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Abstract: Clinical trials are conducted to evaluate the efficacy of new treatments. Clinical trials
involving multiple treatments utilize the randomization of treatment assignments to enable the
evaluation of treatment efficacies in an unbiased manner. Such evaluation is performed in post hoc
studies that usually use supervised-learning methods that rely on large amounts of data collected in
a randomized fashion. That approach often proves to be suboptimal in that some participants may
suffer and even die as a result of having not received the most appropriate treatments during the trial.
Reinforcement-learning methods improve the situation by making it possible to learn the treatment
efficacies dynamically during the course of the trial, and to adapt treatment assignments accordingly.
Recent efforts using multi-arm bandits, a type of reinforcement-learning method, have focused on
maximizing clinical outcomes for a population that was assumed to be homogeneous. However, those
approaches have failed to account for the variability among participants that is becoming increasingly
evident as a result of recent clinical-trial-based studies. We present a contextual-bandit-based online
treatment optimization algorithm that, in choosing treatments for new participants in the study, takes
into account not only the maximization of the clinical outcomes as well as the patient characteristics.
We evaluated our algorithm using a real clinical trial dataset from the International Stroke Trial. We
simulated the online setting by sequentially going through the data of each participant admitted to
the trial. Two bandits (one for each context) were created, with four choices of treatments. For a new
participant in the trial, depending on the context, one of the bandits was selected. Then, we took
three different approaches to choose a treatment: (a) a random choice (i.e., the strategy currently used
in clinical trial settings), (b) a Thompson sampling-based approach, and (c) a UCB-based approach.
Success probabilities of each context were calculated separately by considering the participants with
the same context. Those estimated outcomes were used to update the prior distributions within the
bandit corresponding to the context of each participant. We repeated that process through the end of
the trial and recorded the outcomes and the chosen treatments for each approach. We also evaluated
a context-free multi-arm-bandit-based approach, using the same dataset, to showcase the benefits
of our approach. In the context-free case, we calculated the success probabilities for the Bernoulli
sampler using the whole clinical trial dataset in a context-independent manner. The results of our
retrospective analysis indicate that the proposed approach performs significantly better than either a
random assignment of treatments (the current gold standard) or a multi-arm-bandit-based approach,
providing substantial gains in the percentage of participants who are assigned the most suitable
treatments. The contextual-bandit and multi-arm bandit approaches provide 72.63% and 64.34%
gains, respectively, compared to a random assignment.

Keywords: clinical trials; machine learning; bandits

1. Introduction

A randomized clinical trial is the current gold-standard approach for evaluating
treatment efficacy. In such a setting, the participants are divided randomly into separate
groups to enable comparison of different treatments or other interventions. Since these trials
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usually require large sample sizes and therefore long study durations, a large number of
participants receive suboptimal treatments, especially when multiple treatments are being
evaluated in a trial [1–3]. Although some information about the efficacies of treatments
and their relation to patient characteristics is acquired during the course of these trials, this
information is almost always underutilized. This is a big limitation because, if correctly
utilized, this information has the potential to provide huge monetary savings and improved
patient outcomes [4]. This paper introduces a decision-theoretic approach to address this
limitation and shows its utility in a real clinical trial dataset.

There has been significant interest in developing adaptive strategies for clinical
trials [5,6]. Adaptive trials allow for specific changes in key trial attributes (e.g., sam-
ple size, the test statistic, or the outcome variable used to measure the treatment effect)
across the course of the trial based on information acquired during the trial [7]. However,
most adaptive trials proposed in the past focused on evaluating a single treatment in a
single population [8]. In addition, traditional designs of adaptive strategies have primarily
concentrated on the statistical attributes of the trials and have neglected to consider the well-
being of participants or the cost of ineffective treatments. Adaptive strategies that evaluate
multiple treatments and combinations of treatments have received interest recently [9,10].
Although they take into account the well-being of the participants and the cost of ineffective
treatments, these multi-arm-bandit-based approaches do not generalize to heterogeneous
patient populations in which participants with similar medical conditions might respond to
treatments differently. Many recent posthoc studies of clinical trials have demonstrated that
the treatment responses of individuals with similar clinical conditions vary based on their
clinical and biomarker profiles [11–13]. Such recent revelations necessitate context-aware
strategies in adaptive clinical trials. A contextual-bandit is a light-weight reinforcement
learning approach that is suitable for learning behavior from feedback when the behavior
depends on external factors in addition to the stimuli [14]. Contextual-bandit approaches
have been successfully applied in recommender systems, where the recommendations to
a specific user depend on the feedback given by the user for the past recommendations,
as well as user-specific characteristics [15,16]. Our approach, to our knowledge, is the
first to apply it on a clinical trial setting and demonstrate its efficacy using a real clinical
trial dataset.

Recent approaches achieve adaptability by utilizing a type of online reinforcement
learning algorithm known as multi-arm bandits [9,10,17,18]. Initial developments on multi-
arm bandits occurred in the context of gambling scenarios in which an agent had to choose
an action that would maximize the rewards, and the strategy (or policy) for choosing
the actions was dynamically updated during the game. That problem involved explo-
ration/exploitation tradeoffs: there should be a balance between trying different actions
to learn more about their expected payouts and wanting to exploit the best action based
on the information already obtained. Bandit approaches employ different sampling strate-
gies to effectively handle this tradeoff. In the setting of a clinical trial, such an algorithm
aims to identify a policy for assigning patients into treatment subgroups in a way that
maximizes favorable clinical outcomes while still allowing the exploration of previously
under-explored treatments.

Although the general approach of multi-arm bandits perfectly suits our goal, a lim-
itation of the prior studies utilizing this approach is that they do not account for the
inter-patient variability, e.g., how two patients may respond to the same treatment differ-
ently. Instead, they consider all patients to be similar in the way they respond to treatments
and they therefore come up with a common dynamic policy for all new participants. There
is increasing evidence in the medical literature that patient populations are heterogeneous
and that individuals respond to treatments differently [19]. This phenomenon is espe-
cially pronounced in complex neurological and cardiovascular diseases for which the same
clinical diagnosis might arise from different underlying pathological mechanisms [20].
Hence, an online learning algorithm that considered disease-related characteristics of the
participants in addition to the general multi-arm bandit setting would be better suited for
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clinical trials. In this paper, we describe a contextual-bandit-based approach that incorporates
patient characteristics to refine treatment select in clinical trials.

Contextual bandits [15] are a generalization of multi-arm bandits in which the policy
for choosing future actions is dependent on the context of the game. In the setting of a
clinical trial, the context can be the disease-related characteristics of a new participant that
determine which of the treatments will be beneficial for that participant. From a different
perspective, the contextual-bandit approach attempts to dynamically stratify participants
based on their predispositions to treatment responses. We showcase the utility of this
model using a publicly available dataset collected during the International Stroke Trial
(IST), a clinical trial evaluating the efficacies of two drug-based treatments in altering the
course of acute ischemic stroke [21]. We imitated the real-time scenario by sequentially
going through the data of each participant in the trial. Based on the treatment given to
each participant and the corresponding clinical outcome, we utilized our approach to learn
about and update our understanding of the relationship between contexts (i.e., patient
characteristics), treatments, and clinical outcomes. Then, we used that knowledge to
choose treatments to administer to the next participant. We repeated that process until the
end of the trial and recorded the clinical outcomes that resulted from our approach. The
results of this retrospective analysis indicate that the contextual-bandit-based approach
performs significantly better than a either random assignment of treatments (the current
gold standard) and a context-free multi-arm-bandit-based approach, providing substantial
gains in the percentage of participants who received the most suitable treatments. The
contextual-bandit and multi-arm bandit approaches provided 72.63% and 64.34% better
results, respectively, than the random assignment did.

2. Model Description

Definitions: Consider a clinical trial involving K treatments.The context of patient i
is denoted by Xi ∈ RD, which is a vector consisting of D attributes related to the disease
being considered in the trial. We also use Ui to denote the treatment that was provided
to patient i, and Ci to denote the corresponding clinical outcome, where Ui is a discrete
random variable taking values in the set {1, . . . , K}. In addition, we assume that the clinical
outcomes (Ci) can be dichotomized as successes or failures and model them as binary
random variables, i.e., Ci ∈ {0, 1}. We are interested in choosing a treatment for each
participant of the trial based on his or her specific disease-related characteristics in order to
maximize the probability of successful recovery. We do so by using an online optimizer that
involves a learning component to learn from past information and a decision component to
choose optimal actions based on learned response patterns. That process is illustrated in
Figure 1.

Decision

Clinical trial
environment

Learning

Online optimizer

𝑋𝑖Participant 𝑖:

𝑈𝑖

𝐶𝑖

Figure 1. Illustration of the online optimizer used in a clinical trial setting.

Context-free setting: Here, we will first formalize the problem for a setting that does
not take the context into account, and then we will extend it to a contextual setting later
in this section. In the context-free setting, the outcomes depend only on the treatment
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provided. Therefore, the outcomes can be seen as having been drawn from a Bernoulli
distribution with parameter θu, where θu denotes the success probability (or the mean
reward) of treatment U = u. The mean rewards θ = {θ1, . . . , θK} are unknown but not
time-varying.

Objective: Given the above definitions, our goal is to choose the treatments in such a
way that they are optimal for each patient. Suppose that the optimal treatment for patient i
is U?

i and the corresponding outcome is C?
i . Then, the objective of the online optimizer is to

minimize the following two quantities, where N denotes the total number of participants
in the study.

R =
N

∑
i=1

[C?
i − Ci] (1)

S =
N

∑
i=1

[
IU?

i 6=Ui

]
(2)

where I is the indicator function.
The first quantity R (also known as regret) measures the difference between the actual

outcomes from the optimal outcomes that would have been achieved had we identified
the correct treatment for each patient. The second quantity S (also known as the suboptimal
action count) measures the number of instances when the chosen treatment was not the
same as the correct treatment for a patient.

Model of the priors: In order to achieve the above goal, we are interested in learning
the correct priors for each treatment u and utilizing those priors to choose treatments
for the new participants in the study. We model the priors to be beta-distributed with
parameters α = {α1, . . . , αK} and β = {β1, . . . , βK}. Please note that the beta distribution is
the conjugate prior of the Bernoulli distribution. Then, for each treatment u, the probability
density function of θu is

p(θu) =
Γ(αu + βu)

Γ(αu)Γ(βu)
θαu−1

u (1− θu)
βu−1, (3)

where Γ denotes the Gamma distribution. We begin with an independent prior belief over
each θu, i.e., αu = βu = 1 for each u ∈ {1, . . . , K}. With each new observation, (i.e., a
treatment (Ui), outcome (Ci) pair), the distribution is updated using Bayes’ rule. Because of
the conjugacy properties, the parameters αu and βu can be updated using the following
simple rule:

(αu, βu)←
{

(αu, βu) if Ui 6= u
(αu, βu)) + (Ci, 1− Ci) if Ui = u

(4)

Note that a beta distribution with parameters (αu, βu) has the mean αu/(αu + βu), and
that the distribution becomes more concentrated as αu and βu become large. In general,
this formulation is known as the Bernoulli bandit.

Choosing the treatment for a new patient: Since θus are beta-distributed, a naive
choice of treatment for a new patient is the treatment whose prior has the largest mean,
i.e., Ui = arg maxu

[
αu

αu+βu

]
. Although that greedy approach is a valid choice, a downside

is its inability to balance the exploration/exploitation trade-off [22]. Here, we describe
two popular bandit algorithms for choosing the treatment for a new patient based on
the distributions of priors learned from past experiments. Both are extremely effective in
balancing exploration/exploitation trade-off.

Thompson sampling is a Bayesian approach [23] that randomly samples the success
probabilities of treatments from their respective prior distributions and selects a treatment
with the maximum sample value. It is easy to see that the distributions of the priors will
be more spread at the beginning of the trial and therefore that all the treatments will be
selected with similar probabilities. With more participants, the distributions will become
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narrower, and the treatments with higher rewards are more likely to be selected. However,
unlike the greedy case, treatments with low rewards will still be selected with relatively
low probabilities because the approach uses samples drawn from the distributions of
success probabilities. In this way, the Thompson sampling algorithm effectively balances
the exploration/exploitation trade-off. This is illustrated for the Bernoulli bandit case in
Algorithm 1.

Algorithm 1 Thompson sampling

1: for i = 1, 2, . . . , do
2: for u ∈ {1, . . . , K} do
3: Sample θ̂u ∼ beta(αu, βu) . sample model

Ui = arg maxu θ̂u . select and apply action
4: Apply Ui and observe Ci
5: (αUi , βUi )← (αUi , βUi ) + (Ci, 1− Ci) . update distribution

The Upper confidence bound (UCB) algorithm, on the other hand, is a frequentist
approach that uses point estimates of the success probabilities of treatments to choose

future treatments. It also uses an extra additive term (
√

lni
nu,i

, which is added to the point
estimates of the priors; see Algorithm 2) that is inversely proportional to the number of
times a particular treatment has been applied. This additive term is also a function of the
duration of the trial and establishes an upper confidence bound for the point estimate [24].
It starts by applying each treatment at least once and then chooses future actions based on
the upper confidence bounds of the treatment success probabilities. As with the Thompson
sampling approach, the distributions of the priors will be more spread at the beginning
and will become progressively narrower. However, the UCB algorithm handles the explo-
ration/exploitation trade-off slightly differently. The confidence bound of the treatments
that have been previously under-explored will grow with the duration of the trial and will
eventually exceed the bounds of other treatments and therefore get a chance to be applied
to a new patient. However, the chance that the treatments with low rewards will be applied
will diminish and eventually vanish. This is illustrated for the Bernoulli bandit case in
Algorithm 2.

Algorithm 2 Upper confidence bound (UCB)

1: for i = 1, 2, . . . , K do
2: Apply treatment i . apply each treatment once
3: for i = K + 1, K + 2, . . . , do
4: for u ∈ {1, . . . , K} do
5: Estimate θ̂u =

[
αu

αu+βu

]
. estimate mean rewards

6: nu,i ← # of times treatment u has been applied so far
7: Ui = arg maxu

[
θ̂u +

√
lni
nu,i

]
. select and apply action

8: Apply Ui and observe Ci
9: (αUi , βUi )← (αUi , βUi ) + (Ci, 1− Ci) . update distribution

Contextual setting: So far, we have considered a setting in which the context of the
participant is ignored. However, many recent clinical trials have shown that treatment
responses are very much context-dependent. In this paper, we assume that the contexts Xi
are D-dimensional binary vectors resulting in 2D different contexts. Fortunately, unlike the
success probabilities of treatments, the contexts are observable. The success probabilities of
treatments are likely different in different contexts. We incorporate the contexts into our
approach by treating each context as a different context-free multi-arm bandit problem.
Therefore, when a new participant joins the trial, depending on the observed context, a
treatment will be chosen based on the context-free bandit problem that includes only the
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past participants with that specific context. Alternatively, we can maintain a 2D number
of distinct bandits (one for each context) and choose treatments based on the bandit
corresponding to the observed context. This is illustrated in Algorithm 3, in which MAB(m)
denotes the context-free multi-arm bandit associated with context m.

Algorithm 3 Contextual bandit for clinical trial optimization

1: for m = 1, 2, . . . , 2D do . initialize all context-free bandits
2: MAB(m)←initialize context-free bandit()
3: for i = 1, 2, . . . , do
4: Xi ←observe context(patient i)
5: MAB? = MAB(Xi) . bandit associated with context Xi
6: Ui ←select treatment(MAB?) . select a treatment based on priors in MAB?
7: Apply Ui and observe Ci
8: update prior(Ui, MAB?) . update the prior of Ui in MAB?

3. Application of the Model to International Stroke Trial (IST) Database

Data: The International Stroke Trial (IST) was one of the largest randomized trials
ever conducted for acute stroke [21]. The IST dataset includes data on 19,435 patients with
acute stroke, with 99% complete follow-up. For each randomized patient, the variables
assessed at randomization, at the early outcome point (14 days after randomization or prior
discharge), and at 6 months were collected. The primary outcomes that were recorded in
the study are death within 14 days and death or dependency at 6 months. The aim of the
trial was to establish whether the early administration of aspirin, heparin, both, or neither
influenced the clinical course of acute ischemic stroke.

Background: Stroke is a major source of economic burden and personal hardship to
those afflicted. Each year, approximately 795,000 people in the United States suffer a stroke,
and about 600,000 of them are the person’s first stroke [25]. Unfortunately, because of
changing demographics and the fact that stroke is an age-related disease, the prevalence
is expected to increase, given the advancing age of the population. Stroke accounts for 1
of every 19 deaths in the U.S., making it the third leading cause of death (behind heart
disease and cancer), and in fact it is the leading cause of long-term disability in the U.S. [25].
Stroke imposes a huge burden on the economy. The total direct and indirect costs are more
than $100 billion per year counting hospitalization, transition care and rehabilitation care,
physician expenditures, medications, ancillary staff and home care, and therapy, as well as
indirect costs such as loss of economic productivity [25].

Ischemic strokes: Approximately 90% of all strokes are ischemic [26]. Ischemic strokes
comprise a variety of conditions in which blood flow to part of the brain is reduced,
resulting in tissue damage or death, and is usually an acute process. It is extremely critical
to obtain timely medical help for ischemic stroke. Untreated ischemic strokes can lead
to fluid buildup, swelling, and bleeding in the brain; seizures; and permanent problems
with memory and understanding. In addition, there is a 5–17% risk that another stroke
will follow a transient ischemic stroke within three months [27]. Furthermore, there is
substantial evidence that stroke patients with certain other co-morbidities, such as atrial
fibrillation, respond to certain types of treatments better than others [28]. Therefore, it is
necessary to obtain timely medical help and the right kind of treatment to avoid additional
complications. Hence, an adaptive clinical trial setting may make it possible to learn these
complex relationships and provide patients with the right kinds of treatments.

4. Experiments and Evaluation

Contextual bandit setting: Here, we describe the steps we took to apply the contextual
bandit model we described in Section 2 to the clinical trial data from the International
Stroke Trial. The trial included drug treatments based on aspirin and heparin. Hence,
there were four different possible treatments reflecting the different combinations of the
two drugs that could have been administered, i.e., K = 4. In addition, we use the 2-week
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mortality of the participants to determine clinical outcomes. We consider discharge of a
participant from the hospital alive within two weeks to mean the treatment was successful.
As previously explained in Section 3, another cardiovascular comorbidity, atrial fibrillation
can modulate the response to heparin-based treatments. Therefore, we use the binary
variable representing whether or not the participant had atrial fibrillation as the context in
our algorithm.

Analytic scheme: We simulated the online setting by sequentially going through the
dtaa of each participant admitted to the trial. Two bandits (one for each context) were
created, with four choices of treatments. For a new participant in the trial, depending on the
context, one of the bandits was selected. Then, we took three different approaches to choose
a treatment: (a) a random choice (i.e., the strategy currently used in clinical trial settings),
(b) a Thompson sampling-based approach, and (c) a UCB-based approach. It was difficult
to estimate the outcome for a treatment chosen by any of the three approaches when that
treatment was not the one actually performed in the real clinical trial for that participant.
To circumvent that issue, for each context, we used all the participants in the clinical
trial dataset who had the same context to obtain estimates of the success probabilities of
each treatment and used a Bernoulli sample generator to generate an outcome for each
treatment. Note that the success probabilities of each context were calculated separately by
considering only the participants with the same context. Those estimated outcomes were
used to update the prior distributions within the bandit corresponding to the context of
each participant. We repeated that process through the end of the trial and recorded the
outcomes and the chosen treatments for each approach. We also evaluated a context-free
multi-arm-bandit-based approach, using the same dataset, to showcase the benefits of our
approach. In the context-free case, we calculated the success probabilities for the Bernoulli
sampler using the whole clinical trial dataset in a context independent manner.

Evaluation: We utilized the two quantities defined in Section 2, i.e., regret and subopti-
mal action count, to evaluate our approaches. Since we do not know what would have been
the optimal treatment for each participant, we chose the maximum of all the success proba-
bilities estimated using the whole dataset as the optimal outcome and the corresponding
treatment as the optimal treatment. In the context-free case, all the participants had the
same optimal treatment and corresponding outcome; in the contextual case, the participants
in each context had a their own identified optimal treatment and a corresponding outcome.

5. Results

Here, we report the experimental results obtained using our contextual-bandit-based
approach and a context-free multi-arm-bandit-based approach for the International Stroke
Trial database. We ran each approach 20 times to evaluate the variability of regrets and
suboptimal draw counts. Figure 2 shows the trend of cumulative regrets and suboptimal
draw counts with increasing number of participants in the trial. Figure 2a,b show the
cumulative regrets incurred in both the approaches when treatments were selected using
random assignment, the UCB approach, and Thompson sampling. The plots include the
mean regret values and the 25th percentile confidence intervals. Similarly, Figure 2c,d show
the number of suboptimal draws in each case, as previously described. Table 1 reports the
relative advantages of using the UCB approach and the Thompson sampling approach
instead of random assignment, to select new treatments in the context-free multi-arm
bandit and contextual-bandit cases. The relative advantages are illustrated as percentages
of the regrets and suboptimal draw counts that were incurred in each case, compared
with the random case. Note that the absolute regret values seen in Figure 2a,b are not
comparable with the context-free and contextual approaches because they were calculated
using different ground-truths (context-free and contextual ground-truths). However, the
relative percentage improvements achieved using Thompson sampling and UCB approach,
compared with the random approach, are comparable (since they were normalized using
the respective random approaches).
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Figure 2. Regrets and suboptimal draw counts obtained using context-free multi-arm-bandit and
contextual-bandit approaches for the IST database. Treatments were selected using random as-
signment, the UCB approach, and Thompson sampling. Plots include mean values of regrets and
suboptimal draw counts and 25th percentile confidence intervals. (a) Regret: context-free multi-
arm bandit. (b) Regret: contextual bandit. (c) Suboptimal draws: context-free multi-arm bandit.
(d) Suboptimal draws: contextual bandit.

Table 1. The relative advantages of using the UCB approach and Thompson sampling to select new
treatments, as opposed to using a random assignment, in the context-free multi-arm-bandit and
contextual-bandit cases. For instance, the first entry in the table means that Thompson sampling
incurs only 11.18 ± 5% of the regret incurred using a random assignment.

Multi-Arm Bandit Contextual Bandit

Thompson UCB Thompson UCB

Regret 11.18 ± 5% 29.57 ± 7% 11.03 ± 3% 26.10 ± 4%
Suboptimal draws 35.66 ± 10% 64.79 ± 13% 27.37 ± 2% 44.78 ± 3%

Significance: It appears from Figure 2 that both the UCB and Thompson sampling
approaches perform significantly better than random assignment in both the contextual-
bandit and context-free multi-arm-bandit cases. Furthermore, the Thompson sampling
approach seems to perform considerably better than the UCB approach in all the cases.
When the contextual and the context-free cases are considered, Table 1 shows that the
contextual case provides significant gains in the suboptimal draw counts and marginal gains
in the regret value. Overall, our results indicate that the contextual-bandit-based approach
that incorporates patient characteristics into the algorithm used to choose treatments for
new participants in the study performs better than a context-free approach, is able to learn
the differential response to treatments depending on the context of the participant (in this
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case whether or not the participant had atrial fibrillation) relatively quickly, and provides
significant advantages in correctly choosing treatments.

6. Discussion

Many factors contribute to the difficulty of developing and testing new therapies,
including the difficulty of obtaining patient consent, variability in the standard of care,
inadequate patient recruitment rates, and delays between trial phases as drugs move from
early dose-finding to efficacy trials. An adaptive design is a statistical tool for accelerating
drug development. Recent U.S. Food and Drug Administration draft guidance defines
an adaptive design as a “prospectively planned opportunity for modification of one or
more specified aspects of the study design" based on interim analysis of a study [29]. The
term “prospective" means that modification is planned before data are examined in an
unblinded manner. Prior to that definition, the development of adaptive designs has a long
and varied history. The idea of adaptive randomization was introduced in the 1930s [30],
sample size recalculation in the 1940s [31], sequential dose finding in the 1950s [32], and
play-the-winner strategies and group-sequential methods in the 1960s [33]. However, there
are costs associated with the use of adaptive designs, and they are seldom made obvious in
the literature.

Limitations and future work: Our work has several limitations. First, this is a retro-
spective study, so the outcomes for treatments other than the ones actually provided to
participants are unknown. Therefore, a model to simulate those outcomes was necessary to
showcase the utility of our approach. The validity and comprehensiveness of the simulation
model that we used in this work are debatable, considering the many confounder variables
that might exist in a real scenario. Furthermore, we illustrated the utility of the model
using a known risk-factor (i.e., atrial fibrillation) that can modulate response to stroke treat-
ments. That significantly simplified our analyses because it reduced the number of contexts
considered in our approach to two. However, in a real clinical trial setting, a myriad of
clinical and biomarker variables would typically be collected, and the context space that
included all these variables might explode. In addition, the number of participants required
to achieve statistically significant gains in the regret and suboptimal draw counts will grow
exponentially with the number of contexts in the model. Those are significant limitations
that need to be addressed before this model can be translated to a real clinical trial setting.
We plan to investigate these limitations using function approximation methods that might
eliminate the need for using as many bandits as the number of contexts in our model.

7. Conclusions

In this paper, we presented a contextual-bandit-based online algorithm for optimizing
treatment assignments in clinical trials. Unlike prior approaches, our algorithm takes
patient characteristics into account in addition to the maximization of the clinical out-
comes as criteria to determine treatments for new participants in the study. We evaluated
our algorithm using a real clinical trial dataset from the International Stroke Trial. The
results of our retrospective analysis indicate that the contextual-bandit-based approach
performs significantly better than either a random assignment of treatments (the current
gold standard) or a context-free multi-arm-bandit-based approach, providing substantial
gains in the percentage of participants who receive the most suitable treatments. Hence, our
study establishes the feasibility of an adaptive clinical trial setting that takes into account
patient characteristics in adapting the trial attributes. Combining a contextual-bandit-based
algorithm with a scaled-horizon strategy provides a methodology for choosing among
treatments that is unified and applicable from early clinical trials through to standard-of-
care clinical recommendations affecting a potentially unlimited numbers of patients. This
methodology optimizes resources in a definable way. Treatment modalities such as those
used in acute stroke could potentially be investigated and proved effective or ineffective
much more efficiently than is currently the gold standard in RCT settings. However, the
retrospective nature of the study and the difficulties of extending the model to the large



Life 2022, 12, 1277 10 of 11

number of clinical and biomarker variables collected in a clinical trial are some of the
limitations of our approach, and future efforts will address these limitations.
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