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Abstract High-sensitivity differential scanning calorime-

try (HSDSC) is widely used to examine the thermal

behaviour of biomolecules and water-soluble polymers in

aqueous solution. The principal purpose of this manuscript

is to examine the thermodynamic basis for the signals

obtained using HSDSC. It is shown that a combination of

the van’t Hoff isochore and Kirchhoff’s equation are all

that is necessary to simulate and curve fit the HSDSC

output obtained for the thermally induced unfolding of the

protein ubiquitin. The treatment is further developed to

show how the temperature dependence of the heat capacity

change of unfolding, multiple sequential transitions, and

protein dissociation can be incorporated into the thermo-

dynamic description of protein unfolding and how these

factors in turn affect the HSDSC signal.

Keywords Calorimetry � Thermodynamics � Biomolecules

Introduction

High-sensitivity differential scanning calorimetry (HSDSC)

is widely employed for the study—in aqueous solution—of

the thermodynamic parameters associated with processes

initiated either by an increase in temperature (up-scan) or by

a decrease in temperature (down-scan). Small molecular

mass molecules cannot be examined by HSDSC unless they

form aggregate structures showing intermolecular co-oper-

ation. On the other hand, biopolymers in aqueous solution,

such as proteins, which are cooperatively stabilised by

numerous weak forces, can be examined by HSDSC.

Typically HSDSC can be used to examine:

1. Transitions from the physiologically active native form

of a protein through intermediate partially unfolded

states to the final denatured form of the protein. Very

often, such a process is characterised by minimally

populated intermediate states and thus approximates to

a two-state transition between the initial native form

and the final denatured form of the protein [1].

2. Thermally induced co-operative transitions in molec-

ular assemblies of phospholipids, such as multi-lamel-

lar liposomes [2].

3. Melting transitions in DNA and oligonucleotides [3].

In HSDSC, the specific heat of an aqueous system is

measured as a function of temperature. For an aqueous

solution of a bio-polymer, the apparent specific heat of the

solute (S2) is given by the following expression [1]:

S2 ¼ S1 þ
1

w2

ðS� S1Þ ð1Þ

where S is the specific heat of the solution, S1 is the specific heat

of the solvent, and w2 is the weight fraction of the solute. Because

the quantity (S - S1) is usually very small, a differential mode of

measurement [solvent (reference cell) versus solvent plus solute

(sample cell)] has to be used. Indeed, given that a major portion

of the specific heat change is due to the heating and cooling of the

solvent (usually water which has a large heat capacity), it is

essential to have a differential arrangement, so that phase tran-

sitions in the solute can be observed.
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HSDSC signals and their interpretation for protein
unfolding

DSC instruments measure the power required to maintain

the temperature of a sample placed in a designated sample

cell at (or close to) the same value as that of a reference cell

containing the identical aqueous solvent, but no sample

molecule, as the overall temperature of the system, is

altered. The cells are located within an adiabatic vacuum

chamber. The raw instrumental output conventionally

shows power as a function of temperature. To extract data

that have more thermodynamic significance, the axes of the

trace output are transformed. Power is converted to a molar

excess heat capacity using the formula:

dqp

dt
:

1

rM
¼ Cp;xs ð2Þ

where qp is the heat absorbed at constant pressure; t is time,

the derivative dqp/dt represents power; r is the scan rate

(dT/dt, where T is temperature); and M is the number of

moles of sample in the sample cell.

A typical DSC experiment normally involves at least

two scanning runs. One scan consists of a baseline scan,

wherein the sample cell and reference cell both contain the

blank aqueous solvent. The second scan is a scan of the

solvent (reference cell) against the solvent plus solute

(sample cell). The baseline scan is then subtracted from the

sample scan.

Figure 1 provides a typical example of an HSDSC trace

of the excess heat capacity (the heat capacity difference

between the sample and reference cells) as a function of

temperature. The signal shown in Fig. 1 was obtained for

the protein ubiquitin in buffer solution, at a pH of 2.

Proteins undergo denaturation on heating. The process

involves a transition from the physiologically active com-

pact folded form to the normally physiologically inactive

unfolded form. Native protein structures in aqueous

solution are cooperatively stabilised by numerous

intramolecular forces. Disruption of these forces requires

an endothermic enthalpy change. The favourable free

energy contribution to denaturation is provided by the

entropy change that arises from the increased conforma-

tional freedom available to the unfolded protein and the

increased number of ways of partitioning the increased

thermal energy.

A simple pedagogic model of thermally induced

unfolding has been described by Dill and Bromberg [4].

Consider a four-bead molecular chain, as shown in Fig. 2.

In this model, the ground state is characterised by a com-

pact molecular structure that is held together by an

intramolecular bond (the dashed line) between the chain-

ends. The first excited microstate is fourfold degenerate—

i.e., there are four different unfolded molecular confor-

mational structures, of equal energy that the molecule can

adopt. The fractional occupancy of the two different energy

states and its functional relationship with temperature can

be calculated using the Boltzmann distribution equation:

n1

n0

¼ g1e
�e1

kT

g0e
�e0

kT

: ð3Þ

The subscripts 0 and 1 denote the ground state and first

excited microstate, respectively; n is the number of mole-

cules in a particular state; g is the degeneracy of that state

with go = 1 and g1 = 4; e is the energy of the state; k is

the Boltzmann constant; and T is the absolute temperature.

Using the mass balance expression n = n0 ? n1 and

De = e1 - e0, we can rewrite Eq. 3 as

n� n0

n0

¼ 4e�
De
kT ð4Þ

which gives the following expressions for the fraction of

molecules in the ground state:

Tm 

Cp,D 

Cp,N 
Cp 

Fig. 1 Data obtained for a 5 mg cm-3 solution of ubiquitin at a pH

of 2

Fig. 2 Four-bead model for molecular unfolding. (Redrawn from

Dill and Bromberg [4])
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n0

n
¼ 1

1 þ 4e�
De
kT

ð5Þ

and fraction of molecules in the excited state:

n1

n
¼ 4e�

De
kT

1 þ 4e
�De
kT

: ð6Þ

The temperature dependence of the composition of the

system is shown in Fig. 3. This system is an example of a

two-state system, i.e., a system within which only two

states are significantly populated. At low temperatures, the

ground state form predominates. The enthalpy of

intramolecular binding is key to this predomination.

However, as the temperature rises, the excited state

becomes increasingly populated, thereby demonstrating the

increasingly important entropic contribution of conforma-

tional variety to the system. The statistical thermodynamic

description of protein unfolding is far more complex than

the four-bead molecular model, but the model does

encapsulate one of the reasons as to why proteins unfold

upon heating to moderately high temperatures—the large

number of excited state conformers. Moreover, just like the

model, protein unfolding is, very often, a two-state process.

As a consequence, the signal shown in Fig. 1 can be

interpreted as showing how the thermal history of the

system reflects the changing composition of the aqueous

protein system as temperature increases. At low tempera-

tures, the compact native form predominates as the tem-

perature is increased some molecules begin to unfold. The

fraction of molecules that have unfolded multiplied by the

enthalpy of the unfolding transition provides the basis of

the heat signal. Since the enthalpy change is endothermic,

the temperature of the sample cell becomes lower than that

of the reference cell; and thus, the instrument measures the

power needed to raise the temperature to compensate for

the temperature difference. This, as we have shown, is

easily converted into a molar excess heat capacity.

The DSC signal and initial data analysis

There are several features of the DSC signal, as shown in

Fig. 1, which require comment. The transition from the

compact physiologically active form of the protein to the

more open unfolded physiologically inactive molecular

form is shown as an increase in heat capacity of the system,

going through a maximum at a temperature designated as

Tm and then decreasing to a final higher final heat capacity

value. The initial low temperature portion of the scan

represents the heat capacity of the native form of the pro-

tein in aqueous solution (denoted as CP,N). The high-tem-

perature portion of the scan shows the heat capacity in

aqueous solution of the unfolded form of the protein (de-

noted as CP,D). In this scan, both heat capacities are

assumed to be invariant with the temperature over the

temperature range of the experimental run, so the heat

capacity change on unfolding given by the expression

DCp = Cp,D - Cp,N is a constant. Formally, the molar heat

capacity is the amount of heat energy required to the raise

the temperature of 1 mol of substance through 1 K. At the

molecular level, the additional heat energy is distributed

among the various degrees of freedom and partitioned

variously between kinetic energies—including vibrational,

rotational, and translational transitions and potential and

potential energies—including stretching and bending of

molecular bonds [5].

The existence of the heat capacity change indicates that

both enthalpy and entropy are functionally dependent upon

temperature. If DCp is constant, then we can write:

oDH
oT

� �
p

¼ DCp !
Integration

DHðTÞ

¼ DHðTrefÞ þ DCpðT � TrefÞ: ð7Þ

Using the second law of thermodynamics, we get a similar

expression for the entropy change:

dDS ¼ dqrev

T
¼ dDH

T
¼ DCp

T
dT !

Integration
DSðTÞ

¼ DSðTrefÞ þ DCp ln
T

Tref

� �
: ð8Þ

There are several reasons why the overall heat capacity

change for protein unfolding increases. These include the

exposure of hydrophobic amino acid side chains buried in

the core of the native form of the protein to water when the

protein molecule unfolds. For example, Connelly and

Thomson [6] noted that the dissolution of aliphatic and

aromatic hydrocarbons in water invariably leads to an

increase in heat capacity. However, there are likely to be

Fig. 3 Changing composition of the four-bead molecular system as a

function of temperature. The fraction of molecules in the ground state

is designated f0, and the fraction of molecules in the first excited state

is designated f1
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other contributions, such as an increase in easily

excitable vibrational modes upon unfolding.

The enthalpy of denaturation can be obtained from the

experimental data by integration of the peak area. This

value is referred to as the calorimetric enthalpy (DHcal). To

obtain the peak area, we must first draw a baseline to the

data. In the example shown in Fig. 4a, a straight line is

drawn from what is judged to be the start of the transition

to the adjudged end of the transition. Once satisfied that the

baseline satisfactorily joins the onset and termination of the

thermal transition, it is then subtracted from the HSDSC

data (Fig. 4b) to leave a transitional profile with a flat

baseline. The resultant signal can then be divided up into

evenly spaced segments. The area of the individual seg-

ments can then be computed either by the trapezoidal rule

or by the Simpson’s rule and then summed to give the

integrated peak area (Fig. 4c).

The trapezoidal rule equation is

Area ¼ ½f ðx0Þ þ 2f ðx1Þ þ 2f ðx2Þ � 2f ðxn�1Þ

þ f ðxnÞ�
Interval

2

whilst the Simpson’s rule equation is

Area ¼ ½f ðx0Þ þ 4f ðx1Þ þ 2f ðx2Þ þ 4f ðx3Þ � 2f ðxn�1Þ

þ f ðxnÞ�
Interval

3
:

Using the trapezoidal rule, DHcal was found to be

198 kJ mol-1.

Straight-line baselines are convenient and easily drawn

but do not necessarily reflect the true geometry of the

underlying baseline. Other baselines can be fitted. In

Fig. 4d, the pre- and post-transitional portions of the signal

are fitted to a cubic polynomial of the form: f ðxÞ ¼
ax3 þ bx2 þ cxþ d: Other functions can be used—for

example, quartic order polynomials or cubic splines—

which may represent the underlying baseline better. Yet,

normally, area integration using a straight-line baseline

provides values not too dissimilar to values obtained using

other baseline functions.

Can we use thermodynamics to examine
the HSDSC signal?

Thermodynamic information may be obtained from the

signal if it can be established that the signal was obtained

under conditions of thermodynamic equilibrium. Thermo-

dynamic control of the thermal processes observed in the

calorimeter may be established by investigating the

reversibility of the system. If the system either reproduces

the same trace on rescanning or produces an identical trace
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on cooling the application of thermodynamic relationships

to aid our understanding of the HSDSC trace is justified. A

further test of the applicability of thermodynamics is to

examine the HSDSC signals for scan rate dependence.

Parameters measured for processes under thermodynamic

control show no scan rate dependence [7].

For proteins where unfolding is a two-state process the

fraction of protein in the native state is given by the fol-

lowing expression that is analogous to the expression for

the ground state in the four-bead model:

fN ¼ 1

1 þ e�
DG
RT

ð9Þ

and similarly for the denatured state

fD ¼ e�
DG
RT

1 þ e�
DG
RT

: ð10Þ

The energy difference between the two states is the free

energy of denaturation (DG). The ratio of the fraction of

the denatured protein to the fraction of native protein is

equal to the ratio of the concentrations of the denatured

([D]) and native protein ([N]):

fD

fN
¼

½D�
Pt

½N�
Pt

¼ ½D�
½N� ð11Þ

where Pt is the total concentration of protein.

Using Eqs. 7 and 8, the ratio is also equal to the fol-

lowing expression:

fD

fN
¼

e
�DG
RT

1þe
�DG
RT

1

1þe
�DG
RT

¼ e�
DG
RT : ð12Þ

However, from fundamental thermodynamics, we know that

Kp ¼ e�
DG
RT ð13Þ

where Kp is the equilibrium constant at constant pressure

for the unfolding process. Thus, the equilibrium constant

for denaturation obtained under constant pressure condi-

tions is equal to the concentration ratio of the native and

unfolded forms:

Kp ¼
½D�
½N� : ð14Þ

The thermodynamic basis of the HSDSC signal

The fraction of unfolded protein at temperature, T, multi-

plied by the enthalpy of unfolding at the same temperature

gives the enthalpy needed to unfold fD of protein at tem-

perature, T. The rate of change in this enthalpy value with

temperature gives the excess heat capacity—the heat

capacity difference between the sample and reference cells:

Cp;xs ¼
d

dT
ðfDðTÞDHcalðTÞÞ: ð15Þ

To calculate Cp,xs, we need to be able to calculate the

changing composition of the system. This is readily done

using the mass balance expression:

Pt ¼ ½N� þ ½D� ð16Þ

where Pt is the total concentration of protein. Rearranging

Eq. 14 to provide an expression for [N] and substituting

this in Eq. 16 give

Pt ¼ ½D� 1 þ 1

KpðTÞ

� �
ð17Þ

which can be rearranged to give the fraction of unfolded

protein fD:

½D�
Pt

¼ fD ¼ KpðTÞ
1 þ KpðTÞ

: ð18Þ

How do we calculate the changing composition of the

system as a function of temperature? This is readily

achieved using the van’t Hoff isochore [4]:

o lnðKpðTÞÞ
oT

¼ DHvHðTÞ
RT2

ð19Þ

where DHvH(T) is the van’t Hoff enthalpy (for a two-state

process, this is equal to the enthalpy of unfolding) and R is

the universal gas constant. We have already noted that the

unfolding process is accompanied by a positive change in

heat capacity, which means that the van’t Hoff enthalpy is

temperature dependent (see Eq. 7).

Substituting Eq. 7 into Eq. 19 and integration of the

resultant expression give

ZlnðKðTÞÞ

lnðKðTrefÞÞ

d lnðKÞ ¼
ZT

Tref

DHvH;ref þ DCpðT � TrefÞ
RT2

dT : ð20Þ

Here, DHvH,ref is the value of the van’t Hoff enthalpy at Tref

and Tref is the reference temperature, which is conveniently

defined as the temperature at which the fractions of dena-

tured and native protein are equal. This definition means

that K(Tref) is equal to unity. Equation 20 is thus written,

after integration, as

bFig. 4 Integration of the peak area. a Baseline is constructed so as to

connect the start of the transition and the end of the transition.

b Baseline is subtracted from the data. c Area under the peak is

divided up into evenly spaces segments that are then use to calculate

the area either using the trapezoidal rule or the Simpson’s rule.

d Baseline fitted to the pre- and post-transitional portions of the signal

using a cubic polynomial (see text for details)
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KðTÞ ¼KðTrefÞexp

� DHvH;ref

R

1

Tref

� 1

T

� �
þDCp

R
ln

T

Tref

� �
þTref

T
� 1

� �� �
:

ð21Þ

Using Eq. 21 in Eqs. 18 and 16 allows us to calculate how

the fractions of denatured and native protein changes vary

with temperature.

Simulating and fitting the HSDSC signal

If we complete the differentiation, as shown in Eq. 15, we

obtain

Cp;xsðTÞ ¼ DHcalðTÞ
dfDðTÞ

dT
þ fDðTÞDCp;cal: ð22Þ

In this equation, DCp,cal is the heat capacity change

obtained from the signal. We will find it convenient to

differentiate between this value and the value of DCp used

in the van’t Hoff derived equations (Eqs. 20 and 21). The

relationship between the two parameters is given by

DCp;cal ¼ DCp

DHcal;ref

DHvH;ref

: ð23Þ

To derive an analytical solution to Eq. 22, we need to find

an expression for dfd

dT
This is achieved using the following

transformation based upon the van’t Hoff isochore (Eq. 19):

o lnðKðTÞÞ
ofDðTÞ

� �
p

dfDðTÞ
dT

¼ DHvHðTÞ
RT2

: ð24Þ

Given

KðTÞ ¼ fDðTÞ
1 � fDðTÞ

ð25Þ

and expressing Eq. 25 as a logarithmic expression gives

lnðKðTÞÞ ¼ lnðfDðTÞÞ � lnð1 � fDðTÞÞ ð26Þ

which on differentiation gives

oInðKðTÞÞ
ofDðTÞ

� �
p

¼ 1

fDðTÞ
þ 1

1 � fDðTÞ
ð27Þ

and thus provides

dfDðTÞ
dT

¼ DHVHðTÞ
RT2

1

fDðTÞ
þ 1

1 � fDðTÞ
: ð28Þ

The excess heat capacity can thus be written as

Cp;XS ¼ DHcalðTÞDHvHðTÞ
RT2

1
1

fDðTÞ þ
1

1�fDðTÞ
þ fDðTÞDCp;cal:

ð29Þ

We now have an equation for Cp,XS which is functionally

related to temperature, T. Equation 29 can be used to fit the

data shown in Fig. 1 using a least squares approach. The

outcome of fitting Eq. 29 to our ubiquitin data is shown in

Figs. 5 and 6. Figure 5 show how the composition of the

system changes with temperature and Fig. 6 shows the

optimised best fit line through the experimental data. The

fitting was conducted in the following way. Initial values

were assigned to the following parameters: DHVH, DHcal,

DCp, and Tref. These were then used in the appropriate pre-

viously defined equations to calculate an initial set of values

of Cp,XS using the temperature data obtained from the data

set, as shown in Fig. 1. The differences between the calcu-

lated values and the experimental values are calculated,

squared, and summed. The sum of the squared differences

was then minimised by changing the parameter values using

Fig. 5 Changing composition of an aqueous protein system as a

function of temperature. The fraction of molecules in the native

ground state is shown in blue, and the fraction of molecules in the

denatured state is shown in red. The calculation was made using the

fitted parameters obtained for ubiquitin unfolding at a pH of 2

Fig. 6 Best fit line (inner line) to the data (orange open circle)

displayed in Fig. 1 using Eq. 29. The dotted line is the baseline given

by the expression
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the optimization routines implemented in the Computer

Algebra program Mathematica (http://www.wolfram.com).

For the example shown in Fig. 6, the NonlinearModelFit

routine was used to fit the model to the data and provide a set

of optimized parameters. The obtained optimized parameter

values are shown in Tables 1 and 2. The standard errors in the

parameters were very low—in the order of 0.1%.

Several observations can be made. The fitted calorimetric

enthalpy is the same as the calorimetric enthalpy value mea-

sured by integration of the peak. The value of Tref is slightly

lower than the value that can be interpolated for Tm the tem-

perature at which the excess heat capacity is a maximum.

The values obtained for DHVH and DHcal are close in value

but not the same. This is not necessarily surprising. The units

of both parameters are kJ mol-1. However, as we have shown,

the raw calorimetric data are converted into an excess heat

capacity in Eq. 2 using a mass value as measured by the

experimenter. In this experiment, the required mass of protein

was weighed and dissolved in buffer. The aqueous protein

solution was then injected into a cell of known fixed volume.

In this way, the number of moles (M) is readily calculated and

inserted into Eq. 2. On the other hand, the molar unit in the

van’t Hoff enthalpy is supplied by the universal gas constant.

We can show this using dimensional analysis:

oIn½KpðTÞ�
oT

� �
p

¼ DHVHðTÞ
RT2

�!Dimensional analysis
1

K

¼
kJ

mol
kJ

molK
� K2

:

ð30Þ

It is important to note that logarithmic terms are dimen-

sionless. Thus, in order for the equality to be true, the

molar unit used in the van’t Hoff enthalpy must be identical

to the molar unit supplied by the gas constant.

Therefore, why should DHcal be less than DHVH? There

are a number of explanations and it is indeed a matter of

interest in protein thermochemistry. We make the

assumption that the only thermal process on which the

calorimetric enthalpy reports is the thermal unfolding of

the protein. However, other thermal events may occur

because of the presence of the protein in solution, which is

not observed when running the baseline scans. However, it

is also possible and indeed extremely likely that in our

particular case not all the mass of protein placed in the cell

was protein or that some of the protein placed in the cell

did not undergo thermal unfolding. Both events would lead

to overestimation of active protein and thus an underesti-

mation of the calorimetric enthalpy.

We shall see later this article that there are cases, where

DHcal[DHVH. This arises when protein unfolding

involves the appearance of substantial populations of

intermediates.

There are examples, where DHvH � DHcal. One exam-

ple is the thermally driven change from the Pb gel phase to

La in phospholipid multi-lamellar vesicles, where the ratio

of the van’t Hoff enthalpy to the calorimetric enthalpy can

be as high as 200. Such numbers suggest that something

like 200 phospholipid molecules are acting together as a

co-operative unit.

Protein unfolding signals when the heat capacity
change is dependent upon temperature

So far, we have assumed that thermally induced unfolding

is characterised by a temperature invariant heat capacity.

However, it is very often the case that the pre-transitional

heat capacity shows a marked functional relationship with

temperature, whilst the post-transitional is somewhat flat-

ter—less influenced by temperature. Figure 7a provides an

excellent example of this kind of thermal behaviour. The

signal shown was obtained in laboratory class practical for

the protein lysozyme in a 1.0 M aqueous solution of tre-

halose. The objective of the practical was to examine the

behaviour of proteins in aqueous sugar solutions. The

temperature dependence of the pre- and post-transitional

heat capacities of the signal is readily incorporated into our

analysis.

We assume that the temperature dependence of the pre-

and post-transitional heat capacities can be described by a

linear relationship. The heat capacity of the native protein

is given by: Cp,N = a ? bT, and for the unfolded protein,

Cp,D = c ? dT. This provided a heat capacity change that

is temperature dependent:

Table 1 Optimized fit

parameters obtained for a

5 mg cm-3 solution of ubiquitin

in buffer solution at a pH of 2

Parameter Estimate

DHVH 211 kJ mol-1

DHcal 198 kJ mol-1

Tref 329.1 K

DCp 3.0 kJ K-1 mol-1

Table 2 Optimized fit parameters obtained for a 5 mg cm-3 solution

of lysozyme in 1.0 M trehalose solution

Parameter Estimate Standard error

DHvH,ref 418 kJ mol-1 2.7

DHcal,ref 365 kJ mol-1 3.2

Tref 332.4 K 0.03

a -188.3 kJ mol-1 K-1 3.7

b 0.62 kJ mol-1 K-1 0.012

b 46.3 kJ mol-1 K-1 7.3

d -0.08 kJ mol-1 K-1 0.02

ChemTexts (2017) 3:1 Page 7 of 12 1

123

http://www.wolfram.com


DCpðTÞ ¼ ðb� dÞT þ ðc� aÞ: ð31Þ

This is then used to provide a modified form of the

Kirchhoff equation:

oDH
oT

� �
p

¼ DCpðTÞ ¼ ðb� dÞT þ ðc� aÞ�!

IntegrationDHðTÞ ¼ DHref þ ðc� aÞðT � TrefÞ
þ ðb� dÞ T � T2

ref

� �
: ð32Þ

Which then provides a modified form of Eq. 21 wherein, as

before, Kp(Tref) = 1:

KpðTÞ
KpðTrefÞ

¼ exp

DHVH;ref

R

1

Tref

� 1

T

� �
þðc�aÞ

R
In

T

Tref

� �
þ T

Tref

�1

� �

:::þðd�bÞ
2R

T�Tref �T2
ref

1

Tref

� 1

T

� �� �

2
6664

3
7775:

ð33Þ

The temperature dependence of the heat capacity change

results in the addition of another term to Eqs. 7 and 21.

Equations 31, 32, and 33 can then be used in a modified

form of Eq. 29 to fit the lysozyme data. The modification is

made to the last term in Eq. 29 and takes into account the

changing contribution of the temperature-dependent heat

capacities of the folded and unfolded forms make to the

underlying base line:1

fDðTÞCp;UðTÞ þ fNðTÞCp;NðTÞ
! fDðTÞCp;UðTÞ þ ð1 � fDðTÞÞCp;NðTÞ
! fDðTÞDCpðTÞ þ Cp;NðTÞ:

Equation 29 is thus rewritten as

Cp;xs ¼
DHcalðTÞDHvHðTÞ

RT2

1
1

fDðTÞ þ
1

1�fDðTÞ

þ DHcal

DHvH

ðfDðTÞDCpðTÞ þ Cp;NðTÞÞ:

It will be recalled that the calorimetric enthalpy van’t Hoff

enthalpy ratio appears to appropriately scale the contribution

of the underlying baseline to calorimetric signal. This

modified form of Eq. 29 was fitted to data obtained for an

aqueous solution of lysozyme in 1 M trehalose solution. The

solution concentration was 5 g dm-3. The results of this fit

are shown in Fig. 7b. The optimised fit parameters are dis-

played in Table 2. The adjusted R2 value for the fit is 0.999;

the following optimized fit parameters were obtained. Both

the adjusted R2 value and Fig. 7b seem to suggest that the fit

is extremely good. However, it is always good practice to

look at a plot of the residuals. The residuals are calculated as

the difference between the measured value for Cp,xs and the

calculated value Cp,xs using the best fit parameters. A

residual plot is shown in Fig. 8. If the residuals arise purely

from the uncertainties in measurement—for example,

instrumental noise, then it would be expected that the

residuals would be located at random about the Cp,xs axis.

a

b

Fig. 7 a HSDSC data obtained for a 5 mg cm-3 solution of

lysozyme in 1.0 molar solution of trehalose; and b line of best fit to

the data

Fig. 8 Residual plot for the fit shown in Fig. 7b

1 In the treatment of ubiquitin the heat capacity of the native form

was arbitrarily set to zero after the subtraction of the instrumental

baseline and so does not appear in Eq. 29.
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The fact that they are not reveals that there are systematic

errors either in the data or in an error(s) in the model used to

fit the data. Most probably, the analysis has neglected some

other minor thermal events.

Of further note is the rather large discrepancy between

the calorimetric and van’t Hoff enthalpies. The calorimet-

ric enthalpy is 87.3% of the value of the van’t Hoff

enthalpy. The lysozyme sample used was obtained from

Sigma Aldrich who claims that its purity is C90%. For the

experiment, the lysozyme was used as received which may

thus explain the discrepancy.

Multiple transitions

The residual plot in Fig. 8 suggests that the model used to

fit the data may have been too simple in that other thermal

events may also occur which have not been incorporated

into the model. If these thermal events are independent of

the main transition, then the overall thermal transition is a

simple arithmetic addition of the two underlying events.

For example, small amounts of an impurity, which is also

calorimetrically observable, may be present in the sample.

It is also possible that in the case of a multi-sub-unit pro-

tein, the sub-units unfold independently of each other.

Again, the thermal signal would be a composite of the

underlying transitions. However, protein unfolding may

involve the native protein undergoing a transition to one or

several intermediate states before ultimately adopting the

final unfolded form. Protein unfolding, under equilibrium

conditions, by such a mechanism can be represented by the

following mass action expression in the case, where there

are two intermediates formed in significant quantities:

N�
K1

I1�
K2

I2�
K3

D:

To be able to calculate the fraction of each species at any

particular temperature, T, we formulate the following mass

balance expression:

Pt ¼ ½N� þ ½I1� þ ½I2� þ ½D� ð34Þ

where Pt is the total protein concentration and [] terms rep-

resent the equilibrium concentrations of the respective spe-

cies. If we divide Eq. 34 by the [N] and invert, we obtain the

following expression for the fraction of native protein:

½N�
Pt

¼ aN ¼ 1

1 þ ½I1�
½N� þ

½I2�
½N� þ

½D�
½N�

: ð35Þ

Because unfolding occurs under equilibrium conditions, we

can write the following equilibrium equations:

K1ðTÞ ¼
½I1�
½N� K2ðTÞ ¼

½I2�
½I1�

K3ðTÞ ¼
½D�
½I2�

: ð36Þ

Using these expressions in Eq. 35, we obtain

aNðTÞ ¼
1

1 þ K1ðTÞ þ K1ðTÞK2ðTÞ þ K1ðTÞK2ðTÞK3ðTÞ
:

ð37Þ

Similar expression is readily derived for the fractions of the

other intermediate and denatured species:

a1ðTÞ ¼ K1ðTÞaNðTÞ
a2ðTÞ ¼ K1ðTÞK2ðTÞaNðTÞ
aDðTÞ ¼ K1ðTÞK2ðTÞK3ðTÞaNðTÞ:

ð38Þ

The equilibrium constants are calculated using Eq. 21.

Given the following model thermodynamic data, the frac-

tional composition of an aqueous protein solution is

depicted in Fig. 9.

Simulating the HSDSC signal using the parameters in

Tables 3 and 4 is slightly more complicated than our pre-

vious examples. The greater complexity comes from cor-

rectly identifying the enthalpy changes that accompany the

formation of each species. Essentially, all enthalpy changes

are calculated with the native form as the low energy form

of the protein. Thus, the enthalpy change accompanying

the formation of I1 is DHVH,1; the enthalpy change

accompanying the formation of I2 is DHVH,1 ? DHVH,2;

and the enthalpy of denaturation is given by DHVH,1 ?

DHVH,2 ? DHVH,3. Thus, the following expression can be

then be used to calculate the excess heat capacity assuming

DHcal = DHvH:

Cp;XS ¼ DHVH;1ðTÞ
da1ðTÞ

dT
þ a1ðTÞDCP;1 þ

:::ðDHVH;1ðTÞ þ DHVH;2ðTÞÞ
da2ðTÞ
dT

þ a2ðTÞðDCP;1 þ DCP;2Þþ

:::ðDHVH;1ðTÞ þ DHVH;2ðTÞ þ DHVH;3ðTÞÞ
da3ðTÞ

dT
þ a3ðTÞ

ðDCP;1 þ DCP;2 þ DCP;3Þ:
ð39Þ

Fig. 9 Graph showing how the fraction of protein species varies with

temperature using the model data in Table 3
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If we collect together the appropriate terms, then Eq. 39

can be written in terms of the underlying component

transitions as follows:

Cp;xs ¼ DHvH;1ðTÞ
da1ðTÞ

dT
þ da2ðTÞ

dT
þ da3ðTÞ

dT

� �

þ a1ðTÞ þ a2ðTÞ þ a3ðTÞð ÞDCp;1þ

:::DHvH;2 Tð Þ da2ðTÞ
dT

þ da3ðTÞ
dT

� �
þ a2ðTÞð

þ a3ðTÞÞDCp;2þ

:::DHvH;3ðTÞ
da3ðTÞ

dT
þ a3ðTÞDCp;3:

ð40Þ

The derivatives in Eqs. 39 and 40 can be estimated using a

centred finite difference approximation:

daðTÞ
dT

� aðT þ dTÞ � aðT � dTÞ
2dT

: ð41Þ

The simulated DSC signal using the data in Table 3 and

Eqs. 21, 37, 38, 39, 40, and 41 is shown in Fig. 10. It is

worth nothing that the shapes of the component transitions

are not symmetrical. The overall thermal transition can be

fitted to a two-state model as was the data obtained for

ubiquitin. This is shown in Fig. 11. The fit is not espe-

cially poor and could lead inexperienced experimenters to

conclude that the transition is two states. However, the

optimized fit parameters show immediately that the use of

the two-state model is incorrect. The van’t Hoff enthalpy

value is 218 kJ mol-1, whilst the calorimetric enthalpy is

548 kJ mol-1. As we pointed previously in the manu-

script, if DHcal[DHvH, then the presence of significant

populations of intermediate states in the transition is

inferred.

Transitions involving dissociation

Many proteins have a quaternary structure which involves

the association of several folded molecular sub-units to

form a multiple sub-unit complex. The simplest complex is

a dimer. One such example, examined by Sturtevant and

co-workers, is the tryptophan repressor obtained from

Escherichia Coli, which shows unusual thermal stability at

pH 7.5 [8]. Their DSC traces show that the heat capacity

change is temperature dependent and that the peak itself

shows a significant amount of asymmetry. Furthermore, the

signal shows some concentration dependence. To develop a

thermodynamic model that can encapsulate these obser-

vations, we need to use Eq. 33 that incorporates the tem-

perature effects upon heat capacity. However, we need to

be extremely careful about the equilibrium constant equa-

tions that we use. We shall find it expedient to formulate

these equations in terms of the fraction of protein that has

undergone dissociation/denaturation.

Table 3 Model data used to show the effect of temperature upon the

composition of an aqueous protein solution using Eqs. 21, 37, and 38

Transition DHVH Tref DCp

1 190 320 0.8

2 220 325 1.2

3 170 330 0.6

Table 4 Parameter values used

to simulate the HSDSC signal

shown in Fig. 12

Parameter Assumed value

DHvH,ref 300 kJ mol-1

DHcal,ref 295 kJ mol-1

Tref 330 K

a -30 kJ mol-1 K-1

b 0.11 kJ mol-1 K-1

b 9.0 kJ mol-1 K-1

d 0.01 kJ mol-1 K-1

Fig. 10 Simulated DSC signal for a model protein system wherein

unfolding involves the formation of two intermediates. The compo-

nent transitions are identified and shown. A value of was used in the

simulation

Fig. 11 Fit of the overall simulated signal shown in Fig. 10 to a two-

state model
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We assume that the following equilibrium equation

adequately describes the dissociation/unfolding process:

N2 � 2D:

In other words, dissociation and unfolding occur at more or

less the same time. Or to use the language, we used in the

previous section on multiple transitions the population of

dissociated sub-units in the native form is extremely if not

vanishingly small.

To make the simulations simple, we shall assume that

both sub-units comprising the dimer are the same, so that

we can use the following mass action description of the

equilibrium process:

KpðTÞ ¼
½D�2

½N2�
:

If Pt is the total concentration of the dimeric protein, then

we can write the following:

½D� ¼ 2fDPt: ð42Þ

Here, fD is the fraction of dimer that has undergone dis-

sociation/denaturation. Similarly

½N2� ¼ ð1 � fDÞPt: ð43Þ

The equilibrium constant is thus written as

KpðTÞ ¼
½D�2

½N2�
¼ 4f 2

DPt

ð1 � fDÞ
: ð44Þ

We now need to define K(Tref) Tref is the temperature at

which half the protein has undergone dissociation/denatu-

ration, i.e., fD = 0.5. We shall, however, also define Tref in

terms of a reference concentration Pref:

KpðTrefÞ ¼
4 � 0:52 � Pref

ð1 � 0:5Þ ¼ 2Pref : ð45Þ

Substituting Eqs. 44 and 45 into Eq. 33 gives

2f 2
D

ð1 � fDÞ
Pt

Pref

¼ exp

DHVH;ref

R

1

Tref

� 1

T

� �
þ c� a

R

� 	
In

T

Tref

� �
þ Tref

T
� 1

:::þ ðd � bÞ
2R

T � Tref � T2
ref

1

Tref

� 1

T

� �� �

2
6664

3
7775:

ð46Þ

Equation 46 is a quadratic expression in terms of fD. As

before, if we define all the parameters on the right-hand

side (the values are shown below) as well as the concen-

trations, we can calculate fD using the normal solution for

quadratic equations. These values are then used in Eq. 29

to simulate the HSDSC signal.

For the simulation of the HSDSC signal shown in Fig. 12,

the data displayed in Table 4 was used and it was assumed

that Pt = Pref. Comparison between the data provided by

Sturtevant et al. [8] and Fig. 13 shows that the simulation

captures the major features of the experimental data. The

heat capacity is temperature dependent, and the signal shows

distinct asymmetry. Moreover, in Figs. 12 and 13, it is shown

that Tref does not correspond to the temperature of maximum

excess heat capacity. If we change the protein concentration,

then we can show that the signal shifts to higher temperature

ranges when the concentration is increased and to lower

temperature ranges when the concentration is lowered in line

with experimental observations [8]. The observant reader

will no doubt detect that the signals appear larger at higher

concentrations. This is to be expected, since the transitions

occur over higher temperature ranges at higher protein

concentrations and the positive heat capacity change thus

results in increases in both the calorimetric and van’t Hoff

enthalpies.

Fig. 12 Simulation of dissociative unfolding of a dimer protein

complex. The blue line shows the location of Tref the temperature at

which half the protein has undergone the thermal transition

Increasing concentra�on 

Fig. 13 Simulation showing the effect of concentration upon thermal

transition shown in Fig. 12
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Concluding remarks

The aim of this article has been to examine the thermo-

dynamics of temperature induced changes in aqueous

protein systems as detected by scanning calorimetry. I have

tried to show how through the use of simple models of

protein unfolding and through the application of familiar

thermodynamic relationships, the scanning calorimetric

signals can be simulated and fitted to these models. The

text, however, does come with a caveat. Calorimetric sig-

nals can be, and very often are, over interpreted. The model

selected must fit the known attributes of the thermally

induced transition. It is not uncommon to see novices try to

fit a dissociation transition (that always shows a distinct

asymmetric peak) to a model that involves several inde-

pendent transitions using the software supplied by the

instrument manufacturer. The better the novice under-

stands, the underpinning science of signal creation the

more likely they shall be able to correctly interpret that

signal.
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