from three previous stud-
ies of the AD cortex16,19,34 and plotted the expression of
genes identified from GWAS summary statistics, where each
gene was associated with the lead causal SNP, from its re-
spective control group of distinct cell types. Additionally,
we corroborated the association of the lead SNP and other
fine-mapped SNPs in LD with its associated gene by cross-
referencing cCREs and target genes, which you can access
the data through our online interactive database, scROAD.

For AD, our analyses revealed that more than half of
the 113 fine-mapped signals overlap with accessible peaks
found in microglia, a cell type of particular interest in AD
research. Notably, these peaks encompass several classical
genes that have been extensively studied in microglia, includ-
ing ABCA1, ADAM10, ADAM17, BIN1, INPP5D, NCK2, PI-
CALM, and TREM2 (Figure 3c). The enrichment of GWAS
risk signals within microglia aligns with the established
pathophysiological role of these cells, particularly their in-
volvement in inflammation in AD35. AD risk variants at the
INPP5D locus were found in accessible chromatin regions
exclusively in microglia, and the INPP5D gene is expressed
almost specifically in microglia as well (Figure 3c).

While previous studies have demonstrated enrichment
of AD genetic risk SNPs specifically in microglia16, we note
that these risk genes are expressed in several cell types. For
example, the risk variants of ADAM10 overlap with acces-
sible peaks from EX, INH, MG and ODC and its gene ex-
pression is present across all cell types. As the major consti-
tutive of α-secretase, ADAM10 cleaves APP towards a non-
amyloidogenic pathway, thereby preventing Aβ generation36.
Furthermore, fine-mapping analyses revealed that BIN1 risk
variants, a major risk factor for AD known to induce tau- and
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Figure 3. Cell-type-specific fine-mapped causal SNPs from FTD and AD GWAS risk locus. a, The Schematic of analyses showing the summary of Frontotemporal
Dementia (FTD) and Alzheimer’s Disease GWAS meta-analyses, fine-mapping, and other data processing steps to link causal SNPs to snATAC-seq accessible peaks in
specific cell types. b, Histogram of Overlapped Credible Sets: Count vs. Overlapped Cell Types. It describes a histogram that displays the count of overlapped credible sets
and their associated number of overlapped cell types. Caption continues on the next page −→
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Figure 3. Cell-type-specific fine-mapped causal SNPs from FTD and AD GWAS risk locus. c, Fine-mapped SNPs from identified FTD and AD GWAS risk locus
showing overlap with open chromatin regions from snATAC-seq and GWAS risk gene expression in major cell types. The fine-mapping column using SuSiE shows all of the
snATAC-seq cell-type-specific open chromatin regions overlapped credible sets (PIP > 0.95). The closest gene to the credible set is indicated on the left. The r2 indicates the
average correlation between the SNPs in the credible set. Both the probability of being loss-of-function intolerant (pLI) and loss-of-function observed/expected upper bound
fraction (LOEUF) are from gnomAD 33 (gnomAD v4.0 UCSC). In the pLI column, when the number closes to 1, it means that the gene cannot tolerate protein truncating
variation. The LOEUF column indicates whether the GWAS risk gene is constrained or mutation intolerance when it is closer to 0. The overlapped snATAC-seq OCR column
reflects the cell types of those causal SNPs from a credible set that are present or not. The middle dotplot shows the gene expression in each cell type from the control
samples of three public snRNA-seq datasets 16,19,34. The dotplot on the far right shows the snRNA-seq differentially expressed GWAS gene in each cell type between PiD
and age-matched control samples. A complete set of the fine-mapped SNPs and credible sets with a PP > 0.95 shown for FTD and AD are available in Table S3. Data about
finemapped SNPs with cCREs and their associated target genes can accessed through our online interactive database, scROAD.

isoform-dependent neurotoxicity37,38, predominantly local-
ize to accessible peaks associated with ASC, MG, ODC, and
OPC. These findings give credence to previously reported
disparate findings on the effects of BIN1 SNPs in microglia39

and oligodendrocytes16. Considering that a gene’s expres-
sion can be widespread across multiple cell types, it becomes
crucial to exercise caution when analyzing the effects of vari-
ants, as these effects may vary significantly among different
cell types. Similarly, GWAS variants in the TREM2 gene
were identified within accessible peaks primarily associated
with MG and EX. TREM2 plays a crucial role in various cel-
lular processes, including cell proliferation, survival, phago-
cytosis, and regulation of inflammation40. Notably, its defen-
sive response against AD pathology, coupled with its upreg-
ulation in reactive microglia surrounding amyloid plaques,
has been consistently observed across multiple studies, both
in mouse models and human samples35,41,42.

Complementing our analyses of AD risk loci, we also
performed fine mapping analyses on GWAS risk loci for
FTD, aiming to propose possible risk genes for FTD sub-
type PiD (Figure 3c and Table S3a,b), with five of them in-
tersecting accessible chromatin regions in our snATAC-seq
dataset. For example, one of the fine-mapped FTD risk loci,
SLC30A8, encodes for a zinc transporter and is a susceptible
GWAS locus for type 2 diabetes43. Strikingly, there is a no-
table increase in the prevalence of both type 2 diabetes and
dementia in older adults44. We speculate that SLC30A8 could
be an indirectly related risk locus for FTD. Moreover, among
the identified FTD risk loci, GLDN stands out as another in-
triguing candidate. GLDN encodes for gliomedin, a crucial
protein involved in the formation of the nodes of Ranvier45.
These nodes are critical structures along the neural axons
where action potentials are regenerated. Disruption of the
nodes of Ranvier can result in the failure of the electrically re-
sistive seal between the myelin and the axon, ultimately con-
tributing to various neurological diseases46. Given the fun-
damental role of gliomedin in maintaining axonal integrity,
investigating GLDN variants within specific cell types may
provide valuable insights into their potential involvement in
FTD pathogenesis, especially in our snRNA-seq differential
analyses between PiD and age-matched control, has shown
that GLDN is significantly downregulated. Besides GLDN, in
our snRNA-seq analyses, some of the AD GWAS genes, such
as ADAM10, ADAM17, BIN1, APP, CLU, JAZF1, MAPT, PI-
CALM, PLEKHA1, SLC24A4, SORL1, and UMAD1, were
also differentially expressed in PiD (Table S4a,b). While risk
loci have been identified as significant in our GWAS studies
and cis-regulatory-linked risk genes, the fact that AD GWAS

genes show a highly significant overlap with differentially ex-
pressed genes in the PiD case (Fisher’s Exact Test: p-value
< 2.2×10ˆ-16, Table S3c) suggests that these associations are
not random. However, it remains crucial to determine how
fine-mapped signals specifically relate to PiD. By integrating
these genetic findings with our multi-omics data, we can gain
deeper insights into the complex interplay between genetic
risk factors and cellular processes contributing to PiD and AD
pathology, particularly with regard to regulatory non-coding
regions and gene expression in the corresponding cell types.

Excitatory neuron TF binding site occupancy and ex-
pression analyses reveals TF dysregulation in PiD and
AD.

To further uncover gene regulatory mechanisms impact-
ing the neurons and glial cells in PiD and AD, we sought to
investigate co-accessible enhancer-promoter regions, where
the genome-wide and gene-specific TF differential binding
activities were observed. We want to further our understand-
ing of FTD and AD genetic risk signals, especially their fine-
mapped SNPs’ involvement in the putative regulatory func-
tions. We performed chromatin cis co-accessibility analy-
ses and the transcription factor occupancy prediction analy-
ses on 609,675 cCREs (Table S2), and examined the disease-
enriched signals in both PiD and AD. We implemented cis-
regulatory co-accessibility31 and trans-regulatory occupancy
prediction47 methods for each predominant cell type and di-
vided each cell type into PiD, AD, and their corresponding
control cells for the examination (Figure 4a).

Our integrated cis- and trans-regulatory analyses ap-
proach allows us to explore disease-enriched enhancer-
promoter links, TF differential binding activity, and motif
binding site disruption in neurons. Genome-wide transcrip-
tion factors’ differential binding scores were calculated in
PiD and AD with their matching controls in neurons (Fig-
ure 4b). We identified transcription factors BHLHE22, a TF
previously indicated to play a key role in neural cell fate48,
along with other TFs (p-value < 0.05), exhibit shared and en-
hanced binding activity in both PiD and AD compared with
their respective controls. JDP2, a TF involved in apopto-
sis49, along with other TFs, demonstrates increased binding
activity only in AD. CTCF, a transcriptional regulator that
acts on enhancers, promoters, and gene bodies50, together
with other TFs in the lower left quadrant, displays decreased
binding activity in both PiD and AD compared to their con-
trols. We aimed to further contextualize the varying binding
activity for highlighted transcription factors as an example
to investigate the binding activity at the enhancer regions of
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Figure 4. Excitatory neuronal related transcription factor dysregulation and gene expression changes associated with PiD and AD pathology. a, The schematic
diagram for the co-accessible mapping between putative enhancer and promoter for the target gene as well as the TF binding activity at its local regions. b, Genome-wide
Tn5 bias-subtracted TF differential footprinting binding score of PiD and AD in EX compared to the corresponding controls. c, TF regulatory networks showing the predicted
candidate target genes for the following TFs: CTCF, BHLHE22, and JDP2 in EX. Highlighted transcription factors and other differential expressed TFs are shown in yellow.
Upregulated differential genes are shown in red and square. Downregulated differential genes are shown in blue and in a circle. The gene of interest is downregulated,
shown in pink and in a circle. The differential expressed GWAS risk genes are displayed in bright blue. Edges representing the linkage of TF - target gene regulation are
shown in purple for PiD and sienna for AD. d, delta co-accessibility of ADAM10 and its open chromatin regions in EX for both AD and PiD with their corresponding controls.
Highlighted regions in dark yellow represent SuSiE fine-mapped all SNPs (Figure 3c) closed to the target gene in 4d. e, fold changes of TFs binding in the SuSiE
fine-mapped regions for both AD and PiD. f, Dotplot of the differentially expressed gene in PiD and AD versus their respective controls. g, Dotplot of differentially expressed
GWAS risk genes and TFs in PiD and AD versus their respective controls.
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their specific target genes in neurons (Figure 4c-e). To ac-
complish this, a gene regulatory network for the transcrip-
tion factors BHLHE22, CTCF, and JDP2 was established
in both PiD and AD datasets for excitatory neurons (Figure
4b,c, and S4). Several genes implicated in AD GWAS, in-
cluding JAZF1, SORL1, PLEKHA1, and ADAM10, exhibited
differential expression in EX in individuals with PiD, pro-
viding possible insights into shared molecular mechanisms
between PiD and AD, suggesting potential convergent path-
ways underlying neurodegeneration in these conditions (Fig-
ure 4c). The differentially expressed TFs and genes we iden-
tified, positioned in the center of the network, are under the
regulation of all three highlighted factors: CTCF, JDP2, and
BHLHE22. Those regulated by two or a single TF are de-
picted on the outer ring of the network. We stress that these
findings merely represent a simplified depiction of a highly
complex regulatory network. Gene targets within this net-
work are acknowledged to be subject to regulation, but it’s
important to note that the highlighted transcription factors do
not solely govern their regulation.

To complement our analyses of TF trans-regulatory net-
work in neurons, we aimed to discern cis-regulatory ele-
ments and DNA-binding motifs that are enriched in either
disease or control conditions, particularly within regions con-
taining fine-mapped SNPs. Through the integration of the
co-accessibility map with chromatin accessibility signals and
GWAS statistics across the genomic axis, we elucidated po-
tential disruptions in cis-regulatory relationships caused by
causal disease variants in a GWAS gene, ADAM10, which
is also differentially expressed genes (Figure 4d,e). Addi-
tionally, we conducted analyses of the sequences to identify
motifs that are disrupted in comparison to control conditions.
This procedure was executed with the aim of assessing dis-
ease or control gene local enhancer accessibility and predict-
ing potential disruptions in TF binding.

We found alterations in the cis-regulatory mechanisms
of ADAM10 in AD, a prominent anti-amyloidogenic can-
didate gene in AD pathology36 (Figure 4d). This change
was identified in proximity to the fine-mapped lead ADAM10
SNP, rs602602, and in its strong LD block, potentially dis-
rupting the DNA-binding motif. Consequently, these disrup-
tions may result in diminished transcription factor (TF) bind-
ing activity in disease compared to their corresponding con-
trol group. We further investigated the gene locus TF binding
activity in those highlighted fine-mapped accessible regions.
We selected five TFs from the top-ranked TFs based on the
average log2(fold change) of the TF binding score. For ex-
ample, we found forkhead box O1 (FOXO1), SATB home-
obox 1 (SATB1), POU class 5 homeobox 1 (POU5F1), Paired
box 4 (PAX4), and peroxisome proliferator-activated receptor
(PPAR) transcription factors enriched in highlighted regions
identified for ADAM10 in EX (Figure 4e). Previous studies
have investigated the potential roles of FOXO1, SATB1, and
POU5F1 in the development of AD51–53. Notably, FOXO
TF families were indicated as mediators of stress adaptation,
which promotes the resilience of cells as a key regulator in
other pathways, such as metabolism, cell cycle, and redox

regulation54. The transcription factor PAX4 has been investi-
gated in the contexts of both AD and Type 2 Diabetes (T2D),
and is known to function as a key link in the common path-
ways of both diseases55.

To thoroughly examine the differences in gene expres-
sion in EX between disease and control groups, we ar-
ranged and compared all selected differentially expressed
genes (DEGs) and transcription factors (TFs) side by side
for PiD and AD (Figure 4f,g). Not only does the fold
change in gene expression indicate the robustness of biologi-
cal changes between diseases, but it is also important to high-
light certain genes and TFs, particularly regarding their roles
in disease development. Among those top-selected genes,
CALM1 has been linked to the progression from mild cog-
nitive impairment (MCI) to AD through involvement in the
neurotrophin signaling pathway, which contributes to neu-
ronal development, survival, and plasticity56. Additionally,
CALM1 participates in dysregulated ligand-receptor (LR) in-
teractions57. So, by exhibiting a significant downregulation
in both PiD (FDR-adjusted p-value = 5.57×10ˆ-6, Table S4a)
and AD (FDR-adjusted p-value = 0.011, Table S4b) samples,
it may indicate a potential common role in the pathogene-
sis of both diseases. Similarly, TARBP1 showed a notable
decrease in both PiD and AD (Figure 4c,f). TARBP1 en-
codes the TAR RNA binding protein 1 (TRBP), which partic-
ipates as a methyltransferase enzyme in post-transcriptional
gene regulation through its involvement in RNA processing
pathways, and it is associated with inattention symptoms58.
Moreover, as we explore further genes implicated in neurode-
generative processes, another significant player is UBE3A,
for which we have already identified the regulation of its
distal enhancer (Figure 2e). But here, we found a signifi-
cant decrease of UBE3A, regulated by CTCF and BHLHE22,
in EX in PiD (FDR-adjusted p-value = 1.04 ×10ˆ-14) (Fig-
ure 4c,f). We conducted a detailed examination of the alter-
ations in TFs’ expression levels between diseased and con-
trol states. Our analyses revealed a pervasive downregula-
tion of TF expression across PiD samples, when compared
to the changes observed between Alzheimer’s disease (AD)
and its respective control group (Figure 4g). Among those
TFs with differentially expressed levels, we observed RORA,
a transcription factor that plays an essential role in energy
and lipid metabolism59, is significantly upregulated in both
PiD (FDR-adjusted p-value = 1.14 ×10ˆ-20, Table S4a) and
AD (FDR-adjusted p-value = 0.002, Table S4b). Aberrant en-
ergy metabolism is the critical factor for cell integrity mainte-
nance and neurodegeneration. Another notable differentially
expressed TF, STAT1, demonstrated a different expression
pattern across PiD (FDR-adjusted p-value = 4.61 ×10ˆ-14,
Table S4a) and AD (not significant), implying its distinct in-
volvement in the regulatory mechanisms underlying different
neurodegenerative disorders or different stages of disorders.
Prior research has indicated that decreased STAT1 expression
correlates with a higher risk of conversion to MCI and can be
considered as a preclinical indication of AD development60.
The preceding analyses and these data provide a likely ge-
netic mechanism for two distinct dementias, based on dif-
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ferential TF binding activity on the enhancer or promoter re-
gions of its target gene, coupled with analyses shown on gene
expression.

Utilizing TF binding occupancy to identify the shared
and distinct glial responses in PiD and AD.

We investigated the regulatory role of several TFs in
glial cells in PiD and AD. Given the importance of TFs in
modulating gene expression, we focused on identifying the
top differential binding TFs, distinguishing those specific to
PiD and those shared with AD. Among the selected TFs, we
explored the regulatory effects of microglial TF SPI1, a well-
known AD GWAS risk gene11, friend leukemia integration 1
(FLI1), and Transcription Factor Dp-1 (TFDP1) (Figure 5a,
S5a, and Table S4ab), to shed light on the potential roles of
these TFs in the pathogenesis of PiD and AD. In our snATAC-
seq analyses of microglial cells, we observed increased dif-
ferential binding activities of FLI1 and SPI1 in both PiD and
AD. SPI1 is known to be associated with the normal devel-
opment of microglial cells in the brain61, and Ets-related
transcription factor FLI1 has been established as a regula-
tor of gene activity during cellular differentiation62. How-
ever, TFDP1, a potential global modulator of chromatin ac-
cessibility by controlling histone transcription63, shows con-
trasting differential binding activities when comparing PiD
with AD (Figure 5a and S5a), suggesting potential discrep-
ancy in genome-wide TFDP1 TF binding action between dis-
eases. Among the top-selected targets, we observed a sig-
nificant downregulation of MAF in AD (FDR-adjusted p-
value = 2.28×10ˆ-8, Table S4b), a gene identified as an AD
GWAS risk gene and a differentially expressed TF11, reg-
ulated by SPI1. Interestingly, we did not observe any sig-
nificant difference in MAF expression in PiD (Figure 5b,c).
Additionally, we detected another AD DEG, CX3CR1 (FDR-
adjusted p-value = 1.53×10ˆ-25, Table S4b), also regulated
by SPI1, but not significantly dysregulated in PiD. CX3CR1
has been implicated in both neuroprotective and detrimen-
tal effects by regulating inflammation in neurological disor-
ders64. Furthermore, our analyses revealed the regulation of
several other GWAS risk genes, including GLDN, ZFHX3,
USP6NL, SORL1, MS4A4A, INPP5D, and RASGEF1C 11, by
TFDP1, FLI1, and SPI1.

In astrocytes, we observed a consistent trend among
most TFs, where the majority displayed either increased or
decreased binding scores in both PiD and AD. Notably, a
subgroup of TFs from the activating protein-1 (AP-1) family,
namely JUND, JUNB, and FOS, exhibited significant enrich-
ment in both PiD and AD (Figure 5d and S5b). For instance,
JUND from the AP-1 TF family, known for its strong cor-
relations with pTau and amyloid-beta65, demonstrated simi-
lar patterns. Additionally, BACH1, primarily recognized as
a transcriptional suppressor66, showed a positive correlation
with both PiD and AD. These findings suggest some poten-
tial convergence of top-selected TFs’ activity in astrocytes
across PiD and AD pathologies. Specifically, JUND’s in-
ferred role in astrocyte APOE expression, which is shown to
be downregulated in AD (FDR-adjusted p-value = 3.14×10ˆ-
4, Table S4b) but not statistically significant in PiD (Figure

5e,f), underscores its involvement in AD-related processes.
At the same time, we identified hypoxia-inducible factor-
1 alpha (HIF1A), regulated by both JUND and BACH1, as
downregulated in PiD (FDR-adjusted p-value = 4.35×10ˆ-6,
Table S4a) but not significant in AD, which may align with
previous reports suggesting that the loss of HIF1A within as-
trocytes protects neurons from cell death67. Our observa-
tions underscore potential regulatory changes in astrocytes,
characterized by the regulatory activation mediated by AP-1
family TFs and the transcriptional suppression facilitated by
BACH1. Furthermore, the dysregulation of APOE expres-
sion and HIF1A levels in astrocytes emphasizes the intricate
interplay between transcriptional regulation and disease pro-
gression in these neurodegenerative disorders.

In oligodendrocytes, we observed a predominant trend
where the majority of TFs exhibited either increased bind-
ing activity in both PiD and AD or unique patterns spe-
cific to each disease state (Figure 5g and S5c). Noteworthy
among these are the transcriptional suppressors HES1 and
ZBTB3368,69, which displayed enriched differential binding
scores in both PiD and AD. Moreover, our analyses revealed
that these two transcriptional repressors were not only as-
sociated with the downregulation of ADAM10, PLEKHA1,
and JAZF1, among other downregulated DEGs, but also with
the upregulation of BIN1 and MAPT, along with other up-
regulated DEGs (Figure 5h). This suggests the intricate and
multifaceted nature of the transcriptional processes, which
may be relevant to both PiD and AD, or specific to one of
these conditions, indicating shared or condition-specific reg-
ulatory mechanisms. Furthermore, MAPT, a gene encoding
tau protein to keep the function of microtubules and axonal
transport, which ZBTB33 also regulates, is differentially ex-
pressed in both PiD and AD. Additionally, the downregula-
tion of FOXO1, known to protect against age-progressive ax-
onal degeneration70, further underscores the intricate inter-
play between transcriptional regulation and neurodegenera-
tive processes in oligodendrocytes.

Cis-regulatory linked HGE impacts the expression of
a target gene in disease synaptic pathology.

We have elucidated the shared and distinct changes in
the pathways between these two frontal cortical degenerative
diseases related to the prominent features, glial activation,
neuroinflammation, synaptic dysfunction, and synapse loss
of AD and related dementia71,72. Building upon these find-
ings, we reasoned that these data further provide a unique
opportunity to identify human-specific regulatory elements
responsible for maintaining the integrity of human cortical
neurons and driving cortical neurogenesis.

In order to uncover regulatory elements unique to hu-
mans that drive cortical neurogenesis, we further delved into
a previously compiled highly expressed gene list that shows
increased activity specifically in the developing human brain,
when comparing gene expression between mice, macaques,
and humans73. Through overlapping human-gained enhancer
(HGE) with snATAC-seq peaks from PiD and AD, we iden-
tified an enhancer element that is both a differentially ac-
cessible peak in PiD and an HGE. Using chromatin co-
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Figure 5. Glial changes in transcription factor dysregulation and gene expression in PiD and AD progression. Caption on the next page −→
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Figure 5. Glial changes in transcription factor dysregulation and gene expression in PiD and AD progression. a, d, g, Genome-wide Tn5 bias-subtracted TF
differential footprinting binding score of PiD and AD in MG (a), ASC (d), and ODC (g) compared to their corresponding controls. b, e, h, TF regulatory networks showing the
predicted candidate target genes for MG (b), ASC (e), and ODC (h). Highlighted transcription factors and other differential expressed TFs are shown in yellow. Upregulated
differential genes are shown in red and square. Downregulated differential genes are shown in blue and in a circle. The gene of interest is downregulated, shown in pink and
in a circle. The differential expressed GWAS risk genes are displayed in bright blue. Edges representing the linkage of TF - target gene regulation are shown in purple for
PiD and sienna for AD. c, f, i, Dotplot of the differentially expressed gene, differentially expressed GWAS risk genes, and TFs in PiD and AD versus their respective controls.

accessibility analyses, we bioinformatically linked this dif-
ferential accessible enhancer to UBE3A, even though it is
located more than 40Kbp away from its UTRs and around
80kbp away from its coding region (Figure 6a,b). As a gene
implicated in neuronal activity, UBE3A codes for a protein
that plays a critical role in neuronal functioning, regulating
proliferation and apoptosis74. UBE3A loss of function mu-
tation has been observed in individuals with Angelman Syn-
drome, while autism-linked UBE3A gain of function muta-
tion was recently reported in a mouse model showing neu-
robehavioral deficits75,76. The cis-regulatory identified distal
enhancers and HGE of UBE3A in neurons are more accessi-
ble in PiD (FDR-adjusted p-value = 4.40 ×10ˆ-5) (Figure 2e
and 6a,b).

We hypothesized that the active HGE would likely en-
hance the expression of UBE3A or mitigate suppressive ef-
fects leading to its downregulation. Conversely, the elimina-
tion of this active HGE would presumably result in reduced
levels of UBE3A. To validate whether this imputed enhancer
is indeed the putative enhancer of UBE3A, we conducted
CRISPR-edited experiments in iPSCs, wherein we targeted
and trimmed the HGE region (chr15:25,479,200-25,482,595)
(Figure 6b,c). In theory, if the predicted enhancer does regu-
late gene activity, removing it would interfere with its control
mechanisms, resulting in reduced activity of the target gene.
This approach has previously been employed to identify en-
hancers that regulate neocortical development77. Following
RNA-seq analyses after 28 days in derived neurons, pertur-
bation of UBE3A expression led not only to its downregula-
tion (Figure 6d,e), but also to differential expression in other
genes (Figure 6e). Gene ontology analyses of the RNA-seq
data from iPSCs revealed that downregulation of UBE3A was
associated with processes including downregulation of pro-
tein ubiquitination, apoptosis, heterochromatin organization,
cAMP-dependent protein kinase activity, and disruptions in
various metabolic processes (Figure 6f).

Given the intricate nature of human tissue, particularly
in the context of disease conditions, our subsequent analyses
noted an enriched activity of chromatin accessibility (aver-
age log2FC > 0, Table S2) for all distal peaks associated with
UBE3A in the EX. Despite this, we observed a decrease in
the proteomic and transcriptomic levels of UBE3A. In our
immunofluorescence staining of UBE3A, we noted a statis-
tically significant decrease in UBE3A levels in human PFC
(Figure 6g). Furthermore, our analyses of DEGs also re-
vealed UBE3A as one of the downregulated genes (Figure
6h,i). In our gene ontology analyses, we found that the down-
regulated genes were involved in various processes related to
neuronal integrity, brain morphogenesis, neuron cell-cell ad-
hesion, axon guidance, cell fate determination via the Wnt
signaling pathway, and UBE3A-related ubiquitin-dependent

protein catabolic processes. Conversely, among the upreg-
ulated terms, we observed enrichment in processes related
to microtubule organization and tau protein regulation (Fig-
ure 6j). This discrepancy may be attributed to the chromatin
region becoming more accessible as a compensatory mech-
anism to counteract the downregulation of its target genes
(Figure S2d), highlighting the need for further investigation
into the regulatory processes underlying these observations.

Discussion
Single-cell sequencing has been used to characterize the
cell type and cell state-specific changes in Alzheimer’s dis-
ease pathology extensively. However, comparatively, other
tauopathies, including Pick’s disease, have been understud-
ied. In this study, we generated single-nucleus epigenomic
and transcriptomic data from postmortem human brain tis-
sue samples of Pick’s disease and cognitively normal con-
trols. By integrating the analyses on cis- and trans-regulatory
mechanisms with gene expression data, our approach at the
single-cell resolution enabled us to investigate the cellular di-
versity of the human PFC to compare shared and distinct reg-
ulatory mechanisms between these two tauopathies in exci-
tatory neurons, astrocytes, microglia, and oligodendrocytes,
and pinpoint the cell-type specific disease-associated alter-
ations. Meta-analyses in genome-wide association studies,
supplemented with the assistance of snATAC and snRNA
data, utilized AD and FTD GWAS genes and revealed puta-
tive and dysregulated risk genes for PiD. Systematic analyses
of alternation in TF binding activity on promoter-enhancer
links in both a genome-wide scale and gene-local region
in PiD and AD revealed distinct and shared TF-regulatory
networks from neurons and glial cells. Our single-nucleus
data and customized approach to investigating cis- and trans-
regulatory mechanisms altered in PiD and AD pathology led
to the creation of an online interactive database, scROAD,
which researchers are free to explore. We additionally
generated RNA-seq data from iPSC-derived neurons in the
CRISPR-Cas9 experiment, allowing us to validate imputed
promoter-enhancer regulatory linkage from possible target
genes involved in disease progression.

Although the precise molecular mechanisms driving
PiD pathology remain elusive, our study provides novel
insights into the intricate landscape of gene regulation in
PiD, particularly the challenges in interpreting distal regula-
tory elements. Our differential analyses highlight the util-
ity of our identified promoter-enhancer links in elucidat-
ing regulatory mechanisms, and revealed widespread chro-
matin accessibility and gene expression changes linked to
PiD and AD pathology across major cell types. Some of
these changes, including the increased chromatin accessi-
bility and dysregulated gene expression involved in synap-
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Figure 6. Mapping DREs involved in synaptic function to their target genes. a, Delta co-accessibility of UBE3A and its open chromatin regions in EX for both AD and
PiD with their corresponding controls. Highlighted regions in salmon represent CRISPR-edited enhancer regions to the UBE3A. b, Enlarged CRISPR-edited enhancer
regions of UBE3A in salmon and differentially accessible peaks in yellow overlap with intronic regions of long intergenic non-protein coding RNA 22 (LINC02250). c,
Experimental design for HGE CRISPR-Cas9 for UBE3A, RNA-seq performed on iPSC-derived neurons after 28 days of development. d, UBE3A expression from RNA-seq.
e, Volcano plot of DEGs from RNA-seq (UBE3AKD vs WT). e, Gene ontology of upregulated and downregulated DEGs from RNA-seq (UBE3AKD vs WT). g, Representative
triple immunofluorescence images for UBE3A (red), neurofilament marker (green), and DAPI (blue) from postmortem human brain tissue (PFC) of control (n=3), AD (n=5)
and Pick’s (n=5) cases. 60 X Images were captured using Nikon ECLIPSE Ti2 inverted microscope. h, snRNA-seq DEG analyses in EX. i, UBE3A expression from
snRNA-seq in EX. j, Gene ontology of upregulated and downregulated DEGs from snRNA-seq (PiD vs Control).
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tic signaling, apoptotic process, regulation of neuronal ac-
tivity, cellular response to stress, and cell communication,
may represent an attempt of neurons and oligodendrocytes
interaction to reestablish homeostasis through necessary at-
tempts to different genes. Some promoter-enhancer connec-
tions facilitated increased chromatin accessibility, potentially
serving as a compensatory mechanism to mitigate the dys-
regulation of target genes. Other alterations, including posi-
tive regulation of endocytosis, genes responsible for cellular
metabolic process, and genes encoding cellular response to
unfolded/misfolded protein in astrocytes and microglia, may
contribute to glial cell differentiation or immune activation
in PiD and AD. Disruptions in the metabolic processes and
cellular stress response compromise the balance in the cel-
lular microenvironment and consequently contribute to the
progression of PiD and AD.

While the causative molecular mechanisms of PiD re-
main unknown, our work offers new insights that assist in
unraveling the nature of gene regulation in PiD, especially
regarding genomic loci with well-described heritable dis-
ease risk. We capitalized on the AD and FTD GWAS data
to identify genes associated with phenotypic variability be-
tween PiD and AD because of similar pathological and clini-
cal traits, such as tauopathies and cognitive decline. GWASs
have been widely used to enhance our understanding of poly-
genic human traits and to reveal clinically relevant risk vari-
ants for neurodegeneration. Notably, we identified genetic
risk variants that overlapped with specific cell types to nar-
row down the potential non-coding variants underlying dis-
ease susceptibility. Furthermore, our analysis revealed that
AD GWAS genes showed a highly significant overlap with
differentially expressed genes in PiD cases, suggesting that
these associations are not random. This highlights the po-
tential convergent regulatory mechanisms that may be shared
between PiD and AD, despite the distinct clinical manifesta-
tions. Although this method has enabled the investigation of
cell-type-specific disease-associated regulatory mechanisms,
key limitations of the snATAC-seq assay without variant call-
ing in PiD samples leave the opportunity for future studies
and improvements.

Cell demise constitutes a defining characteristic of neu-
rodegenerative ailments, including Pick’s and Alzheimer’s
disease. Significantly more pronounced alterations in chro-
matin accessibility and gene expression were observed in ex-
citatory neurons and oligodendrocytes in PiD compared to
AD. In agreement with a previously observed association be-
tween rapid progression and early disease onset in PiD than
AD3,32, we found an elevation in the fold change in chro-
matic accessibility of dysregulation among genes and TFs,
especially in excitatory neurons. Additionally, in excitatory
neurons from PiD, we identified a possible compensatory
mechanism that downregulated genes strongly associated
with increased chromatin-accessible regions for the same
genes through cis-regulated promoter-enhancer links, includ-
ing genes responsible for neuronal activity and signaling, for
example, UBE3A. A major contribution of our study lies
in the identification of cell-type-specific enhancer-promoter

pairs, potentially facilitating gene-regulatory alterations in
PiD and AD, along with the TFs likely to bind to these regu-
latory elements within the respective cell types. Our investi-
gation into cis-regulatory elements and DNA-binding motifs,
particularly in regions harboring fine-mapped SNPs, has un-
covered potential disruptions in regulatory relationships, ex-
emplified by the anti-amyloidogenic gene ADAM10. These
disruptions, proximal to disease-associated SNPs, may lead
to diminished TF binding activity and subsequent dysregu-
lation of target gene expression. Furthermore, our analy-
ses utilized the gene-specific-enhancer-binding TFs’ infor-
mation to construct a TF regulatory network in neurons and
demonstrated alterations in PiD and AD. We also provide
insights into the regulatory landscape of TFs in glial cells
across PiD and AD. We identified differential binding ac-
tivities of TFs, such as SPI1, known as a significant AD
GWAS risk gene in microglia and associated with its develop-
ment, JUND in astrocytes, known for its strong correlations
with pTau and amyloid-beta, and transcriptional suppressors
HES1 and ZBTB33 in oligodendrocytes, shedding light on
their potential roles in disease pathogenesis. Moreover, the
downstream dysregulation of TFs and genes associated with
the highlighted TFs, including CX3CR1, MAPT, and FOXO1,
emphasizes the intricate regulatory mechanisms implicated
in neurodegenerative processes, with some alterations shared
between PiD and AD, while others are uniquely observed in
either condition.

The identification of functional regulatory elements in
human excitatory neurons and the validation of their func-
tions in iPSC-derived neurons enhance our understanding of
epigenomic discovery. Leveraging these findings, we iden-
tified human-specific regulatory elements crucial for main-
taining the integrity of cortical neurons in a neurodegener-
ative disorder, providing valuable annotations. Subsequent
CRISPR-edited experiments in iPSCs confirmed the regula-
tory role of a putative enhancer in UBE3A expression. Fur-
thermore, our observations of enriched chromatin accessi-
bility near UBE3A in excitatory neurons, despite decreased
UBE3A levels in snRNA-seq, suggest compensatory mecha-
nisms in response to its downregulation.

Overall, our findings provide valuable insights into the
regulatory landscape of PiD and AD, emphasizing the im-
portance of integrated genomic approaches for elucidating
the molecular underpinnings of neurodegenerative disorders.
These findings underscore the intricate interplay between
transcriptional regulation and disease progression in PiD
and AD, highlighting the importance of understanding these
mechanisms for developing effective therapeutic strategies.
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Methods

Postmortem human brain tissue. Human postmortem frontal cortex brain samples were obtained from UCI MIND’s
Alzheimer’s Disease Research Center (ADRC), Harvard and Mt.Sinai tissue repositories. All participants, or participants’
legal representatives, provided written informed consent for the study. 50 mg tissue from each sample (n= 9 control brain
and n= 7 Pick’s brain) was dissected and aliquoted into a 1.5 ml tube inside a prechilled tissue dissection box as described
previously78. Samples were also selected based upon several covariates, including age, sex, postmortem interval (PMI), and
disease comorbidity. Sample information is available in Table S1.

Immunofluorescence. PFA fixed human postmortem brain tissues (PFC region) were sectioned at 30µm using a cryotome
(Leica SM2010R). Sections were then rehydrated and washed in 1X sterile PBS and permeabilized using 1X sodium citrate
buffer pH 6.0 (heated at 95°C for 10 mins). After blocking with 3% BSA solution or serum, sections were incubated with
diluted primary antibodies (as per manufactures recommendation) at 4°C overnight (IBA1 antibody; Cat #NC9288364; 1:1000;
Fisher Scientific, GFAP Polyclonal Antibody; Cat #PA3-16727; 1:500; ThermoFisher, p-tau (AT8) Cat #MN1020; 1:250;
ThermoFisher; UBE3A; Cat #10344-1-AP; 1:1000; Proteintech, Anti neurofilament protein; Cat #837904; 1:1000; Biolegend).
Secondary antibodies were selected and diluted according to the manufacturer’s instruction and incubated for 1.5-2 hrs. Sec-
tions were then washed (3X with PBS), mounted and cover slipped using anti fade mounting media. Slides were imaged
(20X/40X/60X) using Nikon ECLIPSE Ti2 inverted microscope. Images from 3 randomly selected areas of each slice were
used for analyses.

snATAC-seq tissue processing and nuclei isolation. Frozen brain tissue pieces were placed in 500 µL chilled 0.1× Lysis
Buffer (1X lysis buffer diluted with lysis dilution buffer; please refer to snATAC-seq protocol78 for more details) and immedi-
ately homogenized 15 times using a pellet pestle (Fisherbrand™ Pellet Pestle™ Cordless Motor with RNase-Free Disposable
Pellet Pestles, Cat#12-141-364). The homogenized tissues were then incubated for 15 mins followed by addition of 500 µL of
chilled Wash Buffer and filtration through a 70 µm Cell Strainer (Miltenyi Biotech). In the next step, a sucrose gradient (Nuclei
PURE Prep Nuclei Isolation Kit, Cat #NUC201-1KT, Sigma) was prepared and nuclei were spun at 13,000 g for 45 minutes at
4°C. After centrifugation, the debris and myelin from the top of the sucrose gradient were removed. Nuclei were resuspended,
washed, filtered (through a 40 µm cell strainer), counted (using a cell counter), and then incubated in a Transposition Mix.

snATAC-seq library preparation and sequencing. Transposed nuclei were loaded on 10X Genomics Next GEM Chip H
(10x Genomics) to generate single-cell GEMS. GEMs were then transferred, incubated, and cleaned for further processing.
Single nuclei ATAC-seq libraries were prepared using the Chromium Single Cell ATAC v2 (10x Genomics) reagents kit as
per the manufacturer’s instructions. Library size distribution and average fragment length, of each library, were assessed with
Agilent TapeStation High Sensitivity D5000 ScreenTapes and the concentrations were quantitated using Qubit Fluorometer.
Libraries were sequenced on a NovaSeq 6000 (Illumina) in paired-end mode (read1N: 50 cycles, index i7: 8, index i5:16
cycles, read 2N:50 cycles) to generate approximately 500 M reads per sample.

snRNA-seq library preparation and sequencing. 45-50 mg of fresh frozen brain tissue (PFC) was homogenized in EZ
Lysis buffer (Cat #NUC101-1KT, Sigma-Aldrich) and incubated for 10 min on ice before being passed through a 70µm filter.
The new tube with filtered homogenate was then centrifuged at 500 g for 5 min at 4°C and resuspended in additional 1ml of
lysis buffer. After another centrifugation samples were incubated in Nuclei Wash and Resuspension buffer (1xPBS, 1% BSA,
0.2U/µl RNase inhibitor) for 5 min. To remove myelin contaminants and debris, we prepared sucrose gradients and centrifuged
the tubes at 13,000 g for 45 min at 4°C. Next, a debris removal solution (Cat #130-109-398, Miltenyi Biotec) was added to
the nuclei suspension (and centrifuged at 3,000 g for 10 mins at 4°C) for a second round of cleanup. Debris free clean nuclei
suspension was then diluted in nuclei buffer (with BSA and RNase) before processing with the Nuclei Fixation Kit (Parse
Biosciences). After fixation and permeabilization, nuclei were cryopreserved with DMSO until day of library preparation.
Libraries were prepared using using EVERCODE™ WT V3 kit (Parse Bioscience) and quantified using Qubit dsDNA HS
assay kit (Cat #Q32851, Invitrogen). D5000 HS kit (Cat #5067-5592, Cat #5067-5593; Agilent) was used for measuring
the average fragment length of each library. Libraries were sequenced using Illumina Novaseq 6000 S4 platform (paired-end
sequencing) for a sequencing depth of 50,000 read pairs/nuclei.

Cortical Neuron Pellet Generation. Cortical neurons were generated as previously described79 with some modifications.
Induced pluripotent cell lines were maintained in mTeSR Plus medium (Stem Cell Technolgies Cat #100-0276) on GelTrex
basement membrane (ThremoFisher Cat #A1413302) and passaged using ReLeSR (Stem Cell Technologies Cat #100-0484) at
80% confluence in the presence of CEPT (Chroman1-Tocris Cat #7163, Emricasan-Seleck Chemicals Cat #S7775, Polyamine
supplement-Sigma Cat #P8483, Trans-ISRIB-R&D Systems-528480). UBE3A mutant and parental lines were transfected via
Nucleofection (LONZA Cat #VPH-5022) of the PB-TO-hNGN2 (Addgene Cat #172115*) plasmid and purified in the presence
of 200 ng/mL Puromycin (Invivogen ant-pr-1) until the majority of cells showed plasmid expression as determined by BFP
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expression. Once a high BFP expression had been established, iPSCs dissociated to single cell with accutase (ThermoFisher
Cat #NC9464543) and seeded at 1x106 cells per GelTrex coated 6 well in Induction media: Knockout DMEM/F12 (Ther-
moFisher); N2 supplement 100X (ThermoFisher); non-essential amino acids 100X (ThermoFisher), and supplemented with
Doxycycline at a final concentration of 1µM (Sigma) and CEPT. The medium was changed every day. After 3 days, Uridine
(U) and Fluorodeoxyuridine (FdU) were both added at 1mM (Sigma Cat #3750, Sigma Cat #0503). On day 4, the induced cells
were passaged as single cells with Accutase and seeded at 2x106 cells per Poly-D-Lysine coated 6 wells (Sigma Cat #P6407)
in Cortical Neuron Culture Medium 1 (CM!): 1:1 Knockout DMEM/F12: BrainPhys neuronal medium without Phenol-Red
(STEMCELL Technologies); B27 supplement, 50X (ThermoFisher); BDNF (10 µg/ml, STEMCELL Technolgies ) in PBS
containing 0.1% BSA (ThermoFisher); NT-3 (10 µg/ml, Preprotech) in PBS containing 0.1% BSA, GDNF (10 µg/ml, STEM-
CELL Technologies ) in PBS containing 0.1% BSA; laminin final con. 1 µg/ml (ThermoFisher), Doxycycline (1uM), U (1uM),
and FdU (1uM). Cells were maintained an additional 24 days with half media changes every 3-4 days first with CM1 (day 7),
then Cortical Neuron Culture Medium 2 (CM2) starting at day 10. CM2: BrainPhys neuronal medium without Phenol-Red
(STEMCELL Technologies); B27 supplement, 50X (ThermoFisher); BDNF (10 µg/ml, STEMCELL Technolgies ) in PBS con-
taining 0.1% BSA (ThermoFisher); NT-3 (10 µg/ml, Preprotech) in PBS containing 0.1% BSA, GDNF (10 µg/ml, STEMCELL
Technologies ) in PBS containing 0.1% BSA; laminin final con. 1 µg/ml (ThermoFisher), Doxycycline (1uM), U (1uM), and
FdU (1uM). Three successive passages of each cell line were differentiated in parallel with pellets collected and flash froze for
RNAseq at D0, D4, and D28 along with PFA fixed coverslips.

Processing snATAC-seq data. We used Cellranger-atac count (v 2.0.0) to map raw snATAC-seq reads to the GRCh38 ref-
erence genome (downloaded from the 10X Genomics website) in each sample, quantifying chromatin accessibility for each
cell barcode. First, we used the ArchR function createArrowFiles to format the output of Cellranger-atac, removing barcodes
with transcription start site (TSS) enrichment less than 4 and fewer than 1000 fragments. This function also yields a barcodes-
by-genomic-bins “tile matrix” and a “gene score matrix“ which aggregates chromatin accessibility information proximal to
each gene. We next used the R package ArchRtoSignac to convert our dataset from ArchR to Signac format to proceed with
downstream analyses in Signac. We next performed analyses of our new snATAC-seq samples from PiD donors and cogni-
tively normal controls with our previous snATAC-seq dataset of AD donors and controls as the reference dataset. We created a
merged object of the PiD and AD snATAC-seq datasets, and then created an integrated dimensionally-reduced representation of
them using the Seurat function FindIntegrationAnchors, using reciprocal latent semantic indexing (RLSI) as the dimensionality
reduction method. Using this anchor set, we performed transfer learning to predict the cell type identity of the nuclei in the
PiD dataset based on the annotations in the AD dataset with the Seurat function FindTransferAnchors. This transfer learning
analysis provides a probability for each nucleus in the PiD dataset for its cell-type assignment, where some nuclei are confi-
dently mapped to a single cell type while others are more ambiguously mapped to multiple cell types. We next filtered the PiD
dataset by nuclei with a max prediction probability greater than or equal to 0.95 to retain nuclei with highly confident mappings
across the datasets. We performed a final integrated analysis using LSI dimensionality reduction and Harmony on the basis of
the biological sample.

Processing snRNA-seq data. We used split-pipe ParseBio pipeline (v 1.0.3) to map snRNA-seq reads to the GRCh38 refer-
ence transcriptome (downloaded from the Ensembl website) in each sample, quantifying unique molecular identifiers (UMI) for
each cell barcode. Next, we accounted for potential ambient RNA contamination by applying Cellbender remove-background
(v 0.2.0) to model the ambient signal and remove it from the UMI counts matrix for each sample. We then identified barcodes
mapping to multiple nuclei (multiplets) by applying Scrublet (v 0.2.3) with default settings to each sample. We applied an
initial quality control (QC) filter to remove barcodes with fewer than 250 UMI. Further, we applied sample-specific filters to
remove barcodes in the top 5% of UMI, percentage of mitochondrial reads, and multiplet score within each sample. We finally
applied a dataset-wide cutoff to remove barcodes with greater than 20,000 UMI, greater than 0.2 multiplet score, and greater
than 5% mitochondrial reads, resulting in 68,999 barcodes for clustering analysis. We next performed clustering analysis with
Scanpy with the following steps. First, we normalized gene expression for each cell by the total UMI counts in all genes
and log transform using sc.pp.normalize_total and sc.pp.log1p. Second, we performed feature selection using sc.pp.highly_-
variable_genes using the “Seurat_v3” option for the feature selection method, retaining 3,000 genes for downstream analyses.
Third, we scaled the normalized expression matrix for these 3,000 genes to unit variance and centered at zero mean using the
sc.pp.scale function. Fourth, we performed linear dimensionality reduction with principal component analysis (PCA) using
the sc.tl.pca function, which we then corrected on the basis of sample of origin using Harmony. Fifth, we constructed a cell
neighborhood graph using the top 30 harmonized PCs using sc.pp.neighbors function. We visualized this cell neighborhood
graph using UMAP with the function sc.tl.umap. We performed an initial round of Leiden clustering with a high resolution
parameter (resolution=3) to reveal additional clusters of low-quality cells which may have escaped our previous QC filtering,
and to annotate major cell types based on a panel of canonical marker genes. After removing two low-quality clusters, we split
apart the dataset by major cell lineages (excitatory neurons, inhibitory neurons, oligodendrocytes, and astrocytes) to perform
subclustering analyses, yielding our final clustered and processed snRNA-seq dataset.
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Differential accessible open chromatin analyses. We systematically performed the analyses of differential open chromatin
accessibility across each cellular type. This involved contrasting the disease states with their respective control conditions. For
all the differential analyses employed, differentially accessible peak scrutiny was facilitated by implementing logistic regres-
sion (test.use=’LR’) to draw comparisons between cellular groupings. Logistics regression was utilized based on the
accessibility interface of a specified open chromatin region (OCR) within varying groups of the selected cell type. This is a
protocol recommended by the Signac package (v1.9.0)81. The differential analyses were executed in Signac by deploying
the same FindMarkers function found in Seurat (v4.3.0). The accessible peaks that exhibited an adjusted P-value (corrected
by Bonferroni method) of less than 0.05, accompanied by a minimum cellular fraction (min.pct > 0.05) in either of the
two groups, were categorized as differentially accessible peak between the cellular groupings. We ran a comparative analysis of
chromatin accessibility between the two diagnosis groups, specifically Pick’s disease (PiD) and Alzheimer’s disease (AD), and
their age-appropriate cognitively normal counterparts. This was conducted within the human single nucleus ATAC-seq dataset.
The differential accessibility findings were visualized using a Complexheatmap82, divided by diagnosis comparison and hierar-
chically aggregated based on the avg_log2FC of differentially accessible peaks. This enabled us to focus on changes specific
to each cellular type within each genomic classification. Finally, to single out the biological pathways and processes exhibiting
a significant presence within our promoter differentially accessible peak sets or promoters of cis-regulatory-associated differen-
tially accessible peaks present in distal and intronic regions, we invoked the support of the GREAT R package (v2.0.2)83,84.

Differential gene expression analyses. We identified unbiased marker genes in each of our snRNA-seq clusters by a one-
versus-all differential gene expression test using the Seurat function FindAllMarkers with MAST as our differential expression
model. We used sequencing biological sample and total number of UMIs per cell as model covariates. We performed differential
expression analyses to compare gene expression signatures in cells from PiD and control samples in each of our major cell
types (excitatory neurons, inhibitory neurons, oligodendrocytes, OPCs, astrocytes, pericytes, endothelial cells, and microglia).
Similar to our cluster marker gene test, we used MAST as our differential expression module with biological sample, sex, and
number of UMI as model covariates. We used the R package enrichR to perform pathway enrichment analyses for the DEGs in
our excitatory neuron population.

Statistical fine-mapping of candidate causal variants residue within cell-type specific accessible peaks from the
snATAC-seq data. We sourced comprehensive genome-wide association studies (GWAS) pertinent to Alzheimer’s Disease
(AD)11 and frontotemporal degeneration (FTD)12. The summary data pertaining to the AD GWAS was procured from the
European Bioinformatics Institute GWAS Catalog (accession number: GCST90027158), whilst the FTD GWAS summary data
was retrieved from the International Frontotemporal Dementia Genetics Consortium. To streamline the output files of the
GWAS summary statistics from each dataset, we employed a uniformly designed pipeline, MungeSumstats85. The application
of this tool was governed by parameters that have been specified comprehensively in our GitHub repository. To further elucidate
the role of single nucleotide polymorphisms (SNPs) pertaining to AD, we fine-mapped these SNPs within a 1-Mb window of
the lead variants of AD risk loci that had been unearthed in the initial GWAS investigation11. In addition to the AD SNPs,
the detection of lead SNPs associated with FTD12 required the identification of specific genetic markers encased within a 1-
Mb spectrum present on all chromosomes. The selection criteria for these markers were established based on the statistical
significance of their corresponding P-values. To accommodate all SNPs within the linkage disequilibrium (LD) block, we
estimated pairwise LD between SNPs within the 1-Mb window of the GWAS lead variant. This estimation was performed
using PLINK (v1.9 and v2.0)86. Once the lead SNPs from the FTD and AD GWAS had been secured, the identified data was
customized according to the corresponding 1-MB range LD matrix, within the sparse multiple regression model. This model
was then implemented in the fine-mapping instrument, Sum of Single Effects (SuSiE)87,88. We managed to acquire a number
of credible sets (CSs) for identified FTD and AD GWAS risk loci with high probability (a posterior inclusion probability: PIP
> 0.95). In order to prioritize these credible sets, we aligned SNP locations with our snATAC-seq open chromatin regions.
The fine-mapped casual SNPs within the identified cell types were assessed for credibility by cross-referencing the GWAS
risk genes’ expression level across all cell types using control data from published resources16,19,34. The final step included
checking two scores - the probability of being loss-of-function intolerant (pLI) and the loss-of-function observed/expected
upper-bound fraction (LOEUF) for the prioritized GWAS risk loci. These scores reflect the integrity of a gene or transcript in
tolerating protein truncating variation33.

Reprocessing publicly available single-nucleus gene expression datasets. We obtained the sequence data from three
peer-reviewed single-nucleus RNA sequencing (snRNA-seq) studies related to Alzheimer’s Disease (AD)16,19,34. The datasets
represented in the works of Mathys et al. (2019), and Zhou et al. (2020) were accessed via the Synapse platform (referenced
under syn18485175 and syn21670836, respectively). In the context of the dataset for the Morabito et al. (2021) study, which
was formulated by our research team, a download was not necessitated, but you can access it under syn22079621. Although
the pipeline was largely consistent, there were minor deviations in terms of parameter adjustments as per the individual require-
ments of each dataset. A comprehensive delineation of these nuanced changes is documented in our GitHub repository.
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Finding co-accessible peaks with Cicero to establish putative enhancer-promoter linkage. We initiated the con-
version of the SeuratObject into the CellDataSet framework utilizing the as.cell_data_set function offered within the
SeuratWrappers toolkit (v0.3.0). This was subsequently transformed into a Cicero object through the application of the
make_cicero_cds function taken from the Cicero package (v1.3.4.11). The run_cicero function, a significant
component of the Cicero suite, was then employed to calibrate the co-accessibility of open chromatin peaks across the genome
for each cell type. The predominant objective here was to predict cis-regulatory interactions within a genomic window of
300,000 base pairs. The construction of a linkage co-accessibility score for each associating pair of accessible peaks was com-
pleted using a graphical LASSO regression model. This package and approach were based on techniques detailed in the Cicero
method31. The understanding being that an increased co-accessibility score denoted a stronger bond between an OCR pair and
hence, greater confidence could be assigned to this pairing within a given dataset. Within the total ensemble of OCR pairs,
we prioritized our examination on pairs identified as enhancer-promoter. The rationale for this selective focus stemmed from
the potential for the enhancer-enhancer pair’s co-accessibility score to originate from inherent enhancer-enhancer interactions.
This in turn could lead to a perceivable reduction in the co-accessibility scoring for the enhancer-promoter pair. Lastly, a com-
parative study was undertaken to calculate the delta co-accessibility score within identical OCR pairs. In this step, diseased
states were compared with their corresponding control settings. The purpose of this comparison was to highlight any enhanced
enhancer-promoter linkages that could potentially be contributing to the advancement of the disease.

Transcription factor Occupancy prediction on snATAC-seq chromatin accessibility. TOBIAS47 stands as a robust,
precise, and rapid footprinting framework, facilitating a comprehensive exploration of TF binding occupancy for numerous
TFs concurrently on a genome-wide scale as well as at the gene local region. We want to use this ATAC-seq analysis toolkit
to investigate the kinetics of transcription factor (TF) binding in PiD, AD and their distinctions compared to respective control
conditions, we turn to TOBIAS for its capabilities as the ATAC-seq TF footprinting analyses toolkit. Our initial steps involved
the extraction and categorization of cell barcodes based on both cell type and diagnosis. Subsequently, we compiled distinct
.bam files for each condition, serving as the requisite input format for the TOBIAS ATACorrect step. This particular tool
within TOBIAS corrects the inherent insertion bias of Tn5 transposition. Following this correction process, the central task in
footprinting commenced with the identification of protein binding regions across the entire genome. Utilizing single-base pair
cutsite tracks generated by ATACorrect, TOBIAS FootprintScores was employed to compute a continuous footprinting
score across these regions. This approach enhances the prediction of binding for transcription factors even with lower foot-
printability, characterized by weaker footprints. Subsequently, the footprints were plotted using function PlotAggregate
to visualize and compare the aggregated signals across the specified conditions. This step serves to provide a tangible repre-
sentation of TF binding occupancy and facilitates comparative analyses of these changes under different diagnosis conditions
in each cell type. We developed a wrapper package, scCis-TF, designed to streamline information extraction to integrate data
from Signac into Cicero and TOBIAS and perform analysis.

Transcription factor Regulatory Network Construction. To construct a comprehensive TF regulatory network, we inte-
grated insights from Cicero and TOBIAS. First, leveraging Cicero, we focused on the predicted cis-regulatory interactions
within a 300,000 base pair window, and grouped them based on the genomic class around its target gene identified by ac-
cessible promoter peaks. So by prioritizing the examination of enhancer-promoter pairs within the ensemble of OCR pairs,
we discerned potential interactions crucial for regulatory difference. Simultaneously, using TOBIAS, we explored TF bind-
ing activity in the selected gene local region by applying ATAC-seq footprinting analyses to identify protein binding regions
across the genome. Following that, we utilized knowledge of accessible peaks’ cis-regulatory activity and gene local region TF
binding activity to construct a TF regulatory network for selected target genes using R package igraph (v2.0.1.9005). This
approach combines co-accessibility from Cicero and footprinting from TOBIAS, providing a nuanced perspective on the regu-
latory landscape. The resultant TF regulatory network offers a multifaceted depiction of the interplay between TFs, enhancers,
and promoters, enhancing our ability to decipher the intricacies of gene regulation in the context of PiD and AD.
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Figure S1. Quality control and Cell type annotations of the PiD and AD snATAC-seq datasets. a, Vilion plot showing the number of the peak counts in the cell type
clusters from the PiD and AD human PFC snATAC-seq dataset. b, Vilion plot showing the number of UMI, genes and mitochondrial percentage in the samples from the PiD
snRNA-seq dataset. c, Integrated Uniform Manifold Approximation and Projection (UMAP) visualizations by diagnosis for snRNA-seq and snATAC-seq data from PiD and
AD. d, Uniform Manifold Approximation and Projection (UMAP) visualizations for clusters of snRNA-seq data from PiD. e, Heatmap of canonical cell-type markers for
snRNA-seq data from PiD. f, Coverage plots for canonical cell-type markers in AD dataset: GFAP (chr17:44905000-44916000) for astrocytes, SYNPR
(chr3:63278010-63278510) for neurons, SLC17A6 (chr11:22338004-22345067) for excitatory neurons, GAD2 (chr10:26214210-26241766) for inhibitory neurons, CSF1R
(chr5:150056500-150087500) for microglia, MOBP (chr3:39467000-39488000) for oligodendrocytes, PDGFRA (chr4:54224871-54300000) for Pericytes and Endothelial
Cells in PiD dataset. The grey bar within each box highlights the promoter regions.
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Figure S2. Different accessible CREs by cell types. a, Genomic type classification of differential open accessible regions group by cell types (P-value < 0.05) between
PiD. AD with their respective controls. b, Ridgeline plot showing the distance of imputed enhancers from the promoters. c, Heatmaps of fold changes (Disease vs. Control)
on normalized chromatin accessibility of differential accessible intronic in excitatory neurons, astrocytes, microglia and oligodendrocytes (FDR adjusted P-value < 0.05 and
abs(log2FC) > 0.5), gene ontology acquired from GREAT and examples of promoters and distal regions’ cis-regulatory linked gene as in the panel of Figure 2e. d,
Over-representation analysis (ORA) of DEGs (snRNA-seq) and DARs (snATAC-seq) from PiD and AD.
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Figure S3. Characterization of the genetic landscape of Alzheimer’s disease and Frontotemporal dementia. a, Manhattan plot of Alzheimer’s disease 11. b, The
dotplot on the far right shows the snRNA-seq differentially expressed GWAS gene in each cell type between AD and age-matched control samples.
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Figure S4. Aggregated footprints of TFs in excitatory neurons. a, Aggregated TF footprints of CTCF (MA0139.1) in AD and PiD. b, Aggregated TF footprints of
BHLHE22 (MA1635.1) in AD and PiD. c Aggregated TF footprints of JDP2 (MA0656.1) in AD and PiD. d Aggregated TF footprints of ATOH1 (MA0461.1) in AD and PiD.
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Figure S5. Aggregated footprints of TFs in MG, AST, and ODC. a, Aggregated TF footprints of Spi1 (MA0080.6), TFDP1 (MA1122.1) and FLI1 (MA0475.2) in PiD and
AD. b, Aggregated TF footprints of BACH1 (MA1633.2) and JUND (MA0491.2) in PiD and AD. c Aggregated TF footprints of ZBTB33 (MA0527.1) and HES1 (MA1099.2) in
PiD and AD.

26 | bioRχiv Shi, Das & Morabito et al.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 8, 2024. ; https://doi.org/10.1101/2024.09.06.611761doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.06.611761
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Postmortem human brain tissue
	Immunofluorescence
	snATAC-seq tissue processing and nuclei isolation
	snATAC-seq library preparation and sequencing
	snRNA-seq library preparation and sequencing
	Cortical Neuron Pellet Generation
	Processing snATAC-seq data
	Processing snRNA-seq data
	Differential accessible open chromatin analyses
	Differential gene expression analyses
	Statistical fine-mapping of candidate causal variants residue within cell-type specific accessible peaks from the snATAC-seq data
	Reprocessing publicly available single-nucleus gene expression datasets
	Finding co-accessible peaks with Cicero to establish putative enhancer-promoter linkage
	Transcription factor Occupancy prediction on snATAC-seq chromatin accessibility
	Transcription factor Regulatory Network Construction

