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Abstract
Interruptions to neurodevelopment during the perinatal period may have long-lasting consequences. However, to be able to
investigate deviations in the foundation of proper connectivity and functional circuits, we need a measure of how this
architecture evolves in the typically developing brain. To this end, in a cohort of 241 term-born infants, we used magnetic
resonance imaging to estimate cortical profiles based on morphometry and microstructure over the perinatal period
(37–44 weeks postmenstrual age, PMA). Using the covariance of these profiles as a measure of inter-areal network similarity
(morphometric similarity networks; MSN), we clustered these networks into distinct modules. The resulting modules were
consistent and symmetric, and corresponded to known functional distinctions, including sensory–motor, limbic, and
association regions, and were spatially mapped onto known cytoarchitectonic tissue classes. Posterior regions became more
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morphometrically similar with increasing age, while peri-cingulate and medial temporal regions became more dissimilar.
Network strength was associated with age: Within-network similarity increased over age suggesting emerging network
distinction. These changes in cortical network architecture over an 8-week period are consistent with, and likely underpin,
the highly dynamic processes occurring during this critical period. The resulting cortical profiles might provide normative
reference to investigate atypical early brain development.
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Introduction
Brain maturation over the perinatal period is rapid and com-
plex. Although the majority of neurons are at their terminal
location, synaptogenesis and myelination are ongoing, and (lim-
ited) migration of interneurons continues (Petanjek et al. 2011;
Paredes et al. 2016). In the cortex, these processes are coordi-
nated with sensory cortex and pathways developing earliest,
prefrontal and association areas later (Flechsig of Leipsic 1901;
Huttenlocher 1979). This developing architecture and connec-
tivity is critical for efficient functional signaling, supporting
and enabling the later development of cognitive and behavioral
abilities.

Although alterations in perinatal neurodevelopmental pro-
cesses have been associated with later cognitive and behavioral
difficulties, quantifying myelo- or cytoarchitecture anatomical
circuit development in the living human neonate is challenging.
A relatively simple hypothesis of cortical connectivity is “similar
prefers similar” (Goulas et al. 2016), meaning areas with similar
cytoarchitecture preferentially connect. In this context, mag-
netic resonance imaging (MRI)-based methods such as regional
structural covariance (Evans 2013) offer a proxy measure of
brain connectivity, with structural similarity of spatially distinct
regions of cortex reflecting coordinated maturation (Alexan-
der-Bloch et al. 2013a). This inter-regional similarity is supported
by similar genetic or maturational profiles (Alexander-Bloch
et al. 2013b) and transcriptomic profiles (Yee et al. 2018) or
associated with changes in disease (e.g., Zuo et al. 2018).

Understanding early structural regional similarity can shed
light on how the brain develops into an efficient multifunctional
system (Cao et al. 2016) and allows the detection of perturba-
tions in normal development (Di Martino et al. 2014; Morgan
et al. 2018). Recent years have seen a rise in studies on brain
connectivity networks in the perinatal period (Zhao et al. 2019).
Structural covariance networks (SCNs) based on measures of
gray matter (GM) volume, cortical thickness (CT), cortical folding,
and fiber density in the first 2 years of life have been described
(Fan et al. 2011; Nie et al. 2014; Geng et al. 2017). Graph mea-
sures of these networks at birth show similar organizational
properties to brain networks described in adulthood, suggesting
that the nonrandom, efficient architecture of the brain is an
inherent characteristic of the system, evident from very early
on (Fan et al. 2011; Shi et al. 2012). Moreover, measures derived
from GM volume covariance networks were found to differ in
neonates with familial risk of schizophrenia (Shi et al. 2012). As
different anatomical measures are capturing distinct develop-
mental processes (Rakic 1988) and are controlled by different
genetic mechanisms (Panizzon et al. 2009; Chen et al. 2013),
different measures of cortical development show specific spatial
and temporal patterns in early childhood (Gilmore et al. 2012; Li
et al. 2013; Nie et al. 2014; Lyall et al. 2015). Therefore, as might be
expected, the resulting single-feature SCNs can be inconsistent.

An alternative approach using multiple anatomical measures
to elucidate regional structural similarity has recently been

examined in adolescents and adults (Li et al. 2017; Seidlitz et al.
2018). Compared with SCNs derived from a single technique, this
approach allows for the construction of networks for individuals,
rather than over a group, enabling the assessment of individual
variability masked by group templates or case-control studies
(Seghier and Price 2018). The resulting morphometric similarity
networks (MSNs) have superior spatial consistency with cortical
cytoarchitecture compared with networks based on diffusion
imaging or on one structural measure (CT) (Seidlitz et al. 2018).
Furthermore, cortical regions shown to be connected (i.e., simi-
lar) based on this approach have complementary expression of
specific genes (Romero-Garcia et al. 2018; Seidlitz et al. 2018).
In adults, these networks are also sensitive to alterations in
common (Morgan et al. 2019) and rare (Seidlitz et al. 2019)
neurodevelopmental disorders. They also have neurobiological
specificity; cortical MSNs differ between patients with genetic
syndromes and are aligned with the regional expression of
disorder-related genes (Seidlitz et al. 2019). The only work we
found to apply MSNs in the perinatal period is a recent study
in neonates using a variant of MSNs, where authors were able to
successfully predict postmenstrual age (PMA) at scan and differ-
entiated infants born prematurely, with superior performance
compared with using single predictive measures (Galdi et al.
2020).

The aim of this work therefore was to examine cortical
organization from a multi-morphometric perspective, utilizing
MSNs; hypothesizing this approach will provide a more sensitive
and informative means to describe the postnatal structure and
cytoarchitecture of the brain. We constructed cortical MSNs
based on structural/morphological and microstructural diffu-
sion parameters in a sample of 241 infant scanned between 37
and 44 weeks PMA. We hypothesized that, in the period follow-
ing birth, brain development will be reflected in these networks.
Moreover, we were interested in the community structure, or
modularity in the neonatal brain, assuming these early clusters
will provide the skeleton for developing functionality.

Materials and Methods
Subjects

This work included a sample of neonates participating in the
Developing Human Connectome Project (dHCP) (http://www.
developingconnectome.org/), scanned at the Newborn Imaging
Centre at Evelina London Children’s Hospital, London, UK.
Images are available for download and analysis at the project
website. This project has received ethical approval (14/LO/1169,
IRAS 138070), and written informed consent was obtained from
parents. At the beginning of this specific analysis (October 2018),
383 singleton term-born babies had undergone successfully
structural and diffusion acquisitions, reconstruction, and early
preprocessing. We next removed 87 subjects who failed the
structural or diffusion pipelines as described below or who had
missing data (e.g., T1 image). Finally, we removed subjects that
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have not passed diffusion QC: 17 subjects at the lower 5% of
motion parameters and 46 subjects whose brains moved out of
the field of view during scanning, leading to slices missing on
the superior surface of the brain. One subject with major basal
ganglia lesion was excluded, resulting in a final sample of 241
subjects (born at between 37 and 42 weeks; 128 males) with
MR images acquired at PMA 40.92 ± 1.58 weeks (mean ± sd),
range 37.43–44.71 weeks, henceforth “age.” No major brain
abnormalities were detected in review of the MRI data by a
neonatal neuroradiologist in the subjects included.

Image Acquisition

MR images were acquired on a 3T Philips Achieva scanner
without sedation, using a dedicated 32-channel neonatal head
coil system (Hughes et al. 2017). Acquisition and reconstruction
followed optimized protocols for structural images (Kukliso-
va-Murgasova et al. 2012; Cordero-Grande et al. 2016, 2018)
and multi-shell high angular resolution diffusion imaging
(HARDI) (Tournier et al. 2015; Hutter et al. 2018). T2-weighted
(T2w) images were obtained using a turbo spin echo (TSE)
sequence, acquired in two stacks of 2D slices (in sagittal and
axial planes), using parameters: TR = 12 s, TE = 156 ms, and
SENSE factor 2.11 (axial) and 2.58 (sagittal) with overlapping
slices (resolution 0.8 × 0.8 × 1.6 mm). T1-weighted (T1w) images
were acquired using an IR (inversion recovery) TSE sequence
with the same resolution using TR = 4.8 s, TE = 8.7 ms, and SENSE
factor 2.26 (axial) and 2.66 (sagittal). Structural images were
reconstructed to a final resolution 0.5 × 0.5 × 0.5 mm, using
slice-to-volume registration. Diffusion images were obtained
using parameters TR = 3800 ms, TE = 90 ms, SENSE factor = 1.2,
multiband factor = 4, and resolution 1.5 × 1.5 × 3.0 mm with
1.5 mm slice overlap. Diffusion gradient encoding included
images collected at b = 0 s/mm2 (20 repeats), b = 400 s/mm2 (64
directions), b = 1000s/mm2 (88 directions), and b = 2600 s/mm2

(128 directions), and images were reconstructed to a final
resolution of 1.5 × 1.5 × 1.5 mm.

Image Processing

Cortical surface processing and extraction of individual cortical
features followed the pipeline described in Makropoulos et al.
(2018)). Briefly, motion- and bias-corrected T2w images were
brain extracted and segmented. White, pial, and midthickness
surfaces were extracted, inflated, and projected onto a sphere.
This was followed by estimation of cortical features including
CT, pial surface area (SA), mean curvature (MC), and a gross
proxy of myelin content, defined as the ratio between the T1w
and T2w images (Glasser and Van Essen 2011), performed after
registering the individual T1 and T2 images together, henceforth
“myelin index (MI),” as detailed in Makropoulos et al. (2018).
All brains were aligned to the 40-week dHCP surface template
(Bozek et al. 2018) using Multimodal Surface Matching (MSM)
(Robinson et al. 2013, 2014), run with higher-order regularization
constraints (Robinson et al. 2018), to match coarse scale corti-
cal folding (sulcal depth) maps. All other metrics were resam-
pled to the template using this transformation and adaptive
barycentric resampling (implemented using Human Connec-
tome Project (HCP) tools, Connectome Workbench (https://www.
humanconnectome.org/software/connectome-workbench).

Diffusion images were denoised (Veraart et al. 2016), Gibbs-
ringing suppressed (Kellner et al. 2016), and corrected for subject

motion and image distortion with slice-to-volume reconstruc-
tion in the multi-shell spherical harmonics and radial decom-
position (SHARD) basis (Christiaens et al. 2019a), as described
in Christiaens et al. (2019b) and using an image-based field
map (Andersson et al. 2003). A tensor model for diffusion data
was then fitted using a single shell (b = 1000), and fractional
anisotropy (FA) and mean diffusivity (MD) maps were generated
using MRtrix3 (Tournier et al. 2019). Neurite density index (NDI)
and orientation dispersion index (ODI) maps were calculated
using the NODDI toolbox (Zhang et al. 2012) as previously applied
in the neonatal brain (Batalle et al. 2019). We acknowledge that
the default parameters used to model NODDI here may not be
the optimal for our sample (Guerrero et al. 2019). However, there
is currently no agreed standard for infant-specific parameters;
therefore we opted for the default to at least permit comparisons
with previous literature.

Diffusion maps were registered onto individual T2w images
using FSL’s epi_reg (FLIRT) (https://fsl.fmrib.ox.ac.uk) and then
projected onto cortical surface using Connectome Workbench
in order to sample imaging features with the same spatial rep-
resentation. All raw images were visually inspected for motion
or image artifact and artifacted data excluded, and processed
images were inspected for registration errors.

MSNs Construction

Cortical regions were defined using approximately equal-sized
cortical parcellations with Voronoi decomposition at different
granularities (n = 50, 100, 150, 200, 250, 300). This option was
chosen over parcellation with a pre-existing atlas in order to
minimize the effect of variable regional size when calculating
the MSNs. For clarity and presentation, all results shown (other
than Supplementary Fig. 1) were based on the n = 150 parcella-
tion. Network construction followed steps introduced before (Li
et al. 2017; Seidlitz et al. 2018): For each subject, each of the
eight features was first z-scored across the cortex (to account
for feature variation) and then averaged across each ROI in
the parcellation, resulting in an eight-feature vector including
mean normalized values of CT, MC, MI, SA, FA, MD, NDI, and
ODI characterizing each node. Correlation (Pearson’s r) between
the eight-feature vectors for every two pairs of regions was
calculated using Matlab, resulting in an n regions × n regions
similarity matrix for each subject. A group structural similarity
matrix was produced by averaging the 241 individual similarity
matrices (Fig. 1), and clustering was performed with affinity
propagation. This process was also applied for a “leave-one-out”
analysis, where similarity was based on a series of seven-feature
vectors, leaving one feature out each time. In addition, typical
SCNs for the individual features which are much more common
in the literature were also generated by correlating each pair of
regions across all subjects, resulting in a group similarity matrix
that is based on a single morphometric feature. The values used
in this analysis were the raw, un-normalized values.

Association Between MSNs with Age at Scan and Sex

To illustrate the effect of age on the individual morphometric
features, Spearman’s correlation (Spearman’s rho, ρ) between
the averaged regional single features and age was calculated and
results corrected with false discovery rate (FDR) at 5% (Benjamini
and Hochberg 1995). Nonparametric correlations were chosen
for all age analyses as age at scan was not normally distributed
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Figure 1. Pipeline for clustering MSNs in the neonatal brain: (a) Cortical regions are defined using Voronoi tessellation of the cortical surface. (b) Each individual region

is characterized by an eight-feature vector including averaged normalized values of cortical thickness (CT), mean curvature (MC), myelin index (MI), surface area (SA),
fractional anisotropy (FA), mean diffusivity (MD), neurite density index (NDI), and orientation dispersion index (ODI). (c) Each pair of regions is correlated using Pearson’s
r, resulting in a subject-specific similarity matrix with size n regions × n regions, which are then averaged to create a group mean similarity matrix, and the resulting

group matrix is clustered using affinity propagation algorithm to examine network modularity.

in this sample as indicated by Shapiro–Wilk test (W(241) = 0.98,
P = 0.02).

The effects of age on internodal similarity were examined by
correlations between age and the internodal edge-strength. In
addition, we investigated the same correlation with mean node
strength (the average of a node’s edge-strength with every other
node). Sex differences in MSNs for individual edge-strength
and mean nodal edge-strength were explored using the Mann–
Whitney test. In these contrasts, results were corrected with
pFDR (Storey 2002; Storey and Tibshirani 2003), which is advan-
tageous over FDR in larger samples.

MSN Clustering Analysis

To investigate network modularity, the group similarity matrix
was clustered using affinity propagation (Frey and Dueck 2007,
https://psi.toronto.edu/?q=tools). This clustering method has
two merits in this current work: First, clustering could be
performed without thresholding the group matrix, therefore
avoiding information loss due to binarization, and second, it
returns the optimal number of clusters (k) for a given preference
value. In our case we used the median of the similarity matrix
as preference value, making no prior assumptions: While a
prespecified k is not mandatory, the algorithm does require
an input chosen by the user, termed “preference value.” By
choosing the median of the similarity matrix as a shared value,
we instruct the algorithm to consider all data points or in our
case nodes as “exemplars” for the clusters. In addition, we
also performed the same clustering approach but restricted

the solution to a k = 7, the number of tissue classes in our von
Economo atlas (see below), allowing us to compare this (fixed)
clustering solution to clustering solutions from other modalities
(see below). The rationale behind k = 7 clusters is also based on
the maximum rank of the data in the context of a PCA, where
the maximum number of components out of eight features from
which the MSN was derived (as is the case here) is k − 1.

To measure robustness of the MSN clusters to the type of
MRI modalities included, and to rank the importance of input
modalities to the eventual solution, agreement between the
clustering solution for the eight-feature regional vectors and the
clustering solutions for seven-feature regional vectors (leave-
one-out analysis) and clustering solutions for the eight single
features (i.e., SCNs) was examined using normalized variation of
information (Meilă 2007; Reichart and Rappoport 2009) using the
‘nvi’ code from the Pattern Recognition and Machine Learning
Toolbox for Matlab (http://prml.github.io/). As in the leave-one-
feature-out analysis, we fixed k = 7. In order to rule out the
possibility that the clustering solution is derived only from age
effects, we also performed clustering on the correlation between
the edge-strength and age.

As MSNs in adults have been reported to correspond with
cortical cytoarchitecture (Seidlitz et al. 2018), we sought to exam-
ine the overlap between the resulting clusters with gross von
Economo cytoarchitectural classifications (seven classes) (von
Economo and Koskinas 1925) using the Dice coefficient to esti-
mate overlap as in Whitaker et al. (2016). We also attempted
to examine the spatial overlap between the seven clusters and
von Economo classes using a more rigorous method: spatial

https://psi.toronto.edu/?q=tools
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Figure 2. Association between single-feature maps (n = 150 parcels) and age at scan: Positive correlations are marked in red and negative correlations in blue. NDI,
neurite density index; ODI, orientation dispersion index.

permutations of the spherical representation of the cortical
surface (Alexander-Bloch et al. 2018). We generated 500 null
distributions for assessing correspondence between the maps as
measured by normalized variation of information, while correct-
ing for multiple comparisons as described in Alexander-Bloch
et al. (2018).

Association Between MSN Clusters and Age at Scan
To investigate developing network integration and segregation,
for each cluster the averaged edge-strength of connections
within a cluster (with higher values indicating cluster distinc-
tion within the entire network) and the averaged edge-strength
of connections between nodes within the cluster and nodes
external to that cluster (indicating integration or segregation
of that cluster) were calculated. Spearman’s ρ coefficients
were calculated for changes in these modular integration and
segregation measures against age. Results were FDR corrected
at 5% (Benjamini and Hochberg 1995).

Results
Age at Scan and Sex Effects
Age-Related Associations with Single-Feature Maps
The correlation between parcellated single-feature maps and
age at scan revealed metric-specific age associations: SA and MI
had a brain-wide positive association with age, followed by CT,
ODI, and NDI that also showed a positive association, but to a
lesser extent. FA exhibited both positive and negative associa-
tions with age, while MD displayed only a negative association.
Significant correlations with MC results were sparser, seen in
limited perisylvian, frontal, and temporal regions (Fig. 2). Results
are overlaid on a 41-week-old neonatal template (Bozek et al.
2018).

Age- and Sex-Related Associations with MSNs
The correlation between inter-regional edge-strength of MSNs
(n = 150 parcels) and age at scan showed both positive and neg-
ative associations throughout the brain. They numbered less in
frontal and anterior temporal regions (see Fig. 3a for a node-by-
node count of significant edges). For mean nodal edge-strength,
this spatial gradient was clearer, with anterior cingulate and lim-
bic regions negatively associated with age and lateral and medial
parietal positively associated (Fig. 3b). Individual edge-strength
did show some sex associations (Fig. 3c), though less exten-
sive, with higher edge-strength in lateral frontal and temporal
regions in males and cingulum and medial temporal regions in
females (Fig. 3d). Age at birth (U = 6910.5, P = 0.55) and at scan
(U = 6817, P = 0.44) did not differ between males and females.

Modularity of Neonatal MSNs

Using affinity propagation to perform clustering resulted in
12 broadly symmetric cortical modules, aligned with sensory–
motor, fronto–temporal, anterior frontal, limbic, cingulate, insu-
lar, and visual systems (Fig. 4 left). Comparable spatial findings
were also found when the initial parcellation included different
number of regions (n = 50, 100, 150, 200, 250, 300), but the num-
ber of clusters increased linearly with parcellation density. For
clarity, results are presented only for the middle density (n = 150).

A similar spatial partition was observed when the number of
clusters was fixed at seven (Fig. 4 right) and across parcellation
densities (Supplementary Fig. 1). The main difference between
the 7- and 12-cluster solution was a subdivision of the fronto–
temporal and occipital and parietal clusters in the k = 12 solu-
tion. Therefore, as these changes were minor, with no major
loss of information on the overall emerging picture, and as a
middle ground between complexity and interpretability, further
analyses were performed on the k = 7 cluster solution.
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Figure 3. Age and sex associations with MSNs: (a) Sum of positive and negative correlations between internode edge-strength and age at scan. (b) Spearman’s correlation
between age and mean nodal edge-strength. (c) Sum of stronger internode edges in males (orange) and in females (green). (d) Significant sex differences between mean

nodal edge-strength.

Figure 4. Clustering solution for MSNs created using eight features: Affinity propagation clustering based on a fixed preference value (median similarity) is shown on

the left and for a fixed number of clusters on the right.

To confirm the stability of this solution, clustering was
calculated using bootstrapping of 20 random subjects each
time, for 500 iterations, and individually for each subject. Node
coincidence (how often one node fell in the same node as
another) was very high (Supplementary Fig. 2b), and even in
MSNs of individual infants, the consistency was very good
(Supplementary Fig. 2a) with the whole sample cluster structure
clearly evident in individuals and bootstrap samples.

Comparing the resulting MSNs (for k = 7) and von Economo
cytoarchitectural classes, similarities were found, more remark-
ably in limbic and primary sensory areas, as compared with
association areas (Fig. 5). Using the spatial permutation test, the
normalized variation of information, between the MSN clus-
ters and von Economo classes, was 0.85, ranging z = 0.84–0.93,
suggesting relativity modest overlap; however this overlap was
more significant than would be expected by chance (P = 0.02).

Feature Contribution
Examination of the clustering solution (for k = 7) for each of
the single morphometric measures demonstrated that clustering
of FA covariance had the highest agreement with the eight-
feature solution (normalized variation of information, z = 0.73),
while clustering of MC covariance had the lowest agreement
(z = 0.94) (Fig. 6a). The top four metrics in particular are strongly
correlated with each other cross-sectionally, derived from the
same base diffusion-weighted images, and therefore this may
indicate redundancy. This pattern remained when the single-
feature SCNs were calculated with partial correlation, taking
into account age, suggesting this is not exclusively derived by
age effects in the individual modalities (data not shown).

In the “leave-one-out” seven-feature solutions, the agree-
ment between modules was much higher than for single modal-
ities, as might be expected. Removing SA and MI from MSN



Morphometric Cortical Similarity in the Neonate Fenchel et al. 5773

Figure 5. The spatial overlap (Dice coefficients) between MSN clusters and von Economo tissue classes: Line thickness indicates the Dice coefficient per pair of related
regions and a Dice of <0.2 is not shown.

estimation had the most profound effect (e.g., resulted in more
different clusters), indicating their higher importance to the
eventual solution. Removing either MD, NDI, or ODI had less of
an effect, with near identical solutions (Fig. 6b).

MSN Clusters and Age at Scan
To demonstrate the age-related changes in cluster differentia-
tion over time, we performed correlations between individual
measures of within-module similarity and between-module
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Figure 6. Agreement between clustering solutions using all features with single- and multimeasure covariance: results shown for left hemisphere for ease of
interpretation. Clustering solutions are ordered from left (most similar) to right (least similar). (a) Level of agreement between modules derived from a single-feature
covariance matrix and the eight-feature MSN. (b) Level of agreement between clustering solution for seven-feature MSN (leave-one-out analysis) and eight-feature
MSN. In all cases the normalized variation of information value (z) is shown below (lower is better). CT, cortical thickness; MC, mean curvature; MI, myelin index; SA,

surface area; FA, fractional anisotropy; MD, mean diffusivity; NDI, neurite density index; ODI, orientation dispersion index.

similarity. Between-module analysis revealed six cluster pairs
with significant positive correlation with age, showing between-
cluster integration over time—occipital–parietal and anterior
frontal, occipital–parietal and fronto–temporal, limbic and
somatosensory–auditory, limbic and cingulate, anterior–frontal
and cingulate, and insular–medial frontal and cingulate—while
eight cluster pairs showed significant negative correlation with
age. The limbic and fronto–temporal clusters demonstrated
increased within-module similarity with age, suggesting cluster
distinction, or increased internal similarity, while no within-
module negative correlation with age was found (Fig. 7). Exact
statistical values appear in Supplementary Table 1.

Age-Related Associations with Clustering Solution
Given the clear association between age at scan and connection
strength between edges and clusters, we investigated the result-
ing MSN modules when calculated on edge-by-edge age tra-
jectories. We performed clustering on the correlation matrix of
each node-to-node MSN edge against age. This solution demon-
strated both a clearly different result (Supplementary Fig. 3) and
also has a different interpretation, showing areas that are sim-
ilar in their direction and strength of maturation. These results
showed more long-range connections and much more hetero-
geneity in frontal cortex. Primary sensory regions clustered
together, and bilateral symmetric fronto–temporal and fronto–
parietal networks were also evident.

Discussion
Cortical microstructure and morphology go through extensive
changes postnatally. Though the majority of neurons are in
situ at term age, myelination and synaptogenesis continue to
refine the cortical architecture that will persist throughout the
lifespan. Using a densely sampled dataset across the perinatal
period, we were able for the first time to combine multiple
structural imaging features and showed their utility in exploring

the dynamic progression of brain maturation. We demonstrated
a clear and consistent modular structure, with both local and
distributed networks of brain regions having similar cortical
profiles. This modular structure showed hemispheric symmetry,
with correspondence to known long-range cortical functional
networks. This structure partly mirrored von Economo classes,
indicative of an underlying cellular composition upon which
specialized cortical systems will emerge. To our knowledge, this
is the first study in neonates using a multiparametric approach
to examine the community structure of the neonatal brain.

MSNs are able to capture the extensive changes occurring
throughout a short period of just 8 weeks following birth. Age
had a complex effect on edge-strength showing both positive
and negative correlations, i.e., regional profiles became more
and less similar with age. These age associations were confined
to occipital, parietal, and temporal areas and were less evident in
frontal areas. Whereas these associations were positive (greater
morphometric similarity with the rest of the brain), limbic and
anterior cingulate regions showed negative correlations with
age (less similarity). These findings suggest that in the neonatal
period, sensory and limbic areas and posterior parietal regions
have the largest maturational changes, as opposed to regions
related to higher executive functions (e.g., prefrontal cortex),
qualitatively similar to the pattern seen in Lebenberg et al. (2019)
with older infants. Changes may only be evident in higher-order
areas at a later stage, in line with the more prolonged synap-
togenesis, dendritic arborization, and myelination patterns
(Huttenlocher 1990; Huttenlocher and Dabholkar 1997; Teffer
and Semendeferi 2012). This may also reflect work in cortical
GM volume maturation in neonates, showing a posterior–
anterior gradient in the first weeks following birth (Gilmore
et al. 2007). In all, age-dependent changes observed in MSNs in
the newborn are in line with neurobiological findings, as well as
other neuroimaging findings.

In a mixed sample of term and preterm infants investigating
MSNs (derived from structural and extended diffusion metrics,
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Figure 7. Inter- and intramodular similarity changes with age at scan: association between clusters’ edge-strength and age. Width of line is indicative of the strength

of significant association.

but not surface measures), Galdi et al. (2020) also found that
brain structures became both more similar and dissimilar to
each other over the same age range. While that study used dif-
ferent feature vectors, atlas, and populations here, findings are
clearly complementary: Occipital connections increased with
age, parietal edges were also more positively than negatively
associated with age, while temporal edges showed mixed asso-
ciations with age. In contrast to our findings, frontal regions
also showed a strong relationship with age; however, this was
more evident in white matter (WM) rather than GM. By choosing
to focus only on healthy term-born infants, we attempted to
minimize any effects of preterm status confounders on brain
maturation (Ball et al. 2017; Batalle et al. 2017).

By exploring the developmental patterns of the individual
metrics on which cortical covariance was based, as well as
their contribution to the resulting cortical patterning, we were
able to dissect early micro and macro properties of the brain.
When examining each morphometric measure in isolation,
unique developmental trajectories emerged, replicating prior
work (Dean et al. 2017; Batalle et al. 2019). However, we also

show that no one measure was able to capture the abundance
of unique information that is reflected in the combination of
morphometric features. Typical measures of cortical anatomy,
thickness, and area, as well as myelin content, showed
strong increase with age (Li et al. 2013). Age however showed
little significant association with curvature, in agreement
with previous reports showing relatively little change in MC
compared with other surface measures in the months following
birth (Li et al. 2015; Batalle et al. 2019), suggesting that cortical
folding remains relatively static in this period. Though no single
individual measure mirrored the clustering solution achieved
by combining all measures, the diffusion metrics had the better
correspondence (Fig. 6a) but were apparently less important to
the clustering solution (Fig. 6b). This apparent contradiction is
due to redundancy. For example, MD and NDI show very similar
patterns of correlation with age (Fig. 2), so removal of one or two
diffusion measures does not reduce the effective information
used to calculate correlations in MSNs.

Cortical diffusion metrics show complex maturational tra-
jectories around term birth. Ball et al. (2013) and Batalle et al.
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(2019) have shown that MD decreases linearly with age, while FA
decreases rapidly until week 38 PMA but then begins to slowly
increase. This might explain why at the age range examined
here (37–44 weeks) we observed both negative and positive
associations between FA and age. Moreover, Batalle et al. found
that NDI is positively associated with age, similar to the results
here. ODI seemed to stabilize after 38 weeks, whereas we still
observe a strong association with age after 38 weeks. We might
hypothesize that this is related to the focus on preterm neonates
in that work, where microstructural trajectories could differ
due to earlier birth and the very different early environmental
exposures that entail (both clinical and ex utero related).

Sex differences were less widespread compared with age
effects. While sex differences in cortical volumes are evident
from birth (Gilmore et al. 2007), they are subtle when looking
at single modality covariance networks in early development
(Zielinski et al. 2010; Geng et al. 2017). Using the MSNs approach,
we were able to detect sex effects in some cortical areas, most
pronounced in frontal and temporal regions. This corresponds
to results of a neonatal study using tensor-based morphometry
(Knickmeyer et al. 2014), and even in adults, multimodal imag-
ing sex differences were mainly localized in the frontal lobe,
followed by parietal and temporal lobes (Feis et al. 2013), so
this may represent a consistent gross pattern throughout the
lifespan.

Generally, any network construction and follow-up clustering
analyses are highly reliant on several factors, including popula-
tion and age range examined (Seidlitz et al. 2018; Morgan et al.
2019), type of morphometric measures used (Nie et al. 2013),
parcellation (Arslan et al. 2018), threshold (Bordier et al. 2017),
wiring cost (Betzel et al. 2017), and type of modularity estimation
(Sporns and Betzel 2016) and are therefore likely to vary accord-
ingly. For module definition, we applied affinity propagation to
discover meaningful cortical clusters, without eliminating or
changing any connections for network construction. In young
adults, utilizing MSNs and the Louvain algorithm, Seidlitz et al.
(2018) reported four cortical modules consistent with lobular
division. Using affinity propagation to cluster similar developing
regions in terms of CT and curvedness between the ages 3 and
20 years, Nie et al. (2013) found eight and five clusters, respec-
tively, also with some alignment to lobular division, and indeed
our parcellation based just on CT was qualitatively similar.

While most of the resulting modules presented in these
studies tend to be spatially contiguous and local, our cluster-
ing solution showed also long-range connections and might be
more indicative of possible functional and structural connectiv-
ity. The modules were broadly aligned with known functional
systems and were relatively stable: These included sensory–
motor, fronto–parietal, temporal, limbic, cingulate, and visual
regions. Our correspondence between MSNs and functional sys-
tems may reflect the underlying architecture for later devel-
oped functional networks (van den Heuvel et al. 2015; Geng
et al. 2017). Our resulting MSN clusters show some overlap to
the von Economo tissue classifications, implying the possible
origins of the cortical profiles obtained in our analysis, and
provide some reassurance of their validity. Further supporting
this, the solution revealed here also shows several analogies
to the clustering solution of genetic contribution to SA and CT
reported by Chen et al. (2013) and might be especially relevant
in early development where external environmental effects on
these parameters are still relatively small.

The clustering solutions were spatially robust, by and large
not affected by age (confirmed by clustering separately only

individuals scanned in the top and bottom PMA-range quar-
tiles), nor was it affected by the neonates’ ex utero experi-
ence, as the clustering solution for neonates scanned within
a week from birth resembled that of the entire sample (data
not shown). We also show that the clustering solution is not
driven exclusively by age-related changes in the morphometric
measures (Supplementary Fig. 3). So, although age did not alter
the location of structure of the MSNs, it was associated with
their internal coherence. Age was linked to increased regional
similarity within the clusters and both increased and decreased
regional similarity between clusters (cluster integration and
segregation). Though the exact pattern was complex, the sum-
mary was that cingulate showed integration with the limbic and
insular clusters while segregating from most of the neocortical
clusters, perhaps suggesting an advancement towards a more
broad representation of paralimbic structures, while the lim-
bic and fronto–temporal clusters showed also age-dependent
increase in intrasimilarity.

While our study’s advantages include a large neonatal sam-
ple, data acquired and analyzed with optimized protocols for
this age group, as well as the use of a number of morphometric
measures to characterize the brain, it is not without limitations.
In order to fully describe development, longitudinal data is
needed. Due to the nature of the surface morphometric mea-
sures utilized, we were not able to assess whole-brain connectiv-
ity, here excluding subcortical structures, cerebellum, and brain
stem. Future work should investigate the structural and func-
tional coupling of neonatal MSNs, as well as their genetic and
environmental correlates. The implication of recent work using
MSNs is that changes in neurodevelopmental disorders must
occur early in development. Using a large sample, our study
provides a means to detect meaningful alterations in structural
coupling at an early stage in infants with either a known genetic
or high likelihood to have a later neurodevelopmental disorder.

To conclude, we present cortical MSNs in the neonatal brain,
their association with age, and their community structure, char-
acterizing evolving cortical tissue architecture. Following birth,
age is strongly related to edge-strength, in a posterior–anterior
gradient reflecting the directionality of axonal and dendritic
growth, myelination, and synaptogenesis in this period. Clus-
tering of MSNs into modules demonstrated correspondence to
known functional systems and cytoarchitectural atlases and
was relatively stable across subjects and over the age range
examined. Within these clusters, similarity generally seemed
to increase postnatally, implying increased network coherence
in this short period. We also find a complex relationship of
between-clusters similarity, suggesting some rearrangement in
segregation and integration of the network, indicative of cor-
tical maturational processes. Here we provide a template of
neonatal structural cortical co-variance profiles. By utilizing
both shape and microstructural information, we highlight the
complex nature of perinatal cortical development.
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