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Abstract

Dissecting the genetic mechanisms underlying agronomic traits is of great importance for crop breeding. Agronomic traits are usually con-
trolled by multiple quantitative trait loci (QTLs) and genetic interactions, and mapping the underlying causal genes is still labor-intensive
and time-consuming. Here, we present a genetic tool for directly targeting the specific causal genes by using a single-gene resolution link-
age map that was constructed from 3756 F2 rice plants via targeted sequencing technology and Tukey-Kramer multiple comparisons test.
Three large- and moderate-effect QTLs, qHD6-2, qGL3-1, and qGW5-2, were successfully mapped to their specific causal genes, Hd1,
GS3, and GW5, respectively. A complex genetic interaction network containing 30 QTL–QTL interactions was constructed, revealing that
the alternative allele of hub QTL, qHD6-2, can hide or release the genetic contributions of the alleles at interacting loci. Moreover, arrang-
ing genetic interactions in the models lead to more accurate phenotypic predictions. These results provide a community resource and new
feasible strategy for deciphering the genetic mechanisms of complex agronomic traits and accelerating crop breeding.
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Introduction
Agronomic traits are normally controlled by multiple quantita-

tive trait loci (QTLs) and genetic interactions between QTLs and

environmental factors. Dissecting the underlying genetic and

molecular mechanisms is crucial for crop domestication and im-

provement. Isolating the causal genes underlying favorable agro-

nomic traits has proved to be essential for crop breeding (Jiang

et al. 2012). Linkage analysis and association mapping are two

popular and efficient strategies to uncover the genetic basis and

isolate causal genes in rice. However, traditional linkage analysis

is limited by its low mapping resolution resulted from population

size and phenotyping precision (Bai et al. 2012). Thus, linkage

analysis usually requires several generations of backcrossing to

construct the near isogenic lines for eliminating the genetic back-

ground noise, genotyping thousands of individuals for recombi-

nants, and exhaustive field phenotyping, which together make it

time-consuming and costly (Qi et al. 1998; Yu et al. 2002; Wang

et al. 2011; Varshney et al. 2014). Although association mapping

has been widely used for quickly identifying loci or genes under-

lying agronomic traits, the peak signals of association loci often

appeared near (but not within) the known genes, the power to de-

tect rare alleles is inherently limited, and assembling a proper

collection with a population size and representative diversity is

quite complicated and costly (Huang et al. 2010; Zhao et al. 2011;

Crowell et al. 2016; Wang et al. 2018).

In the era of next-generation sequencing, several mapping by
sequencing methods using bulked segregant analysis coupled
with whole-genome sequencing (WGS), such as SHOREmap
(Schneeberger et al. 2009), MutMap (Abe et al. 2012), next-genera-
tion mapping (Austin et al. 2011), QTL-seq (Takagi et al. 2013),
QTG-seq (Zhang et al. 2019), and GradedPool-Seq (Wang et al.
2019), have been devised to dissect the genetic basis of both qual-
itative and quantitative traits. Although the QTL mapping resolu-
tion is improved dramatically, the underlying causal genes are
still not identified directly. Therefore, a feasible strategy for rapid
identification of causal genes underlying quantitative traits is
still needed. Recently, study on a large segregating population de-
rived from a highly inbred yeast cross-mapped hundreds of
causal variants directly with the power of adequate meiotic re-
combination and without the need for any additional experimen-
tation (She and Jarosz 2018). Given the multicellular organism,
such as rice, the potential of such strategy for directly mapping
causal genes is still unknown.

Despite the complex relationship between the genotype and
phenotype in agronomic traits, a majority of genetic variance in a
population can be captured using models that assume gene var-
iants combine their effects in an additive manner (Hill et al. 2008).
Based on this “additive model,” new elite rice varieties have been
developed by pyramiding superior alleles that significantly con-
tribute to desirable traits (Zeng et al. 2017; Wu et al. 2018).
However, many studies (Lee et al. 2010; Bloom et al. 2015; Forsberg
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et al. 2017; McWhite et al. 2020) have shown that genetic interac-
tions are common and affect many biological traits. Genetic
interactions also play a more prominent role than dominance
effects for grain-yield heterosis in rice and wheat (Yu et al. 1997;
Hua et al. 2003; Jiang et al. 2017; Boeven et al. 2020). Especially, a
recently study on rice breeding also indicated that the phenotype
of designed rice lines cannot be predicted precisely when pyra-
miding multiple alleles underlying the same trait due to the com-
plexities of epistasis interactions (Wei et al. 2021). Typically,
genetic interaction mapping involves the pairwise perturbation
of genes (e.g., knockout, knockdown or overexpression) in order
to elucidate how one gene modulates the phenotype of the other.
However, the information of potential genetic interactions
between genes underlying QTLs in the field is limited. Hence,
precisely dissection of genetic components and molecular basis
in complex quantitative traits is important to unlock the full
potential for breeding elite varieties for sustainable agriculture by
rational design (Qian et al. 2016).

Here, we constructed a single-gene resolution map using a
large rice F2 population containing 3756 individuals genotyped by
sequencing. Larger population greatly enhanced the power to
detect additive QTLs, dominant QTLs and QTL–QTL interactions,
and significantly increased the proportion of captured genetic
variance of seven yield-related traits. Attractively, three large-
and moderate-effect QTLs were directly targeted to specific
causal genes. The contributions of genetic interactions for pheno-
typic variance were also investigated in detail. Our method
provides an efficient strategy for comprehensively dissecting
genetic architecture and rapidly mapping causal genes underly-
ing QTLs, and will accelerate crop breeding.

Materials and methods
Planting and phenotyping
A large F2 population consisting of �5000 plants were generated
from a cross of two rice elite varieties, Oryza sativa subsp. indica/
xian Zhenshan 97 (ZS97) and Minghui 63 (MH63). F2 seeds were
germinated and planted in the experimental fields in LingShui,
China (at N 18.32�, E 110.01�) in the summer of 2015. All the F2

plants were grown in the consecutive farmland with well-
distributed soil status in uniform condition. Plant height (PH) was
measured from the soil surface to the apex of the longest leaf.
Heading date (HD) was recorded daily as the number of days
from sowing to the observation of first inflorescences that
emerged above the flag leaf sheath. The grain length (GL), grain
width (GW), and length-width ratio (LWR), were measured from
�300 fully filled grains using SC-E software (Hangzhou Wanshen
Detection Technology Co., Ltd.). Yield per plant was obtained by
weighting all fully filled grains of each F2 plant.

Sequencing, genotyping, and bin-map
construction
Genomic DNA was extracted from the fresh leaf tissues using a
modified SDS-based extraction method (Sika et al. 2015).
Sequencing libraries were constructed as described by Elshire
et al. (2011). Genomic DNA was digested using restriction endonu-
clease DpnII or ApeKI. Every 96 samples were barcoded and
pooled into one library. After size selection and purification, li-
braries were sequenced on Illumina platform.

For calling single-nucleotide polymorphism (SNP) from paren-
tal genomes, we used MUMmer (Delcher et al. 2002) to align geno-
mic sequence of ZS97 (ZS97RS2) and MH63 (MH63RS2) (Zhang
et al. 2016), and used “delta-filter” command to filter the

alignment results. In total, 1,300,156 SNPs between ZS97RS2 and
MH63RS2 were identified by using the “show-snp” command. For
calling SNP from the F2 population, the de-multiplexed raw se-
quencing reads were aligned against the parental genome
ZS97RS2 and MH63RS2 by using of BWA software (Li and Durbin
2009), respectively. Potential SNPs were identified by using of
SAMtools (Li et al. 2009) with the “mpileup” command. A candi-
date SNP site should be bi-allelic in F2 population and satisfied
with the following criteria: (i) only two type nucleotides presented
on the position; (ii) the two nucleotides were already identified
between parental genomes; (ii) minor allele frequency should be
>5%; (iv) the SNP site was detected in more than 5 independent
F2 plants. A total of 404,643 high-confident SNPs were identified
at last. For genotyping, we used an approach combining the
“sliding window” (Huang et al. 2009) and Bayesian inference (Li
2011) method (Supplementary Figure S2). Finally, 3756 individu-
als remained after removing individuals with too few SNPs or too
many ambiguous genotypes. Then the genotypic data of each F2

individual were combined together for bin map construction with
100 kb intervals (Supplementary Figure S2C). The genetic linkage
map was constructed from the recombination bins serving as ge-
netic markers using Haldane’s equation of the R/qtl package
(Broman et al. 2003). The recombination rate (cM/Mb) was esti-
mated using a 400 kb window size with a step size of 200 kb. The
recombination hotspots were identified using 1000 times permu-
tation test with the null hypothesis that every genomic region
has an equal chance of recombination (Pan et al. 2016). The signif-
icance threshold (a) was obtained at false discovery rate (FDR)
<5%.

Power calculations
We calculated statistical power (1-b) for population sizes of 100,
500, 1000, and 4000 individuals using the “power.t.test” function
in R (R Core Team 2019). Power was estimated over a range of ef-
fect sizes, where effect size was calculated as the percentage of
phenotypic variance explained by a single additive QTL, domi-
nant QTL, or QTL–QTL interaction. To correct for multiple testing
over thousands of markers, genome-wide significance threshold
(a) of P< 2.7� 10�3, P< 1.6� 10�3, and P< 9.7� 10�5 were used for
declaring additive QTL, dominant QTL, and QTL–QTL interaction.
These thresholds were chosen based on FDR <5%.

Decomposing genetic components
The relative contributions of additive, dominance, and genetic in-
teraction effects in the F2 population were estimated using a mul-
tivariate linear mixed model. The model can be written as:

y ¼ bXþ Zaþ Zdþ Zaa þ Zadþ Zddþ e

where y is a vector of observed phenotypic values for n F2 plants.
b is a vector of estimated fixed effect coefficients, X is an inci-
dence matrix of fixed effects. Z is an incidence matrix for random
effects. a, d, aa, ad, and dd are the vectors of additive, dominance,
additive-by-additive, additive-by-dominance, and dominance-by-
dominance effects. e is a vector of residuals. These genetic effects
are assumed to be normally distributed with mean zero and
variance-covariance as follows:

a � Nð0; r2
aAÞ; d � Nð0; r2

dDÞ; aa � Nð0; r2
aaA8AÞ; ad

� Nð0; r2
adA8DÞ; dd � Nð0; r2

ddD8DÞ; and e � Nð0; r2
EVInÞ

The variance structure of the phenotypes is V(y) ¼ r2
aZAZ0 þ

r2
dZDZ0 þ r2

aaZA8AZ
0 þ r2

adZA8DZ0 þ r2
ddZD8DZ0 þ r2

EVIn. A and D
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are additive and dominance relationship matrices. A8A, A8D, and
D8D are interaction relationship matrices. r2

a and r2
d are additive

and dominant genetic variance captured by bin markers. r2
aa, r2

ad,
and r2

dd are additive-by-additive, additive-by-dominance, and
dominance-by-dominance genetic variance captured by pairwise
combinations of bin markers. In is n� n identity matrix, r2

EV is the
error variance. Variance components were estimated using
“mmer2” function of R package Sommer (Covarrubias-Pazaran
2016) and custom R code. Standard errors of variance component
estimates were calculated as the square root of the diagonal of
the Fisher information matrix from the iteration.

Mapping additive and dominant QTL
First, genotypes were re-coded as follows:

G2

G1

G0

2
4

3
5 ¼ 1 0

0 1
�1 0

2
4

3
5 a

d

� �

where Gk denotes the genotypic value of the bin marker. The
value of k (k¼ 0, 1, 2) stands the genotype for homozygous MH63,
heterozygous and homozygous ZS97, respectively. a and d denote
the additive and dominance effects of the bin marker, respec-
tively.

For each trait, the above multivariate linear mixed model was
fitted. The additive QTL were mapped using a forward stepwise
procedure described by Bloom et al. (2015). Such approach
increases power to detect additive QTL by controlling for genetic
contributions from additive effects of other loci, dominance
effects, and interaction effects (Yang et al. 2014). The 1-dimen-
sional LOD (logarithm of odds) score for each marker were calcu-
lated according to the equation LOD ¼ – n[ln(1 � r2)/2ln(10)],
where r is the Pearson correlation coefficient between the geno-
types at the marker and BLUP residuals. BLUP residuals were cal-
culated by subtracting the BLUPs for the additive effects of other
loci, dominant effects, and pairwise interactions from the pheno-
types. To estimate significance empirically, the thresholds were
chosen based on FDR <5% by using of 1000 times permutation
test. Confidence intervals for detected additive QTL were deter-
mined at 1.5 LOD drop using the “lodint” function in R/qtl pack-
age (Broman et al. 2003). The candidate gene underlying each QTL
was inferred based on funRiceGenes database (Yao et al. 2018). To
estimate the fraction of additive variance captured by detected
additive QTLs, the model y ¼ bX þ Za þ e was fitted, where a was
calculated from the relationship matrix of individuals only at the
additive QTL peak markers (AQTL) for the given trait, such that a
� N(0, r2

AQTL
AQTL) and e � N(0, r2

EVIn).
Similar approach was applied for mapping dominant QTL

based on BLUP residuals for controlling remaining genetic effects.
The fraction of phenotypic variance explained by each dominant
QTL was also estimated as above. The fraction of dominant vari-
ance captured by detected dominant QTL was estimated by fit-
ting the model y¼ bX þ Za þ Zd þ e, where d was calculated from
the relationship matrix of individuals only at the dominant
QTL peak markers (DQTL) for the given trait, such that d � N(0,
r2

DQTL
DQTL).

Mapping QTL–QTL interactions
To increase computational efficiency, the marker set was re-
duced by selecting one marker per centimorgan on the genetic
linkage map using the “pickMarkerSubset” function in R/qtl pack-
age (Broman et al. 2003). The genotypes of each pair of markers
were coded as follows:

G22

G21

G20

G12

G11

G10

G02

G01

G00

2
6666666666664

3
7777777777775

¼

1 0 0 0
0 1 0 0
�1 0 0 0
0 0 1 0
0 0 0 1
0 0 �1 0
�1 0 0 0
0 �1 0 0
1 0 0 0

2
6666666666664

3
7777777777775

aa12

ad12

ad21

dd12

2
664

3
775

where Gkl denotes the genotypic value of the genotype whose first
marker is coded as k and the second as l (k, l¼ 0, 1, 2). aa, ad, and
dd denote the additive-by-additive, additive-by-dominance, and
dominance-by-dominance interaction effects. The similar for-
ward stepwise procedure was used for mapping QTL–QTL inter-
actions by controlling for genetic contributions from the additive
and dominant genetic variance (Bloom et al. 2015). The QTL–QTL
interactions were detected either between all pairs of markers
(full-genome scan) or only between pairs where one marker cor-
responds to a significant additive or dominant QTL (marginal
scan). Theoretically, full-genome scan can detect a wider range
of interactions, but marginal can have higher power due to a re-
duced search space. LOD scores for interactions were calculated
for all pairs of markers as LOD ¼ [– n(ln(1—r2)/2ln(10))], where n is
the number of F2 individuals with phenotypic values, and r is the
Pearson correlation coefficient between the genotypes at pairs of
markers separated by at least 10 cM and the BLUP residuals from
the additive and dominant model as phenotypes. FDR at different
LOD thresholds was calculated by dividing the number of peaks
obtained from 1000 times permutations of F2 individual identities
by the number of peaks observed in the real data. The statistical
significant QTL–QTL interactions were extracted at a threshold of
FDR <5%. To estimate the fraction of interaction variance cap-
tured by significant QTL–QTL interactions, we fitted the model y
¼ bX þ Za þ Zd þ Zaa þ Zad þ Zdd þ e, where aa � N(0,
r2

AQTL �AQTL
AQTL8AQTL), ad � N(0, r2

AQTL�DQTL
AQTL8DQTL), and dd � N(0,

r2
DQTL�DQTL

DQTL8DQTL). r2
AQTL �AQTL

, r2
AQTL�DQTL

and r2
DQTL�DQTL

are fraction of
phenotypic variance captured by various additive-by-additive,
additive-by dominant and dominance-by-dominance interac-
tions, respectively.

Targeted sequencing and mapping causal genes
A candidate region covering �300 kb intervals around the QTL
peak was selected for sequencing and genotyping
(Supplementary Figure S7). First, the targeted loci of recombi-
nants were amplified by using primary PCR with a pair of locus-
specific primers (Supplementary Table S2) with common linker
sequences (50-ggagtgagtacggtgtgc-30 and 50-gagttggatgctggatgg-30)
added at the 50 end. Then secondary PCR was performed to add
individual-specific barcode and common adaptor sequences. SNP
calling and genotyping at each candidate locus were accom-
plished as above (Supplementary Figure S8) All phenotypic values
were normalized to mean 0 and variance 1. For each candidate
region, mapping causal genes were performed by pairwise com-
parison of candidate loci with all other loci using a modified
MATLAB scripts (She and Jarosz 2018). For each comparison be-
tween loci i and j, we used one-way ANOVA analysis followed by
Tukey-Kramer multiple comparisons test to estimate the null hy-
pothesis (H0) that locusi co-segregated with causal gene and the
locusj did not (Supplementary Figure S9, A and B). We also esti-
mated the alternative hypothesis (H1) that locusj co-segregated
with causal gene and the locusi did not. If the candidate locusi

co-segregated with causal gene, swapping the genotypes of candi-
date locusi would lead to significant phenotypic change (such as

L. Feng et al. | 3



first column vs sixth column, third column vs seventh column in

Supplementary Figure S9A). Otherwise, if the candidate locusj

co-segregated with causal gene, significant phenotypic change

would be observed between first column and fourth column, or

between third column and fifth column in Supplementary Figure

S9A. For each candidate locus, the probability of the most likely

alterative hypothesis [max(H1)] constituted the primary metric

for significance (Supplementary Figure S9C). Here, we defined

causal score ¼–log10[max(H1)] for each candidate locus. The can-

didate locus with the largest causal score indicated most likely

co-segregated causal gene for the mapped QTL (Supplementary

Figure S9D).

Inferring and analyzing genetic interaction
networks
By visualizing the 40 epistatic loci as nodes and the interactions

between them as edges, a complex genetic interaction networks

were constructed (Figure 4A and Supplementary Figure S12A).

Here, QTLs interacting with four or more other loci were defined

as hub QTLs. We estimated the difference in the phenotypic vari-

ance between individuals that carry alternative alleles at the

interacted loci using a double generalized linear model (DGLM)

(Smyth 1989). We fitted the DGLM with linear predictors for both

mean and variance as y � N(l 1 þ Xb1, el 2þ Xb2 ) using the R pack-

age dglm where y is the phenotypic value, X is the genotype

(coded as 0 and 1), b1 is the effect on the mean and b2 is the effect

on the variance. b1 describes difference in mean, and b2 describes

the fold difference in variance between the individuals with alter-

native alleles. We estimated the capacitating effects of the hub

QTLs using the method described by Forsberg et al. (2017).

Capacitating effects are defined as a locus in the genetic interac-

tion networks can hide, or reveal, the genetic effects of their

interactors. For each network containing a hub QTL, we split the

F2 individuals into three groups according to their genotype at

the hub QTL. The narrow-sense heritability in each group was

calculated using the formula: h2 ¼ r2
a/(r2

a þ r2
d þ r2

aa þ r2
ad þ r2

dd þ
r2

EV). We performed 1000 times permutation test to obtain the

significance of the difference (h2
ZS97–h2

MH63) between the two

groups. The significant difference was determined at a

Bonferroni-corrected multiple-testing threshold of 0.05/

3� 0.0167. Hub QTL with significant difference in h2 was defined

as a genetic capacitor. The average phenotypes were estimated

for each of the 34 ¼ 81 possible combinations of alleles for three

four-locus interaction networks. Each of these four-locus net-

works had a hub QTL connected with three other interacting loci

by pairwise interactions. If the hub QTLs were connected to more

than three other loci in the interaction network, we only kept the

loci with the strongest statistical interaction with the hub QTL.

For modeling the phenotypes of individual subpopulation, we fit-

ted two different models, including (i) additive effects only and

(ii) additive effects and pairwise interactions. The bias (estima-

tion errors) of each model was evaluated using tenfold cross-

validation. Within each of the 81 subpopulations, estimation

errors were calculated as e¼ y – ŷ. Here, y is the actual phenotype,

ŷ is the estimated phenotype in each round cross-validation. t-

test was used to determine whether e was significantly deviated

from 0 at a Bonferroni-corrected multiple-testing threshold of

0.05/81� 6.17� 10�4. The replicated 10-fold cross-validation (Cui

et al. 2020) was used for phenotypic predictions with different

combinations of various genetic components by use of QTL peak

markers or all markers in genome, respectively.

Results
Construction of a genetic linkage map with
single-gene resolution
A large F2 population from a cross between two elite rice ZS97
and MH63, was generated. In order to genotyping this large popu-
lation cost-effectively and quickly, the genotyping-by-sequencing
(GBS) method was applied. All F2 individuals were sequenced
using Illumina platform with �0.35� coverage for each
(Supplementary Figure S1A). A total of 404,643 high-confident
SNPs (>1 SNP per 10 kb on average) that densely distribute across
the whole genome were identified (Supplementary Figure S1B).
Using a “sliding-window” approach, highly reliable genotypes
from 3756 F2 individuals were called (Supplementary Figure S2).
The proportion of three genotypes (ZS97, heterozygote, and
MH63) was consistent with the expectation ratio of 1: 2: 1 across
the whole genome. The total distance of the constructed genetic
linkage map was 1586.2 cM, �0.46 cM per bin marker. The length
of bin markers ranged from 100 kb to 2.3 Mb, with a mean of
111.1 kb. The recombination rate was �3.65 cM/Mb, and recombi-
nation hotspots were observed on chromosomes 1, 2, 3, 4, 7, 9, 11,
and 12 (Supplementary Figure S3B). There are 107,206 crossovers
in total, �29.46 crossovers per F2 individual on average
(Supplementary Figure S3A). Scanning the 12 chromosomes with
a 100-kb window revealed a median value of 27.86 crossovers and
15.54 genes per 100 kb (equal to 75.62 crossovers and 41.79 genes
per cM), indicating that the constructed genetic linkage map
reaches to a single-gene resolution (27.86/15.54� 1.79 crossovers
per gene) (Figure 1, A and B).

Dissection of genetic components and mapping
QTLs for agronomic traits
Grain yield and its related agronomic traits of the large F2 popula-
tion were investigated, showing a distribution of typical complex
quantitative traits (Supplementary Figure S4). The multivariate
linear mixed model was used to estimate additive effects, domi-
nance effects, and pairwise interactions for trait variation. We
found that moderate to large proportion of trait variation (41.55%
to 73.04%), contributed from genetic components, were detected
for PH, HD, GL, GW, and grain LWR, and about 30% for grain yield
per plant (YD), but only 7.76% for tiller number (TN) (Figure 1C).
Additive genetic variance was the most abundant genetic compo-
nent, ranged from 4.58% (TN) to 67.81% (LWR), with an average of
44.36% for all seven agronomic traits. Dominant genetic variance
was the secondary abundant genetic component, ranged from
0.80% (TN) to 6.00% (GL), with an average of 2.46%. Pairwise ge-
netic interactions were relatively rare, with an average of 2%. HD
has the largest additive-by-additive effects (2.57%), while PH and
TN have larger dominance-by-dominance effects (2.93% and
2.39%). Additive-by-dominance effect was only detected in YD
(1.18%) and GL (0.92%). These results showed that additive effects
are predominance component and genetic interactions are signif-
icant but much minor component in explaining variance of rice
grain yield and its related traits.

Our simulations suggested that larger population sizes provide
higher statistical power and more accuracy to detect additive
QTL, dominant QTL, and QTL–QTL interactions, especially for
QTL with small effect size (Supplementary Figure S5A). For in-
stance, we have 90% power to detect an additive QTL that
explains 0.24% of phenotypic variation, a dominant QTL that
explains 0.28% of phenotypic variation and a pairwise QTL–QTL
interaction that explains 0.36% phenotypic variation with a popu-
lation size of 4000. Indeed, we identified 162 additive QTLs, with
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an average of 23.14 additive QTLs per trait (ranged from 10 to 34)

(Figure 1D, Supplementary Table S1). A clear genetic architecture

of a few large- to moderate-effect QTLs plus many minor-effect

QTLs was observed. For example, the largest QTL on chromo-

some 3 explained 46.90% of phenotypic variance of GL, while the

others 27 QTLs totally explained 19.32% of phenotypic variance

(ranged from 0.05% to 4.61%) (Supplementary Figure S6A). One or

two moderate-effect QTLs (explained 8.29%–22.51% phenotypic

variance) plus many minor-effect QTLs (explained 1.57% pheno-

typic variance on average) were identified for HD, PH, and YD.

Except for TN, only a few minor-effect QTLs were detected,

explained 0.28%–0.98% of phenotypic variance. These additive

QTL captured an average of 94.45% of the estimated additive ge-

netic variation (Figure 2A). Twenty-six significant QTL with domi-

nance effects were identified, explained 0.54% phenotypic

variance per locus on average (Figure 1D, Supplementary Figure

S6B). Interestingly, all of them overlapped with the identified ad-

ditive QTLs. These 26 loci explained 61.26% of the estimated

dominance genetic variation (Figure 2B). Moreover, we identified

30 pairwise genetic interactions (margin scan, “see Materials and

Methods”) (Supplementary Table S1), including 16 additive-by-

additive interactions, 2 additive-by-dominance interactions, and

12 dominance-by-dominance interactions. These genetic interac-

tions explained few phenotypic variance with 0.19% on average.

One relative strong interaction was identified on chromosome 6,

explained 0.90% of the phenotypic variance for HD

(Supplementary Figure S6C). The pairwise interactions captured

84.51% of the estimated genetic interactions in total (Figure 2C).

In summary, genetic architecture for seven agronomic traits in

our study consist of a few large- to moderate-effect additive

QTLs, many minor-effect additive and dominant QTLs, and

minor-effect QTL–QTL interactions. The identified QTLs and ge-

netic interactions captured majority of the estimated heritability

in this large F2 population.

Mapping causal genes
In this study, three large- and moderate-effect QTLs (phenotypic

variance explained > 15%) was mapped to 300–500 kb when the

1.5 delta logarithm of the odds (DLOD] was used to define the sta-

tistical boundaries (Supplementary Table S1). But such confi-

dence intervals in rice genome contain at least dozens of genes,

causing failure in identification of the causal gene directly. This

is likely due to a relative low marker density by using GBS

method and very rough determination of recombinant break-

points by using the 100-kb sliding window for constructing link-

age map. To resolve these, we developed a multiplex high-

throughput targeted sequencing method to increase local marker

density and determine the recombinant breakpoints more pre-

cisely (Supplementary Figures S7 and S8). The most likely causal

gene was identified by using one-way ANOVA analysis followed
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by Tukey-Kramer multiple comparisons test in the confidence in-
terval (Supplementary Figure S9).

The pleiotropic QTL, qHD6-2, was mapped to 400-kb on chro-
mosome 6, and explained 22.51%, 8.86%, and 8.29% phenotypic
variation for HD, PH, and YD, respectively (Figure 3A,
Supplementary Table S1). Among the 3756 F2 plants, 73 F2 plants
harbored meiotic crossovers in this 400-kb region. Eleven markers
relative evenly distributed in this candidate gene region were
designed and genotyped in these 73 recombinants by using tar-
geted sequencing method (Supplementary Figure S8 and Table
S2). Pairwise comparisons between each marker locus with all
other loci within this 400-kb region following by the Tukey-
Kramer multiple comparisons test showed that the marker
M9065137 had the highest causal score for HD (Figure 3B and
Supplementary Figure S9), indicating that M9065137 most likely
co-segregated with causal gene. Indeed, the MH63 allele of
M9065137 contains a 4-bp deletion in the second exon of Hd1
gene, and significant phenotypic differences were observed
among the three alleles at the Hd1 locus (Figure 3C). Hd1 which
highly expressed in leaf and inflorescence, was first mapped and
cloned by using a backcrossed population (BC3F3) from a cross be-
tween varieties Nipponbare and Kasalath (Yano et al. 2000). The
2-bp deletion in the second exon in Kasalath allele resulted in a
premature stop codon, causing later flowering under long-day
conditions. The 4-bp deletion of MH63 allele locates at the CCT
domain and causes a frame-shift mutation of Hd1, likely result-
ing in loss of Hd1 function and later flowering compared to the
ZS97 allele containing functional Hd1. Interestingly, the 4-bp de-
letion in MH63 allele is identical to that of Teqing, the parental
line of BC4F2 mapping population for cloning the HD QTL, Ghd6,
in recent study (Zhang et al. 2017) and shown that Hd1 was also
the causal gene of Ghd6. Hence, qHD6-2 is directly mapped to the
Hd1 gene by using our single-gene resolution map.

We have also directly targeted the causal genes of another two
large-effect QTLs, qGL3-1 and qGW5-2 (Supplementary Figure
S10). qGL3-1 explained 46.90% phenotypic variation of GL
(Supplementary Figure S10A and Table S1) and was mapped to
the GS3 gene (Supplementary Figure S10C). The peak marker
M17605373 happened to be a single nucleotide substitution of C
in ZS97 by A in MH63 in second exon of GS3 gene. This is a

common SNP in rice varieties, causing premature termination of
the predicted Gc protein and resulting in long grain, which was
observed in several previous studies (Fan et al. 2006; Takano-Kai
et al. 2009; Mao et al. 2010; Wang et al. 2016). qGW5-2 explained
31.94% phenotypic variation of GW (Supplementary Figure S10B
and Table S1). The marker M5431559, giving the highest causal
score, was close to the GW5 gene (Supplementary Figure S10D).
The ZS97 allele has a 950-bp deletion at the upstream of GW5, is
a common haplotype in indica varieties associated with decreased
expression of GW5, resulting in wide grain through brassinoste-
roid signaling pathway (Duan et al. 2017; Liu et al. 2017). To test
whether our approach can further resolving minor-effect QTL,
qGL3-3 explained 4.61% phenotypic variation of GL was analyzed
(Supplementary Figure S11). But the marker with high causal
score was not observed.

Construction of QTL–QTL interaction networks
Abundant genetic interactions were observed for seven agro-
nomic traits (Figure 1C). Most epistatic QTLs interacted with one
or two QTLs, whereas several epistatic QTLs interacted with
more than three QTLs (Supplementary Table S1). Such epistatic
QTLs including qHD6-2, qHD10-1, and qPH1-2, were defined as
hub QTLs. A genetic interaction network containing 13 statisti-
cally significant epistatic loci (QTLs) for HD was constructed us-
ing epistatic QTLs as nodes and the interactions between them as
edges (Figure 4A). The hub QTL, qHD6-2 (Hd1), contributed the
most abundant additive genetic variance (22.51%) in HD. The
phenotypic variance was twofold higher for individuals with the
homozygous ZS97 allele than for individuals with the homozy-
gous MH63 allele at this locus and its genetic variance heteroge-
neity is statistically significant (P< 3.9� 10�6; dglm, two-sided
test). By estimating the narrow-sense heritability (h2) separately
among individuals with the homozygous ZS97 and homozygous
MH63 alleles, we showed that much of the difference in pheno-
typic variation was due to genetic effects (h2

MH63 ¼ 0.1185 vs
h2

ZS97 ¼ 0.3990; P< 0.001, one-sided permutation test). Such
highly connected hub QTL was earlier described as genetic capac-
itor where one allele suppresses genetic contributions of other
interacting loci and the other allele uncovers them (Forsberg et al.
2017). The estimation of genetic variance heterogeneity at other
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two hub QTLs (qHD10-1 and qPH1-2) for HD and PH did not show
such capacitation effects.

Our large segregating population provides abundant genotype
and phenotype data for confidently estimating sufficient individ-
uals of four-locus genotype classes (subpopulations) (see
Materials and Methods). For the four-locus interaction network, the
3756 individuals were grouped into 81 (34) subpopulations, and
their phenotypic means and variances were estimated. At the ge-
netic capacitor (Hd1) locus, all subpopulations with canalizing
MH63 allele had consistent longer HD regardless of how many
flowering-suppressing alleles they had at the interacting loci.
In contrast, the subpopulations with capacitating ZS97 allele

increased HD as the number of flowering-suppressing alleles in-
creasing at the interacting loci (Figure 4B).

The additive variance contributed by the four-locus network
at Hd1 locus amounted to 28.52% of the total phenotypic variance
in HD. In the subpopulations where the MH63 or ZS97 alleles at
Hd1 locus were fixed, the four-locus network instead contributed
2.21% and 13.58% of the total phenotypic variance, respectively.
These results indicated that the phenotypic variance explained
by an epistatic locus not only depend on its own effect size and
allele frequency but also the allele frequencies at the interacting
loci in the network. Indeed, phenotypic prediction models con-
taining pairwise interaction effects captured more phenotypic
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variance and had less significant bias than models containing ad-
ditive effects only in four-locus network (Supplementary Figures

S12B, S13A, and S14) and whole-genome level (Supplementary

Figure S15).
With a large number of the cloned genes (QTLs) for HD in rice

(Supplementary Table S1), we observed that the constructed

QTL–QTL interaction network tended to be consistent with the
gene/protein interaction network established by the previously

studies (Yano et al. 2000; Song et al. 2012; Nemoto et al. 2016;

Zhang et al. 2019) (Figure 4C). For example, Hd1 physically inter-
acts with Ghd7 in vivo through binding of the CCT domain of Ghd7

to the transcription-activating domain of Hd1, then this complex

specifically binds to a cis-regulatory region in Ehd1 and represses
its expression only under long-day conditions. Thus, the con-

structed genetic interaction networks could not only dissect ge-
netic architecture but also provide evidences and candidate gene

loci for further exploring the underlying molecular mechanism of

complex quantitative trait.

Discussion
The statistical resolution of mapping genotype to phenotype is

fundamentally limited by genetic linkage between genes and ad-
jacent genes. The phenotypic effect of causal gene and adjacent

genes underlying QTLs can be distinguished in theory if a suffi-
cient number of individuals contain meiotic recombination be-

tween the genes. Traditional QTL cloning methods depending on

the genetic linkage of QTLs to visible makers are labor-intensive
and time-consuming. With the prevalence of NGS technologies,

several new methods have been established to accelerate the
works of genetic mapping and gene cloning. In this study, we de-

veloped a new genetic tool and successfully implemented this

tool to target specific causal genes of three large- and moderate-
effect QTLs rapidly and directly. Our tool has several notable

advantages compared with other methods. First, large population

size provided high detection power for mapping various genetic
components and QTLs, especially for minor-effect QTLs and
QTL–QTL interactions (Figure 2 and Supplementary Figure S5). By
comprehensively analyzing seven agronomic traits, we con-
cluded that additive effects contribute most of the phenotypic
variation, while dominance effects and genetic interactions have
smaller but significant contributions (Figure 1C). Second, combin-
ing a larger number of informative recombinants with targeted
sequencing technology, the specific causal genes underlying
QTLs were identified directly (Figure 3 and Supplementary Figure
S10). Whereas the mapping resolution of QTL-seq is �2 Mb
(Takagi et al. 2013), the mapping resolution of QTG-seq is �150 kb
(Zhang et al. 2019), the mapping resolution of GradedPool-Seq is
�400 kb (Wang et al. 2019). Third, our method only requires F2

generation from the first cross of two parent lines, reducing a lot
of time and works needed for constructing genetic population. In
addition, the cost-effectiveness of the entire process is relatively
high compared with traditional WGS method. Low sequencing
coverage of GBS combined with “sliding window” approach guar-
antee high-density genetic linkage map in a cost-effective way.
Moreover, our tool can map QTLs underlying multiple traits si-
multaneously in one population. For instance, a leaf sampled
once can be used multiple times. Overall, we present a time- and
cost-saving tool for dissecting the genetic and molecular mecha-
nisms underlying agronomic quantitative traits.

It is noteworthy that our strategy could be easily extended to
other species, such as maize and wheat. Although larger genome
size correlates with reduced recombination rate, most plant spe-
cies maintain a relatively constant number of protein-coding
genes (Tiley and Burleigh 2015; https://phytozome.jgi.doe.gov/).
Given the recombination rate and genome size of typical crops,
such as Zea mays, Triticum aestivum, Sorghum bicolor, Solanum lyco-
persicum, Solanum tuberosum, and Glycine max, 3000–5000 F2 plants
could provide sufficient recombination to obtain a single-gene
revolution linkage map. Taken maize as an example, 3000 F2
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plants could provide 75,000 crossovers in total, i.e., approximately
34 crossovers per Mb, giving nearly two folds of gene density (18.7
genes per Mb) in maize genome (Chen et al. 2014).

Our tool shows a relatively wide range of applications in QTL
mapping and cloning, but some limitations also exist. First, our
tool may not work very well for targeting causal genes of minor-
effect QTLs (Supplementary Figure S11). Second, the interaction
between QTL and environmental factors is widely present in
crops and other species. F2 population cannot distinguish pheno-
typic variation contributed from environmental changes.
However, these issues can be partially solved by transforming the
F2 population to permanent recombinant inbred (RI) population
using single seed descent method. The statistical mapping power
will be enhanced by removing partial dominance issue. Because
the phenotypic distinction of heterozygous genotypes to homozy-
gous genotypes is weaker than the phenotypic distinction of two
parental homozygous genotypes. Besides, QTL by environment
interaction can be evaluated precisely by planting RI population
in different environments (Groen et al. 2020).

Our study also suggests another useful strategy for precisely
characterizing the epistatic interactions in complex quantitative
traits. We note that a small contribution of genetic interactions
to phenotypic variance does not imply that interactions do not
exist (Figure 1C), or that they are not important for exploring the
complete genetic basis of specific traits (Mackay 2014; Zan and
Carlborg 2020). We showed that highly connected hub QTL could
acted as genetic capacitors, which can buffer or release cryptic
genetic effects of the interacting loci in the epistatic networks
(Figure 4B). The genes underlying epistatic QTLs also act epistati-
cally at the molecular level (Figure 4). Cryptic genetic variance
affects the prediction accuracy of traits in agricultural or medical
applications and long-term selection responses in populations
(Carlborg and Haley 2004; Carlborg et al. 2006). These epistatic
interactions are non-negligible for rational design in crop breed-
ing which aims to pyramid multiple superior alleles into one ideal
plant (Qian et al. 2016; Wei et al. 2021). Moreover, several studies
already showed that epistatic interactions play a more important
role than dominance effects for grain-yield heterosis in wheat
(Jiang et al. 2017; Boeven et al. 2020).

ZS97 and MH63 are the parents of the elite hybrid Shanyou 63,
which has been the most widely cultivated hybrid in China.
Heterotic pattern investigations of the detected 162 QTLs under-
lying seven yield-related traits showed that numerous loci,
mostly with partial dominance effects for heterozygous geno-
types and more proportion of superior alleles from male parental
line (Supplementary Figure S16 and Table S1), are the major
causes of strong heterosis in hybrid Shanyou 63. These results
are consistent with previous study in rice that the accumulation
of superior alleles with partial dominance is an important con-
tributor to the heterosis (Huang et al. 2015, 2016).

With the decline in high-throughput sequencing, studying
large segregating population for QTL mapping and cloning will be
more and more feasible in crops. We believe our genetic tool will
promote deciphering the genetic mechanisms of complex quanti-
tative traits and accelerating crop breeding.
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