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Abstract: D-amino acid production from 2-keto acid by reductive amination is an attractive pathway
because of its high yield and environmental safety. StDAPDH, a meso-diaminopimelate dehydrogenase
(meso-DAPDH) from Symbiobacterium thermophilum, was the first meso-DAPDH to show amination
of 2-keto acids. Furthermore, StDAPDH shows excellent thermostability compared to other
meso-DAPDHs. However, the cofactor of StDAPDH is NADP(H), which is less common than
NAD(H) in industrial applications. Therefore, cofactor engineering for StDAPDH is needed. In this
study, the highly conserved cofactor binding sites around the adenosine moiety of NADPH were
targeted to determine cofactor specificity. Lysine residues within a loop were found to be critical for
the cofactor specificity of StDAPDH. Replacement of lysine with arginine resulted in the activity of
pyruvic acid with NADH as the cofactor. The affinity of K159R to pyruvic acid was equal with NADH
or NADPH as the cofactor, regardless of the mutation. Molecular dynamics simulations revealed
that the large steric hindrance of arginine and the interaction of the salt bridge between NADH and
arginine may have restricted the free movement of NADH, which prompted the formation of a stable
active conformation of mutant K159R. These results provide further understanding of the catalytic
mechanism of StDAPDH and guidance for the cofactor engineering of StDAPDH.

Keywords: meso-diaminopimelate dehydrogenase; D-amino acid; thermostable enzyme; cofactor
engineering; molecular dynamics simulations

1. Introduction

The meso-diaminopimelate dehydrogenase (meso-DAPDH) from Symbiobacterium thermophilum
IAM14863 (StDAPDH) was the first meso-DAPDH reported to catalyze the asymmetric amination
of 2-keto acids, with consequent D-amino acid production [1]. D-amino acids are used in the
pharmaceutical industry, foods, and cosmetics [2,3]. Among the different D-amino acid bioproduction
methods, asymmetric amination with 2-keto acids as starting materials has several advantages, such as
a one-step reaction, a theoretical yield of 100%, and environmental safety [2]. For instance, Akita et
al. established an efficient system using the meso-DAPDH from Ureibacillus thermophaericus strain A1
(UtDAPDH) to produce D-branched-chain amino acids with a yield and optical purity > 99% [4].

The utilization of thermostable enzymes can decrease the cost of process control and the risk
of contamination, and increase the solubility of the substrate and the reaction rates [5,6]. Therefore,
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thermostable enzymes are of interest for industrial applications. Recently, Akita et al. focused on the
screening of more stable meso-DAPDHs for industrial production of D-amino acids. Finally, UtDAPDH
was found to be stable after incubation for 30 min at 60 ◦C [7]. Divergent evolution has been found in
the meso-DAPDH family [8]. All members of the type II group, which is represented by StDAPDH,
show obvious catalytic activity with 2-keto acids. UtDAPDH belongs to type I. Five substitutions were
introduced into UtDAPDH in order to create its ability to catalyze 2-keto acids [9,10]. As reported,
StDAPDH is currently the most thermostable member of both groups. S. thermophilum is a syntrophic
bacterium and its growth is dependent on co-culture with Bacillus [11–13]. The optimal culture
temperature of strain T is 60 ◦C [11], which may explain why StDAPDH from the original strain can
maintain 94% activity when incubated at 70 ◦C for 1 h [1]. The combination of its substrate spectrum
and thermostability indicate that StDAPDH has great potential in future enzyme engineering and
industrial applications [1].

In nature, meso-DAPDHs catalyze the reversible oxidative deamination of meso-2,6-
diaminopimelate (meso-DAP), which is an NADP+-dependent process [1,14–16]. The sole structural
difference between NAD(H) and NADP(H) is an additional phosphate group at the 2‘-hydroxyl group
of the adenosine monophosphate (AMP) moiety of NADP(H) (Figure 1). However, compared to
NADP+/NADPH, NAD+/NADH has some advantages in industrial applications. Firstly, NADH is less
expensive than NADPH [17–19]. The cost of NADH is USD 126/g, while the cost of NADPH is USD
1330/g (Sigma-Aldrich, 2020 catalog). Therefore, various oxidoreductase reactions have been performed
to develop regeneration systems for NAD(P)(H) [20–22]. For example, glucose dehydrogenase has been
coupled for the synthesis of D-amino acids by meso-DAPDHs [4,23]. Secondly, NADH is more stable
than NADPH [19,24,25]. Therefore, cofactor engineering, for enzymes such as alcohol dehydrogenase
and xylose reductase, has been of great interest to various research groups [5,26–28]. The seminal
work on cofactor engineering was completed by Scrutton et al. in 1990, in which, Arg198 and Arg204
were determined to be crucial to the cofactor specificity of glutathione reductase and mutations with a
marked preference for NAD+ were obtained [29]. However, there is little research reported on the
cofactor engineering of meso-DAPDHs.

Figure 1. Chemical structures of NADH and NADPH.

In the present study, residue K159 was found to be the key residue for the cofactor specificity
of StDAPDH. Molecular dynamics (MD) simulations were performed to investigate the underlying
molecular mechanisms.
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2. Results and Discussion

2.1. Selection of Mutations

Divergent evolution has been reported in the meso-DAPDH family [8]. Amino acid residues
V14, V68, P69, T70, S90, V156, and K159 of StDAPDH have been reported in our previous study [30].
These residues were predicted as NADP+-binding residues and are highly conserved during the
evolution of type II meso-DAPDHs, but they differ from the residues in type I meso-DAPDHs. In the
representative member of the type I group, meso-DAPDH from Corynebacterium glutamicum ATCC13032,
the allelic NADP+-binding residues are L14, M66, G67, S68, T88, D154, and R157. Therefore, V14L,
V68M, P69G, T70S, S90T, V156D, and K159R mutant proteins were constructed to investigate the
roles of these residues during catalysis by StDAPDH. Since these seven residues are highly conserved
NADP+-binding sites, we wanted to determine whether they were responsible for cofactor specificity.

It has been reported that during catalysis by StDAPDH, H154 assists a water molecule to attract
the amino acid intermediate, which is formed by hydride transfer from the Cα of meso-DAP to the C4N
of the nicotinamide ring of NADP+ [30]. This indicates that the orientation of the nicotinamide ring of
NADP+ plays a key role in catalysis by meso-DAPDH. Although the adenosine ring is distal from the
enzyme‘s catalytic center, it is thought to have an enormous influence on enzyme activity, including
kinetics and substrate specificity [31–33]. There have been several cofactor engineering studies focused
on the residues around the AMP moiety [5,34,35]. Figure 2 shows the polar contacts between NADP+

and the seven residues in StDAPDH (PDB ID: 3wbf [36]). Among these polar contacts, there was only
one H-bond interaction between V156 and K159. V14 and K159, which showed polar contacts with the
AMP moiety, were selected for subsequent experiments.

Figure 2. Polar contacts between NADP+ and residues V14, V68, P69, T70, S90, V156, and K159.

2.2. Determination of Kinetic Parameters with NADH as Cofactor.

After the preparation of wild-type and mutant proteins, NADH was chosen as the cofactor to
determine the kinetic parameters for pyruvic acid. As shown in Table 1, when NADH was used,
the wild-type enzyme and the V14L mutant showed no catalytic activity with regard to pyruvic acid,
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which indicated that they were essentially specific for NADPH. By contrast, K159R was not entirely
NADPH specific. The apparent KM value of K159R with pyruvic acid, with NADH as the cofactor, was
approximately the same as the KM values of the wild-type enzyme and K159R, with NADPH as the
cofactor. Therefore, this mutation resulted in an increased affinity for pyruvic acid, with NADH as the
cofactor. The kcat/KM ratio of K159R with pyruvic acid was higher than that of wild-type with NADH
as the cofactor. These results suggested that K159 was a major determinant of the cofactor specificity of
StDAPDH. However, the overall efficiency of K159R was significantly lower than that of the wild-type
enzyme with NADPH as the cofactor, mainly due to the low turnover number (kcat).

Table 1. Kinetic parameters of wild-type and mutant StDAPDH with pyruvic acid as the substrate

Enzyme KM (mM) kcat (s–1) kcat/KM (mM-1
·s–1) Cofactor

StDAPDH ND 1 ND ND NADH
8.86 ± 0.45 7.61 ± 0.18 0.86 NADPH 2

V14L ND ND ND NADH
10.08 ± 0.96 1.63 ± 0.08 0.16 NADPH 2

K159R 8.04 ± 0.85 1.34 ± 0.20 0.17 NADH
7.58 ± 0.45 8.07 ± 0.21 1.06 NADPH 2

1 Not detectable. 2 Data from our previous study [30].

2.3. MD Simulation Analysis

To elucidate the molecular determinants of K159R on cofactor specificity, MD simulations of the
protein-NADH complexes, including the native and K159R mutant proteins were performed for 100 ns.

2.3.1. Root Mean Square Deviation Analysis

Root mean square deviation (RMSD) analyses of the proteins and NADH are shown in Figure 3.
The backbone of both wild-type and K159R proteins achieved a stable conformation at 20 ns and
remained stable until 100 ns (Figure 3a). This indicates that the binding of NADH did not cause major
changes in the structure of the enzyme. These trajectories were utilized for the further analysis.

Figure 3. Root mean square deviation (RMSD) analysis of (a) proteins and (b) NADH of wild-type
(black) and K159R (red) enzymes over a 100 ns simulation period.

For NADH (Figure 3b), whether combined with the wild-type or mutant enzyme, the Cα atom of
NADH achieved stability at 20 ns and remained stable until 40 ns. After that, NADH bound to the
wild-type enzyme showed a higher RMSD deviation compared to NADH bound to K159R, especially
between 50 and 90 ns. NADH binding to K159R was stable from 20 ns, but at 90 ns, it showed some
deviation. These results suggested that, compared to K159R, the wild-type enzyme was less able to
form stable conformations with NADH.



Int. J. Mol. Sci. 2020, 21, 1788 5 of 10

2.3.2. Root Mean Square Fluctuation Analysis

In order to evaluate the plasticity of each residue of the wild-type and K159R enzymes, the root
mean square fluctuation (RMSF) of the protein Cα atom was analyzed with respect to the starting
structures. As shown in Figure 4a, the overall fluctuation of wild-type and mutant enzymes showed
no significant differences. Residue 159 was significantly rigid in both systems. However, the K159R
mutant showed higher rigidity in residues 35-39 (marked as “D1” in Figure 4), 123-146 (D2), and 243-259
(D3) and higher fluctuation in residues 175-178 (D4) and 237-241 (D5). According to the alignment
of meso-DAPDH structures, residues 35-39 formed a loop between α2 and β2 and was located in the
dinucleotide-binding domain. Residues 237-241, 123-146, and 243-259 formed loops between β12 and
β13, the β-sheet β7, and β13, respectively, and were located in the polymerization domain. Residues
175-178 formed helix α10, located in the C-terminal domain [37]. For meso-DAPDHs, the C-terminal
domain was responsible for substrate binding, while the N-terminal domain was involved in nucleotide
binding [38]. As shown in Figure 4b, amino acid residues around the substrate-binding pocket showed
obvious changes in flexibility, which indicated that the mutation of position 159 may reshape the active
conformation of the enzyme for cofactor binding.

Figure 4. Root mean square fluctuation (RMSF) analysis (a) of wild-type (black) and K159R mutant
(red) proteins. Residues and corresponding secondary structures (b) showing differences in fluctuation
are marked as D1, D2, D3, D4, and D5. Green: wild-type; magenta: K159R.

2.3.3. Conformational Analysis

To determine whether the global change in structure improved the binding conformation of
NADH, the conformations of NADH bound to wild-type and K159R mutant enzymes were compared.

As stated above, during MD simulations, NADH bound to the wild-type protein was less stable
than NADH bound to the K159R mutant protein. Therefore, we first analyzed the orientation of NADH
at 0 ns and 100 ns (Figure 5). At 0 ns, NADH showed almost the same conformation and was oriented in
the substrate binding pocket in both the wild-type and mutant proteins. After 100 ns, the nicotinamide
ring of NADH in the K159R mutant remained in a similar orientation (Figure 5b), but NADH in the
wild-type protein was away from the catalytic site and subsequently, showed a conformational change
(Figure 5a). During the first step of the catalytic process of meso-DAPDHs, the enzyme has an open
conformation and binds NADP(H), without conformational changes. Subsequently, the substrate
enters the binding pocket and the enzyme closes [38]. Therefore, the wild-type enzyme cannot bind
NAD(H) following the binding of the substrate, but the K159R mutant can do so. This was in agreement
with the results of the RMSD analysis of NADH.
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Figure 5. Conformational analysis of (a) wild-type and (b) K159R mutant proteins. Structure at 0 ns
(yellow); structure at 100 ns (magenta).

Secondly, for the final conformation of the K159R mutant enzyme, interactions between NADH
and residues within 5Å were analyzed to understand the molecular mechanisms. As shown in Figure 6,
when lysine at position 159 was mutated to arginine, a salt bridge formed between R159 and atom
O2A of the AMP moiety of NADH. Moreover, 15 hydrogen bond interactions were found between
NADH and residues of the K159R mutant. As shown in our previous study, arginine was more easily
able to form a salt bridge interaction than lysine [30]. In conclusion, the likely mechanism may be that,
the larger steric hindrance of arginine compared to lysine and the formation of a salt bridge stabilized
the active conformation of the enzyme when NADH was used as the cofactor.

Figure 6. Interactions between NADH and residues within 5 Å in the K159R mutant. H-bond: yellow;
salt bridge: orange.

Overall, in this study, we identified the key role of the amino acid residue at position 159 in
determining the cofactor specificity of thermostable StDAPDH. The K159R mutant was found to have
equal affinity to pyruvic acid with NADH or NADPH as the cofactor. However, the catalytic efficiency
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was still too low for industrial applications. Future research should focus on improving catalytic
performance and further broadening the substrate spectrum with NADH as the cofactor.

3. Materials and Methods

3.1. Materials and Strains

NADH was purchased from Sigma-Aldrich (St Louis, MO, USA). Pyruvic aid and NH4Cl were
purchased from Sinopharm Chemical Reagent Beijing Co. Ltd. (Beijing, China). The protein purification
kit was purchased from Beaver Bioscience (Suzhou, China). Reagents for molecular biology were
purchased from Sangon Biotech Co., Ltd. (Shanghai, China).

The K159R mutant was constructed in our previous study [30] following the protocol of
whole-plasmid polymerase chain reaction in [8]. The bacterial strains producing wild-type and
K159R mutant StDAPDH were maintained in our lab.

3.2. Overexpression and Purification of Proteins

Both wild-type and K159R mutant proteins were overexpressed in Escherichia coli BL21(DE3)plys
using a previously published protocol [1]. Cells were harvested by centrifugation and then disrupted
by sonication (Scientz, Ningbo, China). Purified proteins were prepared by nickel chelate affinity
chromatography using previously published protocols [8], which was newly cited by reference [30]
and [39].

3.3. Determination of Kinetic Constants

Initial reaction rates were determined by monitoring the decrease in absorbance at 340 nm,
which corresponds to the consumption of NADH. Kinetic parameters were determined with the
concentrations of pyruvic acid varied from 0.2 mM to 20 mM using previously described protocols [39],
except with NADH as the cofactor. Kinetic parameters were calculated by non-linear fitting the reaction
rates versus concentrations of pyruvic acid [39].

3.4. MD Simulations

MD simulations were performed using the GROMACS2018.2 package [40]. The chain A coordinates
of wild-type StDAPDH (PDB ID: 3wbf) were used for the construction of the protein-NADH complex
in situ.

The force fields Amberff99SB-ildn and gaff were applied to the protein structure and ligand,
respectively [41]. The complexes were immersed in a cubic box with sufficient distance between the
protein and box edges and then solvated with a TIP39 water model using the “genbox” tool [42]. Two
Na+ were added to neutralize the system. Before equilibration, each complex was subjected to energy
minimization using the steepest descent method with 10,000 steps [43] and position-restrained MD
simulation for 100 ps. Equilibrations, including constant number of particles, volume, and temperature
(NVT) and constant number of particles, pressure, and temperature (NPT) were then performed. NVT
and NPT steps were performed for 100 ps at 298.15 K and 1 bar to stabilize the temperature and
pressure of the system. Finally, a 100 ns production MD with a 2 fs step was initiated to analyze the
changes in the system. Coordinates were recorded every 20 ps to construct the trajectory. Long-range
electrostatic interactions were evaluated using the particle mesh Ewald method.

3.5. Analysis of Molecular Dynamics Trajectories

The RMSD and RMSF of the protein-NADH complex were analyzed using MD trajectories, with the
built-in tools of the GROMACS package. RMSD and RMSF plots were constructed using Origin8.5
software. Visualization analyses were performed using PyMOL (http://pymol.sourceforge.net/).

http://pymol.sourceforge.net/
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4. Conclusions

StDAPDH, the meso-DAPDH from S. thermophilum, is the most thermostable DAPDH currently
known. It is NADP+-dependent and shows catalytic activity with 2-keto acids. The present study
reported the altered cofactor specificity of StDAPDH from NADPH to both NADH and NADPH by the
replacement of K159 with arginine and proposed an underlying mechanism. Although K159 is highly
conserved among type II meso-DAPDHs, these results indicated that conserved amino acid residues
can be chosen as targets for cofactor engineering. Taken together, the results of this study give us a
deeper understanding of the catalytic mechanism of StDAPDH and provide a starting point for the
engineering of meso-DAPDHs with NADH preference for the production of D-amino acids.
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Abbreviations

NADP(H) Nicotinamide adenine dinucleotide phosphate
NAD(H) Nicotinamide adenine dinucleotide
AMP Adenosine monophosphate
NMN Nicotinamide mononucleotide
meso-DAPDH meso-Diaminopimelate dehydrogenase

StDAPDH
meso-DAPDH from Symbiobacterium thermophilum
IAM14863

UtDAPDH meso-DAPDH from Ureibacillus thermophaericus strain A1
meso-DAP meso-2,6-Diaminopimelate
MD Molecular dynamics
NVT Constant number of particles, volume, and temperature
NPT Constant number of particles, pressure, and temperature
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