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Healthy aging is usually accompanied by changes in the functional modular organization

of the human brain, which may result in the decline of cognition and underlying brain

dysfunction. However, the relationship between age-related brain functional modular

structure differences and cognition remain debatable. In this study, we investigated the

age-associated differences of modules and hubs from young, middle and old age groups,

using resting-state fMRI data from a large cross-sectional adulthood sample. We first

divided the subjects into three age groups and constructed an individual-level network for

each subject. Subsequently, a module-guided group-level network construction method

was applied to form a weighted network for each group from which functional modules

were detected. The intra- and inter-modular connectivities were observed negatively

correlated with age. According to the detected modules, we found the number of

connector hubs in the young group was more than middle-age and old group, while

the quantity of provincial hubs in middle-age group was discovered more than other two

groups. Further ROI-wise analysis shows that different hubs have distinct age-associated

trajectories of intra- and inter-modular connections, which suggests the different types

of topological role transitions in functional networks across age groups. Our results

indicated an inverse association between functional segregation/integration with age,

which demonstrated age-associated differences in communication effeciency. This study

provides a new perspective and useful information to better understand the normal aging

of brain networks.

Keywords: age, resting-state functional magnetic resonance imaging, brain functional network, module, hub

INTRODUCTION

Population aging is a widespread worldwide phenomenon and has also been one of the research
hotspots in the neuroimaging field (Ferreira and Busatto, 2013). Aging leads to a large number
of psychological, biological, physical, and chemical changes (Huang et al., 2015), resulting
in the degradation of working memory, executive function, and processing speed across the
lifespan (Bäckman et al., 2006; Raz and Rodrigue, 2006; Bishop et al., 2010; Yao et al., 2012).
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Growing evidence indicates that age is related to the altered
configuration of large-scale functional brain networks, which
may have implications for cognitive performance (Onoda et al.,
2012; Ng et al., 2016).

In recent years, resting-state functional magnetic resonance
imaging (rs-fMRI) has become a powerful tool to explore
alterations in the aging brain (Cao et al., 2014; Tian et al., 2016;
Chen et al., 2019). A common finding among rs-fMRI studies
has indicated that the human brain is functionally organized into
an efficient network architecture (Sporns et al., 2005). Studies
examining the topology of brain network have indicated several
characteristics of an efficient architecture, including the modular
architecture and a small number of highly connected hubs
(Van Den Heuvel and Pol, 2010; Van den Heuvel and Sporns,
2013a). Aging has been shown to affect the functional modular
organization and functional hubs of the human brain (Tomasi
and Volkow, 2012; Bertolero et al., 2015; Schlesinger et al., 2017).
In the brain functional networks, some subsets of nodes may
be highly inter-connected, effectively forming several clustered
modules, which represent regions of high correlation in the
brain (Moussa et al., 2012). Previous studies have indicated that
each module of functional networks is associated with specific
cognitive/behavior function (Bertolero et al., 2015). Chen et al.
found a decrease in the quantity of modules across age groups,
consisting with the evidence of age-related modularity decline
(Chen et al., 2019). In a longitudinal study, Chong et al. found
that the distinctiveness of modules was negatively correlated
with age, especially in higher-order cognitive modules (Chong
et al., 2019). Previous research has demonstrated that many
hubs with numerous connections disappear while some specific
age-associated hubs appear during aging (Simkó et al., 2009).

The brain modular architecture allows for functionally
specialized processing (i.e., functional segregation) as well as
the integration of information (i.e., functional integration) (Sun
et al., 2012). Functional segregation refers to highly clustered
connections within modules while functional integration refers
to connections between modules that facilitate the integration
of information from different modules (Damoiseaux, 2017).
Previous works have manifested that age is associated with
reduced network segregation (Grady et al., 2016; Damoiseaux,
2017; King et al., 2018). However, some debates exist about the
integration of complex brain networks. Previous work has shown
that aging is related to the global decrease in integration (Chong
et al., 2019; Oschmann and Gawryluk, 2020). On the contrary,
some research has found that aging is accompanied by the
increase of global measures of integration, i.e., global efficiency
(Chan et al., 2014; Yao et al., 2019). Moreover, other studies have
declared no age-associated alterations in global efficiency (Cao
et al., 2014; Geerligs et al., 2015).

To date, age-related differences in functional modular
organization have mainly been inferred from the comparisons of
younger vs. older adults. More detailed age information is not
considered due to the lack of subdivision of age groups across
lifespan, resulting in insufficiently detailed age-related differences
in the results. Thus, studies including wide age ranges are needed
to fully characterize the aging process. Besides, the difference
of modular structure is usually measured by the comparison

among average networks formed over large groups. However, the
modular structure not only varies across the lifespan but also
exhibits individual differences regardless of age (Puxeddu et al.,
2020). Therefore, averaging networks across large populations
probably results in the loss of essential information. To avoid this,
it is necessary to retain the possible unevenness of the network
and greatly hold the role played by individuals at the group in the
construction of group-level networks.

To solve the aforementioned problems, the present research
investigated age-associated differences of modules and hubs
using resting-state fMRI data from the Southwest University
adult lifespan database (Wei et al., 2018). After dividing the
dataset into young, middle, and old age groups, we used a
module-guided group-level network construction method to
generate weighted group-level networks and explore the modular
structure of each group obtained from group-level networks. The
current study aims to (1) delineate the age-associated differences
of functional modular organization in functional networks
from three age groups, and (2) explore the potential driving
forces related to aging with clear evidence by using network
topological analysis. According to the group-level modular
structure, we detected hubs (the nodes that have particularly
high connectivity to other nodes) and investigated different age-
associated differences of both provincial hubs (the regions that
play a highly central role when connecting regions in the same
module) and connector hubs (the regions that play a highly
central role when connecting different modules), including
differences in spatial distribution and quantity. We hypothesize
that (1) the age-associated differences of modular organization
may be related to specific age-related network integration
and segregation; and (2) the spatial distribution and quantity
of functional hubs in three groups differs, representing their
different age-associated topological roles in functional networks.

MATERIALS AND METHODS

Participants
In this work, we used the Southwest University Adult Lifespan
Dataset (SALD) (Wei et al., 2018). The dataset collection was
approved by the Research Ethics Committee of the Brain Imaging
Center of Southwest University. There are no uniform standards
of age boundaries for the division of young, middle and old
adults. Previous studies applied different age boundaries due to
various datasets and research methods and we select the same
age boundaries as in previous studies (Sie et al., 2019) due to
the use of the same dataset. The dataset included 494 healthy
volunteers (187 males and 307 females, aged 19–80) in which 2
participants did not complete the resting-state scanning and 31
participants were excluded due to excessive head motion. The
remaining 461 participants were grouped into Young (19–34),
Middle (35–59), and Old (60–80) age groups (Sie et al., 2019),
with 170, 183, and 108 subjects in each group. Figure 1 showed
the distribution of males and females of the groups. Concerning
gender, no significant differences were detected between groups
using the chi-square test (p= 0.161> 0.05). Each participant gave
a written informed consent before the data collection.
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FIGURE 1 | The distribution of males and females in each group. The vertical

axis signifies the number of participants, and the horizontal axis represents the

age group. The blue bar and red bar represent male and female subjects.

Data Acquisition
All functional images were obtained from a 3.0-T Siemens
Trio MRI scanner (Siemens Medical, Erlangen, Germany). The
gradient echo-planar imaging (EPI) sequences were used for
resting-state fMRI data collection: slices = 32, repetition time
(TR)/echo time (TE) = 2,000/30ms, flip angle (FA) = 90◦,
field of view (FOV) = 220 mm × 220 mm, thickness =

3mm, slice gap = 1mm, and voxel size = 3.4 × 3.4 ×

4 mm3. During the resting-state MRI scan, participants were
asked to lie down, close their eyes, and rest without thinking
about any specific thing but to refrain from falling asleep. The
scan lasted for 484 s and acquired 242 volumes in total for
each subject. Besides, structural images were acquired to provide
an anatomical reference using the following magnetization-
prepared rapid gradient echo (MPRAGE) sequence: slices= 176,
TR/TE= 1,900/2.52ms, inversion time (TI)= 900ms, FA= 90◦,
FOV = 256 mm × 256 mm, thickness = 1mm, voxel size =

1 × 1 × 1mm3 (Sie et al., 2019).

Imaging Pre-processing
Using Data Processing Assistant Resting-State Fmri Advanced
Edition (DPARSFA; http://www.restfmri.net) (Chao-Gan and
Yu-Feng, 2010), the resting-state fMRI data were preprocessed.
Preprocessing steps included removing the first 10 volumes, slice-
timing, head motion correction, and realignment. Participants
with the maximum translation > 3mm, rotation > 3◦, and
mean frame-wise displacement (FD) > 0.3mm were excluded
(Spreng et al., 2016). Then the functional images were co-
registered to the corresponding T1-weighted images and were
normalized to Montreal Neurological Institute (MNI) space with
a resampling voxel size of 3 × 3 × 3mm3 resolution
(Wang et al., 2020). Resulting images were spatially smoothed
using a 6mm full-width half-maximum (FWHM) Gaussian
kernel, followed by temporal band-pass filtering (0.01–0.1Hz)
to reduce low-frequency drift and high-frequency noise (Van
Dijk et al., 2010). Given that global signal regression (GSR)
can disturb correlation coefficients (mainly the presence of
negative correlations) (Murphy et al., 2009; Wang et al., 2014)

and physiological noise (part of global signal) in the BOLD
signal is found related to age (Makedonov et al., 2013), we
applied GSR to reduce the effects of noise differences across
age groups on the estimation of correlation coefficient, and
restricted our explorations to positive correlation as in previous
studies (Cao et al., 2014; Chong et al., 2019). Finally, nuisance
signals representing head motion parameters, global signals,
white matter and cerebrospinal fluid signals were regressed out
from the data.

Construction of Brain Networks
The human Brainnetome atlas (Fan et al., 2016) was used to
parcellate the whole brain into 246 regions. For each subject,
the averaged resting-state fMRI time series were exacted in
each brain region, and the Pearson correlation was calculated
between the time series of 246 regions to obtain the functional
connectivity (FC) matrix. Thus, the FC network for each subject
was constructed. In prior studies, negative correlations between
brain regions were interpreted as an artifact of global signal
regression in Fox et al. (2009), Uddin et al. (2009), and Parente
et al. (2018). Recently, some researchers found a relationship
between anti-correlations and several biological/psychological
variables (Whitfield-Gabrieli et al., 2009; Chai et al., 2012; Wong
et al., 2012; Keller et al., 2015), but the biological basis to negative
correlations is still debatable. Since the biological meaning of
negative correlations is unclear and not well-understood (Chai
et al., 2012; Murphy and Fox, 2017), we set negative weights to
zero and all positive connections were kept (Wen et al., 2019).
The weighted individual-level FC networks are the basis for
subsequent experiments.

In this study, the method “Module-Guided Group-Level
Network Construction” was used to generate group-level
weighted networks and detect robust functional network
modules for three age groups (Wen et al., 2019), which took
advantage of the information of the detected individual-level
modular structures and utilized them as the basis to guide the
construction of FC network at group-level.

As shown in pipeline overview (Figure 2), the method
consists of three steps. Taking one group as an example:
First, the top 10% strongest positive connections for each
individual-level FC network were kept to remove weak
connections and to keep the sparsity of FC networks (Najafi
et al., 2016). We then used a complex network analysis
toolbox (Radatools, deim.urv.cat/∼sergio.gomez/radatools.php)
to detect the individual-level modular structure. By using this
toolbox, community detection can be implemented by the
optimization of modularity in complex networks, which allows
to use multiple heuristic algorithms in an iterative manner and
output the optimal partition with the highest modularity (Q).
The extremal optimization (Duch and Arenas, 2005), tabu search
(Arenas et al., 2008), spectral optimization (Newman, 2006),
fast algorithm (Newman, 2004) were combined to obtain the
optimal partition. However, some heuristics have a stochastic
behavior, thus several executions could lead to different optimal
partitions. To avoid the stochastic behavior of module detection,
we repeated the module detection to each individual-level FC
network for 100 times to obtain 100 modular partition results
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FIGURE 2 | Flowchart of brain network construction, including individual-level FC construction and the module-guided group-level network construction. First, we

detected modular partition for individual-level FC networks and converted each modular partition into a matrix. That is, if two nodes are detected in the same module,

the weight of the corresponding edge is 1, 0 otherwise. The modular partition matrices of each subject were averaged to obtain the individual-level “modular partition

probability” (MPP) matrix, where the weight of one edge represents the probability that the corresponding two nodes assigned to the same module. Second, a

group-level MPP matrix representing the module partition probability at group-level was generated by averaging all individual-level MPP matrices in the same group.

Third, by combining individual-level FC networks and different weighting methods (depending on the group-level MPP and thrl / thrh), we finally generated a

group-level FC network for the group.

for each participant, though the partitions may be different (Wen
et al., 2019). We converted each detected modular partition into
a “modular partition matrix.” That is, if two nodes are detected
in the same module, the weight of the corresponding edge is 1, 0
otherwise. After that, the 100 modular partition matrices of each
subject were averaged to obtain the individual-level “modular
partition probability” (MPP) matrix, where the weight of one
edge represents the probability that the corresponding two nodes
is assigned to the same module. Second, we constructed a group-
level MPP matrix representing the module partition probability
at group-level by averaging all individual-level MPP matrices in
the same group. Similar to individual-level MPP, the edges with
higher weight in group-level MPP means the corresponding two
nodes are more likely to be assigned to the same module, while
the edges with lower weight mean the corresponding two nodes
are more likely to be assigned to the different module. In other
words, the edges in the group-level MPP with higher weight
are more probably strong intra-modular connections, while the
ones that have lower weight are more likely to be inter-modular
connections. Third, based on the group-level MPP obtained from
the second step, we generated a MPP-guided group-level FC
network. We used two thresholds (ie., thrl and thrh) to divide all
edges in the group-level MPP matrix into three types. For each
type of edge, by combining individual-level FC networks and
different weighting methods, we finally generated a group-level
FC network for the group by referencing the work of Wen et al.
(2019). If the weight of one edge in the group-level MPP is greater
than thrh, the final weight of this edge is set to be the average
of the five highest weights of all individual-level FC networks in
this group on the same edge. Similarly, the final weight of the
edge is set to be the average of the five weakest weights on the
same edge of individual-level FC networks across all subjects, if
the edge in the group-level MPP is lower than thrl. For the edges

between thrl and thrh, we set the final weights to be the average
weights of all individual-level FC networks. In this experiment,
the thrl and thrh were set to 0.1 and 0.5, respectively. For detailed
information about thri (individual-level network sparsity), thrl
and thrh, please see section Threshold selection.

Module Detection From Group-Level
Network
The modular structures of three MPP-guided group-level
FC networks were detected with the same method used
for module detection at the individual-level. After repeating
module detection to each group-level network for 100 times,
a consensus clustering method (Bassett et al., 2013) was used
to obtain the group-level consistent modules (for avoiding
the stochastic behavior of module detection). Based on the
group-level modular structure, we calculated the mean intra-
and inter-modular connectivities across all modules for each
individual-level FC network in three age groups and evaluated
the relationship between age and network integration and
separation. The mean intra-modular connectivity was calculated
as the average FC strength of all intra-modular connections,
which reflected functional segregation. Similarly, the mean
inter-modular connectivity reflecting functional integration was
measured by the average FC strength of edges across modules.

After obtaining the mean intra- and inter-modular
connectivities of each individual-level FC network at all
age groups, we applied the general linear model (GLM) (Friston
et al., 1994) to describe the age-associated trajectories of intra-
and inter-modular connectivities. By using age as an independent
variable and the mean intra- and inter-modular connectivities
of each subject as dependent variables, the relationship between
age and functional segregation and integration of individual
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FC networks can be evaluated. The threshold for statistical
significance was defined as p < 0.05.

Hub Detection and Age-Associated
Trajectories of WD and PC
According to the group-level modular structure obtained from
section Module detection from group-level network, within-
module degree (WD) and participation coefficient (PC) were
calculated to evaluate the interactions within and between
different brain modules. WD measures the importance of a
brain region when connecting other regions belonging to the
same module (Guimera and Amaral, 2005). PC quantifies how
important a brain region is when linking with different modules
(Guimera and Amaral, 2005). Suppose a modular partition is
M = {mc|c = 1, . . . , C}. For a node i in module mc, WDi and
PCi were defined as:

WDi =
kimc

−kmc

δmc

(1)

PCi = 1−
C
∑

c=1

(

kimc

ki

)

(2)

where kimc
is the total FC strength connected to node i in module

mc. kmc and δmc are defined as the mean and standard deviation
of kimc

across all nodes in module mc. Besides, ki is the total FC
strength of the edges connected to node i.

Hubs are nodes of a network that are particularly highly
connected to other nodes (Tang et al., 2019). Hubs are critical
for the integration of information and efficient communication
in the brain, the disruptions of hub connections are related to
many manifestations of brain dysfunction (Bullmore and Sporns,
2012). An important approach to defining network hubs depends
on their roles in integrating network modules (Fortunato,
2010). Several studies have shown that hubs could be divided
into provincial and connector hubs based on their topological
positions in the network measured by WD and PC (Power et al.,
2013; Bertolero et al., 2015; Chong et al., 2019). PC divides nodes
into two categories—connector nodes with numerous global
edges connecting different modules and local nodes with many
local edges connecting regions within the module. Connector
nodes are considered to integrate information between modules
for efficiency information exchange while local nodes integrate
information within modules for specialized function (Cole et al.,
2013; Power et al., 2013). WD subdivides connector nodes
into “satellite connectors” and “connector hubs” that both have
high PC, whereas only connector hubs have high WD (greater
modular segregation). Similarly, local nodes are subdivided into
“peripheral nodes” and “provincial hubs” that both have low PC,
in which only provincial hubs have high WD (greater modular
integration) (Guimera and Amaral, 2005; Guimera et al., 2005,
2007). Thus, connector hubs should have both high PC and WD,
whereas provincial hubs have low PC and high WD (Wen et al.,
2019). By setting thresholds for WD and PC (thrWD and thrPC),
we detected hubs and divided them into provincial and connector
hubs from three group-level networks. Taking node i for example,

if WDi > thrWD and PCi > thrPC, the node is categorized as
connector hub, otherwise, if WDi > thrWD but PCi < thrPC, it is
identified as a provincial hub. In this experiment results, we only
exhibit the hubs when thrWD was set to 1.0 and thrPC was set to
0.55. For detailed information about thrWD and thrPC, see section
Threshold Selection.

After detecting hubs for each age group, we selected hub
regions detected in the middle-age group as regions of interest
(ROIs) and further calculated the WD and PC of the ROIs
across all subjects in three groups, for the reason that middle-
age is in the transition phase between brain development and
aging and can help understand age-related differences. GLM
was also applied to characterize age-associated trajectories of
WD and PC to investigate the emergence and disappearance of
provincial/connector hubs and its possible driving factors. Age
was used as an independent variable and the WD and PC of
each ROI as dependent variables to describe the age-associated
trajectories of WD and PC of these ROIs. The threshold for
statistical significance was set as p < 0.001 after false discovery
rate (FDR) correction.

Threshold Selection
In the group-level network construction, normalized mutual
information (NMI) (Alexander-Bloch et al., 2012) and
modularity (Blondel et al., 2008) differences were used as
evaluation indexes for the comparison. The NMI and modularity
are defined as:

NMI (A,B) =
−2

∑CA
i=1

∑CB
j=1 Nijlog(

NijN

Ni.N.j
)

∑CA
i=1 Ni. log

(

Ni.
N

)

+
∑CB

j=1 N.jlog(
N.j

N )
(3)

where A and B are module partitions of two networks, CA is the
number of modules in the partition A, Nij is the overlap between
A’s module i and B’s module j, N is the total number of nodes, Ni.

and N.j represent the total number of nodes in A’s module i and
in B’s module j, respectively. The NMI ranges from 0 to 1, NMI is
0 if the partitions are totally independent, and the value equals to
1 if the partitions are identical (Hinrich et al., 2016).

Q=
1

2m

∑

i,j

[

Aij−
kikj

2m

]

δ
(

ci,cj
)

(4)

where Aij is FC strength connecting the node i and j, m =
1
2

∑

ij Aij, ki represents the sum of FC strength connecting node i,
cj is the module that node j belongs to, δ (u, v) equals to 1 if u = v
and 0 otherwise. The modularity (Q) quantifies the strength of
segregation into different networks. High Q scores mean highly
modular networks, which contain segregated modules and fewer
inter-modular connections (Cohen and D’Esposito, 2016; Sporns
and Betzel, 2016).

To test the thri for individual-level network sparsity, we
changed thri from 0.05 to 0.15 with 0.01 as an increment. At
each setting, we detected the individual-level modular structure
and further constructed the group-level FC network for each
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group. Subsequently, we detected the corresponding group-level
modular structure and calculated its similarity to the result with
thri = 0.1 by using NMI in each group, respectively. As shown
in Supplementary Figure 1, the settings of thri shows similar
group-level modular structures (Wen et al., 2019). The thri used
in our study was set to 0.1, as in previous studies (Yeo et al., 2014;
Najafi et al., 2016; Wen et al., 2019).

To test the thrl and thrh for group-level MPP matrices, we
respectively set the thrl from 0.05 to 0.25 and thrh from 0.45
to 0.65 with a step of 0.05. For different combinations, after
re-generating group-level networks for three age groups, the
detected consistent modular structures were compared with that
constructed with thrl = 0.1 and thrh = 0.5 using NMI and Q in
each group. The changes induced by thrl and thrh are quite small
in three age groups (Supplementary Figure 2).

In hub detection, thrWD and thrPC have influence on the hub
classification. By fixing thrPC to 0.55 and varying thrWD from
0.8 to 1.1 with a step of 0.1, the hubs in each group did not
change a lot in the spatial distribution or quantity and thrWD

settings of hubs showed similar differences. Similarly, by fixing
thrWD to 1.0 and increasing thrPC from 0.5 to 0.65 with 0.05 as
an increment, the impacts of thrPC on the hub assessment were
also tested. Although the number of connector hubs decreased
as thrPC increased, the setting of thrPC has no effect on the
difference in two types of hubs’ quantity between three age
groups (Supplementary Figure 3). We thus took the median of
the range as thresholds, respectively (Wen et al., 2019).

RESULTS

Group-Level Networks and Modular
Structures
According to the group-level network construction method
introduced in section Construction of Brain Networks, a group-
level network was generated for each age group. For each
group-level network, the same method was used as described in
section Module Detection From Group-Level Network to obtain
consistent modules. Three group-level FC networks and full
views of the modular structures across three groups are visualized
in Figures 3A,B. According to the detected modular structures of
three groups, we find the age-associated differences of modules.
In youth, the brain is separated into fourteen modules, of which
six modules are also observed in the middle-age group (covering
a major part of the occipital lobe, fusiform gyrus, and subcortical
areas). In terms of the middle-age group and old group, seven
modules are almost the same, which sit in the superior frontal
gyrus, superior temporal gyrus, insular gyrus and cingulate gyrus.
Brain regions belonging to different modules in the three age
groups are mainly located at the frontal lobe, temporal lobe
and parietal lobe (Figure 3C). It is observed that the number
of modules does not differ dramatically among the three groups
(Figure 3D).

Besides modular differences, we find age is negatively
correlated with mean intra-modular connectivity (adjusted R2 =
0.019, p= 0.002) and mean inter-modular connectivity (adjusted
R2 = 0.007, p = 0.039) (Figure 3E). Age-related effects on the

inter-modular FC are observed to be weaker compared with the
mean intra-modular FC.

Module-Guided Group-Level Networks
We evaluated the necessity of the individual differences when
constructing group-level network by comparing the MPP-guided
group-level FC network at each group with those generated
using the conventional (group-based FC average) method.
Subsequently, we used the same steps as in section Module
Detection From Group-Level Network to detect group-level
modular structures and compared results between two methods.

Derived from conventional method, three group-level FC
networks and full views of the modular structures are visualized
in Figures 4A,B respectively. The group-level networks based on
conventional method are observed more blurred than those from
MPP-guided method. The blurred group-level networks increase
the difficulty to detect modules and further lead to inconsistent
modular structures at group-level. Brain regions belonging to
different modules in the three age groups are mainly located at
the frontal lobe, temporal lobe and parietal lobe (Figure 4C). The
number of modules derived from conventional method is less
than those derived fromMPP-guidedmethod, and does not differ
dramatically among the three groups (Figure 4D). Based on the
conventional method, we find a negative correlation between age
and mean intra-modular connectivity (adjusted R2 = 0.00727,
p = 2.4e-9), but no correlation between age and inter-modular
connectivity is observed (Figure 4E). With the MPP-guided
method, we obtain more consistent modules and clearer modular
structure, which is more sensitive to the difference of age-related
mean inter-modular connectivity than conventional method.

Age-Associated Differences of Hubs in
Brain Functional Networks
Differences in the Quantity and Spatial Distribution of

Hubs
The spatial distributions of provincial and connector hubs
detected in three age groups are visualized in Figure 5A. We find
the total number of two types of hubs negatively correlated with
age, but the difference is not obvious (Figure 5B). Specifically,
the number of connector hubs in young group is more than
middle-age and old group, while the quantity of provincial hubs
in middle-age group is discovered more than other two age
groups. Interestingly, the ratio of hubs’ quantity between the left
and right hemispheres differs across three groups. The ratio of
hubs’ quantity of left hemisphere in the old group (i.e., 70.37%)
is larger than that in young (i.e., 53.33%) and middle-age (i.e.,
53.57%) group.

Besides, the spatial distribution of hubs differs greatly across
three groups. Based on a priori network partition (Thomas Yeo
et al., 2011), in the young age group, the hubs are mainly located
in the default mode network (DMN), sensorimotor network
(SN), and dorsal attention network (DAN). Different from young
age group, the hubs in middle-age group are widely distributed
in many subnetworks. In old age, hubs mainly concentrated
on the frontoparietal network and some higher-order cognitive
networks (Chong et al., 2019). Differernt from young group, the
provincial hubs in middle-age group newly appear in the inferior
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FIGURE 3 | Age-associated differences in functional brain networks across three groups derived from MPP-guided method, including (A) group-level weighted

networks, (B) modular structures (different colors represent different modules), (C) Brain regions belonging to different modules (young group vs. middle-age group

and middle-age group vs. old group), (D) number of modules, and (E) age-associated trajectories of the mean intra- and inter-modular connectivities.
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FIGURE 4 | Age-associated differences in functional brain networks across three groups derived from conventional method, including (A) average-based group-level

networks, (B) modular structures (different colors represent different modules), (C) Brain regions belonging to different modules (young group vs. middle-age group

and middle-age group vs. old group), (D) number of modules, and (E) age-associated trajectories of the mean intra- and inter-modular connectivities.
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FIGURE 5 | Age-associated differences in spatial distribution and the number of two types of hubs. (A) Spatial distributions of provincial (green) and connector hubs

(blue) across three age groups. The darker color indicates the hubs remaining in the three groups and the lighter color represents the hubs that are unique to the

specific group. (B) The number of provincial and connector hubs in three age groups.

frontal gyrus (IFG) and medioventral occipital cortex (MVOcC)
while the connector hubs disappear in some subregions such as
the orbital gyrus (OrG), paracentral lobule (PrG), and middle
temporal gyrus (MTG). Compared with the middle-age group,
the provincial hubs in old age disappear in the medioventral
occipital cortex (MVOcC) and some subcortical areas principally
while newly appear in the superior parietal lobule (SPL), orbital
gyrus (OrG), and postcentral gyrus (PoG). In addition, the
connector hubs in old age mainly disappear in the fusiform
gyrus (FuG) and superior parietal lobule (SPL) and appear in
the inferior temporal gyrus (ITG) as well as middle frontal gyrus
(MFG), in comparison to middle-age group.

Hubs’ Age-Associated Trajectories of WD and PC
In addition to the location and quantity differences of hubs, the
age-associated trajectories of WD and PC were further calculated
for each hub to quantify their roles in the modular topology.

The relationship between each of the two attributes and age
may represent some kind of conversion of hubs across three age
groups. For instance, the ROIs whose WD negatively correlated
with age are probably to convert from hubs to non-hubs since
hubs usually have high WD. On the contrary, if WD is positively
related to age, the ROIs might convert from non-hubs to hubs.
The ROIs with PC that are significantly positively correlated with
age possibly convert from provincial hubs to connector hubs for
the reason that connector hubs usually have high WD as well as
PC while the ROIs’ unchanged high WD may indicate that these
regions were provincial hubs before. For the ROIs whoseWD and
PC both have no correlation with age, they are likely to maintain
the state of provincial hubs or connector hubs (Wen et al., 2019).

Based on the thoughts above, taking the hubs in the middle-
age group as the ROI, the three groups of young, middle-age, and
old were divided into Young - Middle age stage and Middle -
Old age stage for comparison and discussion. We classified the
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ROIs into five categories combined with the relationship between
age and WD/PC at Young - Middle age stage (Figure 6, Table 1)
and divided the ROIs into four categories at the Middle - Old
age stage (Figure 7, Table 2). For each category, one brain region
was selected and the age-associated trajectories of its WD and PC
are plotted.

As for the Young - Middle age stage, of all 28 ROIs, 25%
only have a positive correlation between age and WD (the first
category), which indicates these regions play an increasingly
important role in their within-modular connections. Compared
with young, most of the regions in middle-age group convert
from non-hubs to hubs, which are mainly located at inferior
frontal gyrus and right superior frontal gyrus (Figure 6A). As
shown in Figure 6B, three regions of 28 ROIs only have a negative
correlation between age and PC (the second category), which play
an increasingly weak role in inter-modular connections. Most of
these regions are provincial hubs in both young and middle-age
groups, which sit in superior temporal gyrus. The third category
consists of two ROIs, whose PC are positively correlated with age.
Similar to the second category, the two regions are connector
hubs in both young and middle-age groups which exhibit an
increasingly important role in inter-modular connections with
the location in superior parietal lobule (Figure 6C). Figure 6D
shows one region whose WD and PC both have a positive
correlation with age (the fourth category). The region converts
from non-hub to connector hub and has an increasingly effect
on both within-modular and inter-modular connections, which
sits in the right cingulate gyrus. The last category includes most
regions (53.6%) whoseWD and PC both have no correlation with
age. The role of these hubs in young is almost the same as in
middle-age (provincial hubs or connector hubs). These regions
are widely distributed, which are mainly located at the inferior
parietal lobule, medioventral occipital cortex, fusiform gyrus as
well as thalamus and hippocampus (Figure 6E).

Similarly, the age-associated trajectories of WD and PC in the
Middle - Old age stage are studied. Four ROIs have a negative
correlation between age and WD as well as a positive correlation
between age and PC, which indicates these regions play an
increasingly important role in their inter-modular connections
as well as a weaker role in within-modular connections. All of
these ROIs convert from hubs to non-hubs, which are located
at the temporal lobe and right cingulate gyrus (Figure 7A). The
second category consists of four ROIs, whose PC are positively
correlated with age. Some of these regions are already detected
as provincial hubs in middle-age because of their high WD.
With the positive correlation between age and PC, many of
them tend to convert from provincial hubs to connector hubs
in the old group, which are mainly located at the medioventral
occipital cortex, right parahippocampal gyrus as well as right
hippocampus (Figure 7B). As shown in Figure 7C, two regions’
WD and PC are inversely associated with age (the third category).
These two regions are identified as connector hubs in middle-
age because of their high WD and PC. The negative correlation
between age and WD/PC results in the conversion to non-hubs
in old age group. The last category includes most regions (64.3%)
whose WD and PC both have no correlation with age. The
role of these hubs in middle-age is almost the same as in old,

which means they are playing an important role at this stage in
brain functional networks. These regions have wide distribution,
which are mainly located at the inferior frontal gyrus,
superior frontal gyrus, inferior parietal lobule, and thalamus
(Figure 7D).

DISCUSSION

In the present study, we combine the group-level FC networks
and two crucial network topological measures (modules and
hubs) to investigate the age-associated differences of brain
functional networks using a large cross-sectional lifespan
dataset. Furthermore, the ROI-wise analysis of WD and PC
characterized different age-associated trajectories of ROIs as well
as hub conversion.

Weakened Functional Segregation and
Integration
The human brain is functionally organized into a complex
network to facilitate the effective segregation and integration
of information processing (Sporns et al., 2005; Zhu et al.,
2018). Previous works have indicated that each module of the
functional network is associated with specific cognitive/behavior
function (Bertolero et al., 2015). Brain is parsed into coherent
sub-systems by functional modules, which allows for both
functional integration and segregation among different brain
areas (Puxeddu et al., 2020; Zheng et al., 2020). To quantify
the functional segregation and integration, the analysis of
detected modular structures and hubs was performed (Van
den Heuvel and Sporns, 2013b; Bertolero et al., 2015; Cohen
and D’Esposito, 2016). We find the intra- and inter-modular
connectivities negatively correlated with age, which suggests
weakened functional segregation and integration. The weakened
network segregation in this study is consistent with recent
research showing attenuated local efficiency with age, which
suggests that aging is relevant to the reduced ability of local
information processing and specialized functions (Cao et al.,
2014; Geerligs et al., 2015). For network integration, many
research similarly demonstrated lower functional integration
with age (Chong et al., 2019; Oschmann and Gawryluk, 2020).
Additionally, age-related effects on integration were weaker than
on segregation in this study, which is in coherence with (Chong
et al., 2019). We find some support for age-related decrease
in functional segregation/ integration and reveal that the age-
associated differences of modular organization may be driven by
weakened network segregation and integration.

Brain function is often considered as a balance between
segregate and integrative information processing (Bassett and
Gazzaniga, 2011; Bertolero et al., 2015; Deco et al., 2015).
Based on this theory, each module has a strong ability of local
information processing and specialized functions. As different
modules are responsible for relatively specialized functions,
connector hubs are thought to carry out efficiency information
exchange between modules whereas provincial hubs integrate
information within modules to support the specialized function
(Bertolero et al., 2015). The smaller quantity of connector hubs
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FIGURE 6 | The spatial distributions of hubs at Young - Middle age stage with (A) only WD has a positive correlation with age; (B) only PC has a negative correlation

with age; (C) only PC has a positive correlation with age; (D) Both WD and PC have a positive correlation with age; (E) Both WD and PC have no correlation with age.

Red lines fit the curve with statistically significant correlation.

in middle-age and old group provides additional evidence for
the decreasing functional integration because these regions are
mostly responsible for information integration among different
modules. Meanwhile, it probably results in the reduced network
information processing efficiency of the aging process in brain
functional network. The altered number of provincial hubs
in three groups is possibly related to the specialization of
information processing that presents an inverted U-shaped
trajectory from young to old (Cao et al., 2014). The larger
quantity of provincial hubs in middle-age and old group seems
to reflect a compensation for smaller quantity of connector hubs
to maintain performance of information processing (Kurth et al.,

2016), leading to little difference in total number of hubs across
three groups. Additionally, the old group showed greater ratio
of hubs’ quantity of left hemisphere than young and middle-
age group, suggesting that the right hemisphere exhibits greater
age-related reduction compared with the left hemisphere (Coppi
et al., 2014; Lebedeva et al., 2017), which provides support for the
right hemi-aging model (Dolcos et al., 2002).

Different Age-Associated Trajectories for
Provincial and Connector Hubs
In the present study, we detected two types of hubs (provincial
and connector hubs) according to the group-level modular
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TABLE 1 | Fitted correlation curves of WD and PC of selected hubs in the Young - Middle age stage.

Brain regions WD PC

Model Intercept Slope p(slope) Model Intercept Slope p(slope)

A. Only WD has a positive correlation with age

SFG_R Linear 0.3166 1.14E-02 1.02E-06 Linear 0.6587 −7.83E-05 7.56E-01

IFG_L Linear −0.4467 1.76E-02 6.25E-10 Linear 0.7703 7.93E-05 6.86E-01

IFG_R Linear −0.2300 1.67E-02 7.92E-09 Linear 0.7759 3.15E-04 8.97E-02

IFG_L Linear −0.5172 2.18E-02 1.05E-15 Linear 0.7699 −1.27E-04 5.38E-01

IFG_R Linear −0.3084 1.74E-02 1.27E-08 Linear 0.7736 1.92E-04 3.61E-01

PrG_L Linear −0.2378 1.94E-02 2.35E-10 Linear 0.7967 −1.66E-05 9.28E-01

PhG_L Linear 0.1554 9.55E-03 4.18E-05 Linear 0.8398 1.23E-04 4.19E-01

B. Only PC has a negative correlation with age

STG_L Linear 0.6791 6.01E-03 4.73E-04 Linear 0.7948 −1.39E-03 1.45E-12

STG_L Linear 1.3303 −1.17E-03 3.71E-01 Linear 0.7805 −1.24E-03 4.93E-10

STG_R Linear 1.4427 −3.79E-03 3.59E-03 Linear 0.7793 −1.41E-03 1.24E-11

C. Only PC has a positive correlation with age

SPL_R Linear 0.8997 −5.08E-03 4.92E-02 Linear 0.8069 8.06E-04 2.08E-06

SPL_L Linear 0.5717 −2.38E-03 3.73E-01 Linear 0.8302 6.44E-04 7.60E-05

D. Both WD and PC have a positive correlation with age

CG_R Linear −0.67885 1.34E-01 2.40E-33 Linear 0.7095 0.0044733 6.53E-90

E. Both WD and PC have no correlation with age

SFG_L Linear 0.5461 4.03E-03 4.56E-02 Linear 0.6714 −2.65E-04 2.60E-01

IFG_L Linear 0.2758 4.86E-03 1.02E-01 Linear 0.7639 1.59E-04 4.47E-01

FuG_L Linear 1.2242 1.55E-04 9.18E-01 Linear 0.8453 6.40E-05 6.23E-01

FuG_R Linear 1.0124 1.40E-03 4.76E-01 Linear 0.8442 1.98E-04 1.39E-01

PhG_R Linear 0.1473 7.54E-03 2.50E-03 Linear 0.8339 3.42E-04 2.11E-02

IPL_L Linear 1.2856 −3.94E-03 3.92E-02 Linear 0.6167 4.08E-04 1.43E-01

IPL_R Linear 0.8896 −5.23E-03 5.91E-02 Linear 0.6387 5.12E-04 9.23E-02

MVOcC _L Linear 0.5751 5.38E-03 1.45E-02 Linear 0.7770 5.82E-04 7.40E-03

MVOcC _R Linear 0.5002 3.74E-03 1.10E-01 Linear 0.7896 4.93E-04 1.52E-02

Hipp_L Linear 0.8700 1.67E-03 4.89E-01 Linear 0.8420 −1.81E-04 2.81E-01

Hipp_R Linear 0.9566 −3.95E-03 9.86E-02 Linear 0.8250 1.96E-05 9.18E-01

Tha_L Linear 1.1228 7.78E-05 9.51E-01 Linear 0.7755 −1.08E-04 7.82E-01

Tha_R Linear 1.1637 −1.56E-03 2.86E-01 Linear 0.7791 −3.53E-04 3.74E-01

Tha_L Linear 1.0651 9.72E-04 3.38E-01 Linear 0.7935 9.30E-05 7.76E-01

Tha_R Linear 1.2163 −1.25E-03 3.02E-01 Linear 0.7884 −2.03E-04 5.86E-01

The same brain region names in the table represent the different parts of the corresponding brain areas. The statistically significant correlation between WD/PC and age is in bold.

structure of the middle-age group and investigated the age-
associated trajectories of WD and PC of these hubs in two stages
(Young - Middle and Middle - Old age stage).

Different Age-Associated Trajectories in Young -

Middle Age Stage
In terms of Young - Middle age stage, combining the first
and fourth categories (both have a positive correaltion between
age and WD), we found the relevant brain regions are
mainly distributed in the right superior frontal gyrus, inferior
frontal gyrus, and right cingulate gyrus (Figures 6A,D). These
regions mainly relate to the dorsal attention network (Corbetta
et al., 2002) and frontoparietal network (Vincent et al., 2008),
both supporting sustained attention and working memory
(Brissenden et al., 2016). Most of these regions convert from

non-hubs to hubs with an increasing role in their within-
modular connections. As high WD results in high co-activations
of nodes in the same module (Messé et al., 2018), the positive
correaltion between age and WD indicates more activation in
these regions in middle-age, which may be the compensation
for the participation of other weak circuits (Reuter-Lorenz and
Park, 2014). The third and fourth categories (both have a
positive correaltion between age and PC) are located in higher-
order cognitive networks, which show an increasingly important
role in inter-modular connections (Figures 6C,D). The positive
correaltion between age and PC in these regions may cause
enhanced higher-order cognitive functions in middle-age since
PC has been proved to have a positive correlation with cognitive
function (de Haan et al., 2012). Only the second category
shows PC negatively correlated with age and the involved brain
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FIGURE 7 | The spatial distributions of hubs at Middle - Old age stage with (A) WD has a negative correlation with age but PC has a positive correlation with age; (B)

only PC has a positive correlation with age; (C) both WD and PC have a negative correlation with age; (D) both WD and PC have no correlation with age. Red lines fit

the curve with statistically significant correaltion.

regions are distributed in the superior temporal gyrus, part of
the somatomotor network (Figure 6B). Though most of these
regions are provincial hubs in the young and middle-age group,
the negative correaltion between age and PC may lead to the loss
of action recognition, episodic memory, and spatial navigation
in middle-age (Li et al., 2015). Such findings manifest that some
intra-modular connections tend to enhance in the middle-age
group compared with young, but the consistent trend in inter-
modular connections is not found.

Different Age-Associated Trajectories in Middle – Old

Age Stage
For the Middle – Old age stage, the first and second categories
show a positive correaltion between age and PC, which are
mainly located at the temporal lobe, right cingulate gyrus,
medioventral occipital cortex, and right parahippocampal gyrus
(Figures 7A,B). These brain regions principally correspond to
the limbic and visual networks. The positive correaltion between
age and PC in these regions indicates the enhanced inter-modular
connections in old age. As a result, some of these regions convert
from provincial hubs to connector hubs. The first category

whose WD has a negative correlation with age but PC has a
positive correlation with age of the limbic network may represent
maintaining a balance between the local specialization and global
integration of the information process in old age. Combining the
first and third type (both have a negative correaltion between age
and WD), the relevant regions were observed mainly distributed
in the temporal lobe, right cingulate gyrus, and superior parietal
lobule (Figures 7A,C), which were related to the limbic network
and dorsal attention network. Most of these regions change from
hubs to non-hubs with reduced within-modular connections,
which may be caused by the low co-activations of nodes within
the module in old age (Messé et al., 2018). These hubs require
further study because of the loss of essential roles in the network
topology. Of note, the third category shows two regions whose
WD and PC both have a negative correlation with age. They
are located in the dorsal attention network and both convert
from connector hubs to non-hubs (Figure 7C). The negative
correlation between age and PC in these regions may lead to
weaked sustained attention and working memory in old age
(Brissenden et al., 2016). The findings suggest the topological
roles of these hubs have converted greatly between middle-age
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TABLE 2 | Fitted correlation curves of WD and PC of selected hubs in the Middle - Old age stage.

Brain regions WD PC

Model Intercept Slope p(slope) Model Intercept Slope p(slope)

A. WD has a negative correlation with age but PC has a positive correlation with age

FuG_L Linear 2.033 −0.018016 2.48E-11 Linear 0.6845 3.52E-03 7.35E-39

FuG_R Linear 1.5661 −0.010957 7.47E-04 Linear 0.71058 0.0031 1.23E-35

PhG_L Linear 1.3608 −1.61E-02 1.27E-06 Linear 0.6871 3.42E-03 1.61E-34

CG_R Linear 1.9304 −1.96E-02 7.43E-08 Linear 0.89808 0.0010 2.59E-22

B. Only PC has a positive correlation with age

PhG_R Linear 0.7218 −4.91E-03 1.82E-01 Linear 0.6973 3.30E-03 4.00E-37

MVOcC _L Linear 0.9248 −2.86E-03 4.52E-01 Linear 0.7396 1.43E-03 5.33E-07

MVOcC _R Linear 1.0980 −1.05E-02 1.55E-02 Linear 0.7442 1.49E-03 1.75E-08

Hipp_R Linear 1.0498 −4.01E-03 3.00E-01 Linear 0.7498 1.62E-03 8.70E-08

C. Both WD and PC have a negative correlation with age

SPL_R Linear 3.0372 −5.19E-02 2.03E-20 Linear 0.99986 −0.0033 2.47E-23

SPL_L Linear 1.2422 −1.71E-02 8.77E-05 Linear 1.0797 −0.0047 3.23E-32

D. Both WD and PC have no correlation with age

SFG_L Linear 0.7755 −1.03E-03 7.53E-01 Linear 0.6996 −9.02E-04 1.01E-02

SFG_R Linear 1.1316 −4.45E-03 1.68E-01 Linear 0.7164 −1.31E-03 5.34E-04

IFG_L Linear 0.2835 3.64E-03 3.47E-01 Linear 0.7734 −4.50E-05 8.86E-01

IFG_R Linear 0.9621 −6.15E-03 9.09E-02 Linear 0.7982 −1.07E-04 7.15E-01

IFG_L Linear 0.3834 3.67E-03 2.99E-01 Linear 0.7678 −8.34E-05 8.07E-01

IFG_R Linear 0.7930 −4.24E-03 3.33E-01 Linear 0.7721 1.92E-04 5.66E-01

IFG_L Linear 0.5344 −4.24E-04 9.15E-01 Linear 0.7859 −2.86E-04 4.03E-01

PrG_L Linear 0.3053 8.73E-03 3.14E-02 Linear 0.8197 −4.91E-04 9.57E-02

STG_L Linear 1.0985 −2.18E-03 3.59E-01 Linear 0.7328 −1.32E-04 6.79E-01

STG_L Linear 1.5950 −6.78E-03 2.32E-03 Linear 0.7513 −6.85E-04 4.35E-02

STG_R Linear 1.5164 −5.33E-03 1.17E-02 Linear 0.7401 −6.20E-04 8.18E-02

IPL_L Linear 1.4648 −7.55E-03 1.34E-02 Linear 0.6605 −5.66E-04 1.34E-01

IPL_R Linear 1.1304 −9.21E-03 2.11E-02 Linear 0.6862 −5.40E-04 2.02E-01

Hipp_L Linear 0.6599 6.72E-03 7.23E-02 Linear 0.7898 9.93E-04 9.66E-04

Tha_L Linear 1.3147 −4.08E-03 7.34E-02 Linear 0.7124 1.11E-03 5.08E-02

Tha_R Linear 1.2233 −2.95E-03 2.34E-01 Linear 0.7151 8.92E-04 1.16E-01

Tha_L Linear 0.9598 3.08E-03 5.93E-02 Linear 0.7489 9.55E-04 3.44E-02

Tha_R Linear 1.2701 −2.51E-03 2.15E-01 Linear 0.7442 6.42E-04 2.39E-01

The same brain region names in the table represent the different parts of the corresponding brain areas. The statistically significant correlation between WD/PC and age is in bold.

and old group, which will help to understand the mechanism
associated with the aging brain. Our findings illustrate that intra-
modular connections tend to decline in the old group compared
with middle-age, but some inter-modular connections could
have protracted development during this period. Additionally,
functional segregation becomes weak during this period while
some inter-modular connections keep developing to balance the
modular structure in the brain network (Chen et al., 2011).

CONCLUSION AND LIMITATIONS

In this study, we applied a module-guided group-level network
construction method to combine individual-level networks to
form a weighted group-level network for each group. Based
on the analysis of group-level network modular structure, the
intra- and inter-modular connectivities were observed negatively
correlated with age, manifesting the weakened functional

segregation and integration. Meanwhile, the negative correlation
between age and intra-/inter-modular connectivity suggested less
efficient information communication of brain networks with
age. Furthermore, our findings showed detailed age-associated
trajectories of hubs in functional brain networks. In sum, this
study investigates the age-associated differences of modular
structure and hubs in functional networks across three age groups
and provides a new perspective and useful information to better
understand the normal aging of the brain.

Nevertheless, our study also had some limitations. First,
there are no psychophysiology tests included in the database
that physiological states or neuropsychological performance
are scored. Such information facilitates a more meaningful
understanding of the relationship between age and cognition.
Second, due to the limited sample size and large age range, the
participants in our study were divided into three age groups
and our results are not detailed enough across 60 years. Besides,
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the difference of the hubs’ quantity was obtained based on
group-level network in our study, future research should analyze
the statistical significance of the difference in age-related hubs’
quantity. Furthermore, due to the limitations of the database,
we analyzed hubs/modules based on group-level networks even
though the participants don’t match up across groups. Future
research should apply the research to longitudinal data for more
accurate result.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found here: The dataset used in this study is accessible
from International Data-sharing Initiative (http://fcon_1000.
projects.nitrc.org/indi/retro/sald.html).

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by the Research Ethics Committee of the Brain Imaging
Center of Southwest University. The participants provided their
written informed consent to participate in this study.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and intellectual
contribution to the work, and approved it for publication.

FUNDING

This work was supported in part by the National Natural Science
Foundation of China (Grant Nos. 61632014, 61627808, and
61210010), in part by the National Basic Research Program
of China (973 Program, Grant No. 2014CB744600), in part
by the National Key Research and Development Program
of China (Grant No. 2019YFA0706200), and in part by the
Fundamental Research Funds for the Central Universities
(lzuxxxy-2019-tm09).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnagi.
2020.607445/full#supplementary-material

REFERENCES

Alexander-Bloch, A., Lambiotte, R., Roberts, B., Giedd, J., Gogtay, N.,
and Bullmore, E. (2012). The discovery of population differences in
network community structure: new methods and applications to brain
functional networks in schizophrenia. Neuroimage 59, 3889–3900.
doi: 10.1016/j.neuroimage.2011.11.035

Arenas, A., Fernandez, A., and Gomez, S. (2008). Analysis of the structure
of complex networks at different resolution levels. New J. Phys. 10:053039.
doi: 10.1088/1367-2630/10/5/053039

Bäckman, L., Nyberg, L., Lindenberger, U., Li, S.-C., and Farde, L. (2006).
The correlative triad among aging, dopamine, and cognition: current
status and future prospects. Neurosci. Biobehav. Rev. 30, 791–807.
doi: 10.1016/j.neubiorev.2006.06.005

Bassett, D. S., and Gazzaniga, M. S. (2011). Understanding complexity in the
human brain. Trends Cogn. Sci. 15, 200–209. doi: 10.1016/j.tics.2011.03.006

Bassett, D. S., Porter, M. A., Wymbs, N. F., Grafton, S. T., Carlson, J. M., and
Mucha, P. J. (2013). Robust detection of dynamic community structure in
networks. Chaos 23:013142. doi: 10.1063/1.4790830

Bertolero, M. A., Yeo, B. T., and D’Esposito, M. (2015). The modular and
integrative functional architecture of the human brain. Proc. Natl. Acad. Sci.
U. S. A. 112, 6798–6807. doi: 10.1073/pnas.1510619112

Bishop, N. A., Lu, T., and Yankner, B. A. (2010). Neural mechanisms of ageing and
cognitive decline. Nature 464, 529–535. doi: 10.1038/nature08983

Blondel, V. D., Guillaume, J.-L., Lambiotte, R., and Lefebvre, E. (2008). Fast
unfolding of communities in large networks. J. Stat. Mech. Theory Exp.

2008:P10008. doi: 10.1088/1742-5468/2008/10/P10008
Brissenden, J. A., Levin, E. J., Osher, D. E., Halko, M. A., and Somers, D. C. (2016).

Functional evidence for a cerebellar node of the dorsal attention network. J.
Neurosci. 36, 6083–6096. doi: 10.1523/JNEUROSCI.0344-16.2016

Bullmore, E., and Sporns, O. (2012). The economy of brain network organization.
Nat. Rev. Neurosci. 13, 336–349. doi: 10.1038/nrn3214

Cao, M., Wang, J.-H., Dai, Z.-J., Cao, X.-Y., Jiang, L.-L., Fan, F.-M., et al. (2014).
Topological organization of the human brain functional connectome across the
lifespan. Dev. Cogn. Neurosci. 7, 76–93. doi: 10.1016/j.dcn.2013.11.004

Chai, X. J., Castañón, A. N., Öngür, D., and Whitfield-Gabrieli, S. (2012).
Anticorrelations in resting state networks without global signal regression.
Neuroimage 59, 1420–1428. doi: 10.1016/j.neuroimage.2011.08.048

Chan, M. Y., Park, D. C., Savalia, N. K., Petersen, S. E., and Wig, G. S. (2014).
Decreased segregation of brain systems across the healthy adult lifespan. Proc.
Natl. Acad. Sci. U. S. A. 111, 4997–5006. doi: 10.1073/pnas.1415122111

Chao-Gan, Y., and Yu-Feng, Z. (2010). DPARSF: a MATLAB toolbox for
“pipeline” data analysis of resting-state fMRI. Front. Syst. Neurosci. 4:13.
doi: 10.3389/fnsys.2010.00013

Chen, Q., Xia, Y., Zhuang, K., Wu, X., Liu, G., and Qiu, J. (2019). Decreased inter-
hemispheric interactions but increased intra-hemispheric integration during
typical aging. Aging 11:10100. doi: 10.18632/aging.102421

Chen, Z. J., He, Y., Rosa-Neto, P., Gong, G., and Evans, A. C. (2011).
Age-related alterations in the modular organization of structural cortical
network by using cortical thickness from MRI. Neuroimage 56, 235–245.
doi: 10.1016/j.neuroimage.2011.01.010

Chong, J. S. X., Ng, K. K., Tandi, J., Wang, C., Poh, J.-H., Lo, J. C., et al. (2019).
Longitudinal changes in the cerebral cortex functional organization of healthy
elderly. J. Neurosci. 39, 5534–5550. doi: 10.1523/JNEUROSCI.1451-18.2019

Cohen, J. R., and D’Esposito, M. (2016). The segregation and integration of
distinct brain networks and their relationship to cognition. J. Neurosci. 36,
12083–12094. doi: 10.1523/JNEUROSCI.2965-15.2016

Cole, M. W., Reynolds, J. R., Power, J. D., Repovs, G., Anticevic, A., Braver, T. S. J.
N., et al. (2013). Multi-task connectivity reveals flexible hubs for adaptive task
control. Nat. Neurosci. 16, 1348–1355. doi: 10.1038/nn.3470

Coppi, E., Houdayer, E., Chieffo, R., Spagnolo, F., Inuggi, A., Straffi, L., et al. (2014).
Age-related changes in motor cortical representation and interhemispheric
interactions: a transcranial magnetic stimulation study. Front. Aging Neurosci.
6:209. doi: 10.3389/fnagi.2014.00209

Corbetta, M., Kincade, J. M., and Shulman, G. L. (2002). Neural systems for visual
orienting and their relationships to spatial working memory. J. Cogn. Neurosci.
14, 508–523. doi: 10.1162/089892902317362029

Damoiseaux, J. S. (2017). Effects of aging on functional and structural brain
connectivity. Neuroimage 160, 32–40. doi: 10.1016/j.neuroimage.2017.01.077

de Haan, W., van der Flier, W. M., Koene, T., Smits, L. L., Scheltens,
P., and Stam, C. J. (2012). Disrupted modular brain dynamics reflect
cognitive dysfunction in Alzheimer’s disease. Neuroimage 59, 3085–3093.
doi: 10.1016/j.neuroimage.2011.11.055

Deco, G., Tononi, G., Boly, M., and Kringelbach, M. L. (2015). Rethinking
segregation and integration: contributions of whole-brain modelling. Nat. Rev.
Neurosci. 16, 430–439. doi: 10.1038/nrn3963

Frontiers in Aging Neuroscience | www.frontiersin.org 15 January 2021 | Volume 12 | Article 607445

http://fcon_1000.projects.nitrc.org/indi/retro/sald.html
http://fcon_1000.projects.nitrc.org/indi/retro/sald.html
https://www.frontiersin.org/articles/10.3389/fnagi.2020.607445/full#supplementary-material
https://doi.org/10.1016/j.neuroimage.2011.11.035
https://doi.org/10.1088/1367-2630/10/5/053039
https://doi.org/10.1016/j.neubiorev.2006.06.005
https://doi.org/10.1016/j.tics.2011.03.006
https://doi.org/10.1063/1.4790830
https://doi.org/10.1073/pnas.1510619112
https://doi.org/10.1038/nature08983
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1523/JNEUROSCI.0344-16.2016
https://doi.org/10.1038/nrn3214
https://doi.org/10.1016/j.dcn.2013.11.004
https://doi.org/10.1016/j.neuroimage.2011.08.048
https://doi.org/10.1073/pnas.1415122111
https://doi.org/10.3389/fnsys.2010.00013
https://doi.org/10.18632/aging.102421
https://doi.org/10.1016/j.neuroimage.2011.01.010
https://doi.org/10.1523/JNEUROSCI.1451-18.2019
https://doi.org/10.1523/JNEUROSCI.2965-15.2016
https://doi.org/10.1038/nn.3470
https://doi.org/10.3389/fnagi.2014.00209
https://doi.org/10.1162/089892902317362029
https://doi.org/10.1016/j.neuroimage.2017.01.077
https://doi.org/10.1016/j.neuroimage.2011.11.055
https://doi.org/10.1038/nrn3963
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Zhang et al. Age-Associated Topological Differences

Dolcos, F., Rice, H. J., Cabeza, R. J. N., and Reviews, B. (2002). Hemispheric
asymmetry and aging: right hemisphere decline or asymmetry reduction.
Neurosci. Biobehav. Rev. 26, 819–825. doi: 10.1016/S0149-7634(02)00068-4

Duch, J., and Arenas, A. (2005). Community detection in complex
networks using extremal optimization. Phys. Rev. E 72:027104.
doi: 10.1103/PhysRevE.72.027104

Fan, L., Li, H., Zhuo, J., Zhang, Y., Wang, J., Chen, L., et al. (2016). The human
brainnetome atlas: a new brain atlas based on connectional architecture.
Cerebral cortex 26, 3508–3526. doi: 10.1093/cercor/bhw157

Ferreira, L. K., and Busatto, G. F. (2013). Resting-state functional
connectivity in normal brain aging. Neurosci. Biobehav. Rev. 37, 384–400.
doi: 10.1016/j.neubiorev.2013.01.017

Fortunato, S. (2010). Community detection in graphs. Phys. Rep. 486, 75–174.
doi: 10.1016/j.physrep.2009.11.002

Fox, M. D., Zhang, D., Snyder, A. Z., and Raichle, M. E. J. J. (2009). The global
signal and observed anticorrelated resting state brain networks. J. Neurophysiol.
101, 3270–3283. doi: 10.1152/jn.90777.2008

Friston, K. J., Holmes, A. P., Worsley, K. J., Poline, J. P., Frith, C. D.,
and Frackowiak, R. S. (1994). Statistical parametric maps in functional
imaging: a general linear approach. Hum. Brain Mapp. 2, 189–210.
doi: 10.1002/hbm.460020402

Geerligs, L., Renken, R. J., Saliasi, E., Maurits, N. M., and Lorist, M. M. (2015).
A brain-wide study of age-related changes in functional connectivity. Cereb.
Cortex 25, 1987–1999. doi: 10.1093/cercor/bhu012

Grady, C., Sarraf, S., Saverino, C., and Campbell, K. (2016). Age differences
in the functional interactions among the default, frontoparietal
control, and dorsal attention networks. Neurobiol. Aging 41, 159–172.
doi: 10.1016/j.neurobiolaging.2016.02.020

Guimera, R., and Amaral, L. A. N. (2005). Functional cartography of complex
metabolic networks. Nature 433, 895–900. doi: 10.1038/nature03288

Guimera, R., Mossa, S., Turtschi, A., and Amaral, L. N. J. P. (2005). The worldwide
air transportation network: anomalous centrality, community structure, and
cities’ global roles. PNAS 102, 7794–7799. doi: 10.1073/pnas.0407994102

Guimera, R., Sales-Pardo, M., and Amaral, L. A. J. N. (2007). Classes of complex
networks defined by role-to-role connectivity profiles. Nat. Phys. 3, 63–69.
doi: 10.1038/nphys489

Hinrich, J. L., Bardenfleth, S. E., Røge, R. E., Churchill, N. W., Madsen, K. H., and
Mørup, M. (2016). Archetypal analysis for modeling multisubject fMRI data.
IEEE J. Sel. Top. Signal Process 10, 1160–1171. doi: 10.1109/JSTSP.2016.2595103

Huang, C. C., Hsieh, W. J., Lee, P. L., Peng, L. N., Liu, L. K., Lee, W. J., et al. (2015).
Age-related changes in resting-state networks of a large sample size of healthy
elderly. CNS Neurosci. Therap. 21, 817–825. doi: 10.1111/cns.12396

Keller, J. B., Hedden, T., Thompson, T. W., Anteraper, S. A., Gabrieli, J.
D., and Whitfield-Gabrieli, S. J. C. (2015). Resting-state anticorrelations
between medial and lateral prefrontal cortex: association with working
memory, aging, and individual differences. Cortex 64, 271–280.
doi: 10.1016/j.cortex.2014.12.001

King, B., Van Ruitenbeek, P., Leunissen, I., Cuypers, K., Heise, K.-F., Santos
Monteiro, T., et al. (2018). Age-related declines in motor performance
are associated with decreased segregation of large-scale resting state brain
networks. Cereb. Cortex 28, 4390–4402. doi: 10.1093/cercor/bhx297

Kurth, S., Majerus, S., Bastin, C., Collette, F., Jaspar, M., Bahri, M. A., et al. (2016).
Effects of aging on task-and stimulus-related cerebral attention networks.
Neurobiol. Aging 44, 85–95. doi: 10.1016/j.neurobiolaging.2016.04.015

Lebedeva, A. K., Westman, E., Borza, T., Beyer, M. K., Engedal, K., Aarsland, D.,
et al. (2017). MRI-based classification models in prediction of mild cognitive
impairment and dementia in late-life depression. Front. Aging Neurosci. 9:13.
doi: 10.3389/fnagi.2017.00013

Li, H. J., Hou, X. H., Liu, H. H., Yue, C. L., He, Y., and Zuo, X. N. (2015).
Toward systems neuroscience in mild cognitive impairment and Alzheimer’s
disease: a meta-analysis of 75 fMRI studies. Hum. Brain Mapp. 36, 1217–1232.
doi: 10.1002/hbm.22689

Makedonov, I., Black, S. E., and MacIntosh, B. J. J. P. O. (2013). BOLD fMRI in the
white matter as a marker of aging and small vessel disease. PLoS ONE 8:e67652.
doi: 10.1371/journal.pone.0067652

Messé, A., Hütt, M.-T., and Hilgetag, C. C. (2018). Toward a theory of coactivation
patterns in excitable neural networks. PLoS Comput. Biol. 14:e1006084.
doi: 10.1371/journal.pcbi.1006084

Moussa, M. N., Steen, M. R., Laurienti, P. J., and Hayasaka, S. J. P. (2012).
Consistency of network modules in resting-state FMRI connectome data. PLoS
ONE 7:e44428. doi: 10.1371/journal.pone.0044428

Murphy, K., Birn, R. M., Handwerker, D. A., Jones, T. B., and Bandettini,
P. A. J. N. (2009). The impact of global signal regression on resting
state correlations: are anti-correlated networks introduced? Neuroimage 44,
893–905. doi: 10.1016/j.neuroimage.2008.09.036

Murphy, K., and Fox, M. D. (2017). Towards a consensus regarding global signal
regression for resting state functional connectivity MRI. Neuroimage 154,
169–173. doi: 10.1016/j.neuroimage.2016.11.052

Najafi, M., McMenamin, B. W., Simon, J. Z., and Pessoa, L. (2016).
Overlapping communities reveal rich structure in large-scale brain
networks during rest and task conditions. Neuroimage 135, 92–106.
doi: 10.1016/j.neuroimage.2016.04.054

Newman, M. E. (2004). Fast algorithm for detecting community structure in
networks. Phys. Rev. E 69:066133. doi: 10.1103/PhysRevE.69.066133

Newman, M. E. (2006). Modularity and community structure in networks. Proc.
Natl. Acad. Sci. U. S. A. 103, 8577–8582. doi: 10.1073/pnas.0601602103

Ng, K. K., Lo, J. C., Lim, J. K., Chee, M. W., and Zhou, J. (2016). Reduced
functional segregation between the default mode network and the executive
control network in healthy older adults: a longitudinal study. Neuroimage 133,
321–330. doi: 10.1016/j.neuroimage.2016.03.029

Onoda, K., Ishihara, M., and Yamaguchi, S. (2012). Decreased functional
connectivity by aging is associated with cognitive decline. J. Cogn. Neurosci.
24, 2186–2198. doi: 10.1162/jocn_a_00269

Oschmann, M., and Gawryluk, J. (2020). A longitudinal study of changes in
resting-state fMRI functional connectivity networks during healthy aging.
Brain Connect. 10, 377–384. doi: 10.1089/brain.2019.0724

Parente, F., Frascarelli, M., Mirigliani, A., Di Fabio, F., Biondi, M., Colosimo, A. J.
B. I., et al. (2018). Negative functional brain networks. Brain Imaging Behav. 12,
467–476. doi: 10.1007/s11682-017-9715-x

Power, J. D., Schlaggar, B. L., Lessov-Schlaggar, C. N., and Petersen, S. E. J. N.
(2013). Evidence for hubs in human functional brain networks. Neuron 79,
798–813. doi: 10.1016/j.neuron.2013.07.035

Puxeddu, M. G., Faskowitz, J., Betzel, R. F., Petti, M., Astolfi, L.,
and Sporns, O. (2020). The modular organization of brain cortical
connectivity across the human lifespan. Neuroimage 218:116974.
doi: 10.1016/j.neuroimage.2020.116974

Raz, N., and Rodrigue, K. M. (2006). Differential aging of the brain: patterns,
cognitive correlates and modifiers. Neurosci. Biobehav. Rev. 30, 730–748.
doi: 10.1016/j.neubiorev.2006.07.001

Reuter-Lorenz, P. A., and Park, D. C. (2014). How does it STAC up? Revisiting
the scaffolding theory of aging and cognition. Neuropsychol. Rev. 24, 355–370.
doi: 10.1007/s11065-014-9270-9

Schlesinger, K. J., Turner, B. O., Lopez, B. A., Miller, M. B., and
Carlson, J. M. (2017). Age-dependent changes in task-based modular
organization of the human brain. Neuroimage 146, 741–762.
doi: 10.1016/j.neuroimage.2016.09.001

Sie, J.-H., Chen, Y.-H., Shiau, Y.-H., and Chu, W.-C. (2019). Gender-
and age-specific differences in resting-state functional connectivity of the
central autonomic network in adulthood. Front. Hum. Neurosci. 13:369.
doi: 10.3389/fnhum.2019.00369

Simkó, G. I., Gyurkó, D., Veres, D. V., Nánási, T., and Csermely, P. (2009).
Network strategies to understand the aging process and help age-related drug
design. Genome Med. 1:90. doi: 10.1186/gm90

Sporns, O., and Betzel, R. F. (2016). Modular brain networks. Annu. Rev. Psychol.
67, 613–640. doi: 10.1146/annurev-psych-122414-033634

Sporns, O., Tononi, G., and Kötter, R. (2005). The human connectome:
a structural description of the human brain. PLoS Comput. Biol. 1:e42.
doi: 10.1371/journal.pcbi.0010042

Spreng, R. N., Stevens, W. D., Viviano, J. D., and Schacter, D. L. (2016).
Attenuated anticorrelation between the default and dorsal attention networks
with aging: evidence from task and rest. Neurobiol. Aging 45, 149–160.
doi: 10.1016/j.neurobiolaging.2016.05.020

Sun, J., Tong, S., and Yang, G.-Y. (2012). Reorganization of brain networks in aging
and age-related diseases. Aging Dis. 3:181.

Tang, W., Jbabdi, S., Zhu, Z., Cottaar, M., Grisot, G., Lehman, J. F., et al.
(2019). A connectional hub in the rostral anterior cingulate cortex links

Frontiers in Aging Neuroscience | www.frontiersin.org 16 January 2021 | Volume 12 | Article 607445

https://doi.org/10.1016/S0149-7634(02)00068-4
https://doi.org/10.1103/PhysRevE.72.027104
https://doi.org/10.1093/cercor/bhw157
https://doi.org/10.1016/j.neubiorev.2013.01.017
https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/10.1152/jn.90777.2008
https://doi.org/10.1002/hbm.460020402
https://doi.org/10.1093/cercor/bhu012
https://doi.org/10.1016/j.neurobiolaging.2016.02.020
https://doi.org/10.1038/nature03288
https://doi.org/10.1073/pnas.0407994102
https://doi.org/10.1038/nphys489
https://doi.org/10.1109/JSTSP.2016.2595103
https://doi.org/10.1111/cns.12396
https://doi.org/10.1016/j.cortex.2014.12.001
https://doi.org/10.1093/cercor/bhx297
https://doi.org/10.1016/j.neurobiolaging.2016.04.015
https://doi.org/10.3389/fnagi.2017.00013
https://doi.org/10.1002/hbm.22689
https://doi.org/10.1371/journal.pone.0067652
https://doi.org/10.1371/journal.pcbi.1006084
https://doi.org/10.1371/journal.pone.0044428
https://doi.org/10.1016/j.neuroimage.2008.09.036
https://doi.org/10.1016/j.neuroimage.2016.11.052
https://doi.org/10.1016/j.neuroimage.2016.04.054
https://doi.org/10.1103/PhysRevE.69.066133
https://doi.org/10.1073/pnas.0601602103
https://doi.org/10.1016/j.neuroimage.2016.03.029
https://doi.org/10.1162/jocn_a_00269
https://doi.org/10.1089/brain.2019.0724
https://doi.org/10.1007/s11682-017-9715-x
https://doi.org/10.1016/j.neuron.2013.07.035
https://doi.org/10.1016/j.neuroimage.2020.116974
https://doi.org/10.1016/j.neubiorev.2006.07.001
https://doi.org/10.1007/s11065-014-9270-9
https://doi.org/10.1016/j.neuroimage.2016.09.001
https://doi.org/10.3389/fnhum.2019.00369
https://doi.org/10.1186/gm90
https://doi.org/10.1146/annurev-psych-122414-033634
https://doi.org/10.1371/journal.pcbi.0010042
https://doi.org/10.1016/j.neurobiolaging.2016.05.020
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Zhang et al. Age-Associated Topological Differences

areas of emotion and cognitive control. Elife 8:e43761. doi: 10.7554/eLife.437
61.022

Thomas Yeo, B., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D.,
Hollinshead, M., et al. (2011). The organization of the human cerebral cortex
estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165.
doi: 10.1152/jn.00338.2011

Tian, L., Ma, L., and Wang, L. (2016). Alterations of functional
connectivities from early to middle adulthood: clues from multivariate
pattern analysis of resting-state fMRI data. Neuroimage 129, 389–400.
doi: 10.1016/j.neuroimage.2016.01.039

Tomasi, D., and Volkow, N. D. (2012). Aging and functional brain networks.Mol.

Psychiatry 17, 549–558. doi: 10.1038/mp.2011.81
Uddin, L. Q., Clare Kelly, A., Biswal, B. B., Xavier Castellanos, F., and Milham, M.

P. J. H. (2009). Functional connectivity of default mode network components:
correlation, anticorrelation, and causality. Hum. Brain Map. 30, 625–637.
doi: 10.1002/hbm.20531

Van Den Heuvel, M. P., and Pol, H. E. H. J. E. (2010). Exploring the
brain network: a review on resting-state fMRI functional connectivity. Eur.
Neuropsychopharmacol. 20, 519–534. doi: 10.1016/j.euroneuro.2010.03.008

Van den Heuvel, M. P., and Sporns, O. (2013a). An anatomical substrate for
integration among functional networks in human cortex. J. Neurosci. 33,
14489–14500. doi: 10.1523/JNEUROSCI.2128-13.2013

Van den Heuvel, M. P., and Sporns, O. (2013b). Network hubs in the human brain.
Trends Cogn. Sci. 17, 683–696. doi: 10.1016/j.tics.2013.09.012

Van Dijk, K. R., Hedden, T., Venkataraman, A., Evans, K. C., Lazar, S. W.,
and Buckner, R. L. (2010). Intrinsic functional connectivity as a tool for
human connectomics: theory, properties, and optimization. J. Neurophysiol.
103, 297–321. doi: 10.1152/jn.00783.2009

Vincent, J. L., Kahn, I., Snyder, A. Z., Raichle, M. E., and Buckner, R. L. (2008).
Evidence for a frontoparietal control system revealed by intrinsic functional
connectivity. J. Neurophysiol. 100, 3328–3342. doi: 10.1152/jn.90355.2008

Wang, C., Hu, Y., Weng, J., Chen, F., and Liu, H. (2020). Modular
segregation of task-dependent brain networks contributes to the
development of executive function in children. Neuroimage 206:116334.
doi: 10.1016/j.neuroimage.2019.116334

Wang, L., Dai, Z., Peng, H., Tan, L., Ding, Y., He, Z., et al. (2014). Overlapping
and segregated resting-state functional connectivity in patients with major
depressive disorder with and without childhood neglect.Hum. Brain Mapp. 35,
1154–1166. doi: 10.1002/hbm.22241

Wei, D., Zhuang, K., Ai, L., Chen, Q., Yang, W., Liu, W., et al. (2018).
Structural and functional brain scans from the cross-sectional Southwest
University adult lifespan dataset. Sci. Data 5:180134. doi: 10.1038/sdata.20
18.134

Wen, X., Zhang, H., Li, G., Liu, M., Yin, W., Lin, W., et al. (2019). First-
year development of modules and hubs in infant brain functional networks.
Neuroimage 185, 222–235. doi: 10.1016/j.neuroimage.2018.10.019

Whitfield-Gabrieli, S., Thermenos, H. W., Milanovic, S., Tsuang, M. T., Faraone,
S. V., McCarley, R. W., et al. (2009). Hyperactivity and hyperconnectivity
of the default network in schizophrenia and in first-degree relatives of
persons with schizophrenia. Proc. Natl. Acad. Sci. U. S. A. 106, 1279–1284.
doi: 10.1073/pnas.0809141106

Wong, C. W., Olafsson, V., Tal, O., and Liu, T. T. J. N. (2012). Anti-
correlated networks, global signal regression, and the effects of
caffeine in resting-state functional MRI. Neuroimage 63, 356–364.
doi: 10.1016/j.neuroimage.2012.06.035

Yao, Z., Hu, B., Liang, C., Zhao, L., Jackson, M., Initiative, A., et al. (2012).
A longitudinal study of atrophy in amnestic mild cognitive impairment
and normal aging revealed by cortical thickness. PLoS ONE 7:e48973.
doi: 10.1371/journal.pone.0048973

Yao, Z., Zou, Y., Zheng, W., Zhang, Z., Li, Y., Yu, Y., et al. (2019). Structural
alterations of the brain preceded functional alterations in major depressive
disorder patients: evidence frommultimodal connectivity. J. Affect. Disord. 253,
107–117. doi: 10.1016/j.jad.2019.04.064

Yeo, B. T., Krienen, F. M., Chee, M. W., and Buckner, R. L. J. N.
(2014). Estimates of segregation and overlap of functional connectivity
networks in the human cerebral cortex. Neuroimage 88, 212–227.
doi: 10.1016/j.neuroimage.2013.10.046

Zheng, W., Woo, C.-W., Yao, Z., Goldstein, P., Atlas, L. Y., Roy, M., et al. (2020).
Pain-evoked reorganization in functional brain networks. Cereb. Cortex 30,
2804–2822. doi: 10.1093/cercor/bhz276

Zhu, J., Lin, X., Lin, C., Zhuo, C., and Yu, Y. (2018). Selective functional
dysconnectivity of the dorsal-anterior subregion of the precuneus in
drug-naive major depressive disorder. J. Affect. Disord. 225, 676–683.
doi: 10.1016/j.jad.2017.08.084

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Zhang, Wang, Chen, Guo, Wang, Chen, Li, Yang, Li, Yao and Hu.

This is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) and the copyright owner(s) are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Aging Neuroscience | www.frontiersin.org 17 January 2021 | Volume 12 | Article 607445

https://doi.org/10.7554/eLife.43761.022
https://doi.org/10.1152/jn.00338.2011
https://doi.org/10.1016/j.neuroimage.2016.01.039
https://doi.org/10.1038/mp.2011.81
https://doi.org/10.1002/hbm.20531
https://doi.org/10.1016/j.euroneuro.2010.03.008
https://doi.org/10.1523/JNEUROSCI.2128-13.2013
https://doi.org/10.1016/j.tics.2013.09.012
https://doi.org/10.1152/jn.00783.2009
https://doi.org/10.1152/jn.90355.2008
https://doi.org/10.1016/j.neuroimage.2019.116334
https://doi.org/10.1002/hbm.22241
https://doi.org/10.1038/sdata.2018.134
https://doi.org/10.1016/j.neuroimage.2018.10.019
https://doi.org/10.1073/pnas.0809141106
https://doi.org/10.1016/j.neuroimage.2012.06.035
https://doi.org/10.1371/journal.pone.0048973
https://doi.org/10.1016/j.jad.2019.04.064
https://doi.org/10.1016/j.neuroimage.2013.10.046
https://doi.org/10.1093/cercor/bhz276
https://doi.org/10.1016/j.jad.2017.08.084
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles

	Age-Associated Differences of Modules and Hubs in Brain Functional Networks
	Introduction
	Materials and Methods
	Participants
	Data Acquisition
	Imaging Pre-processing
	Construction of Brain Networks
	Module Detection From Group-Level Network
	Hub Detection and Age-Associated Trajectories of WD and PC
	Threshold Selection

	Results
	Group-Level Networks and Modular Structures
	Module-Guided Group-Level Networks
	Age-Associated Differences of Hubs in Brain Functional Networks
	Differences in the Quantity and Spatial Distribution of Hubs
	Hubs' Age-Associated Trajectories of WD and PC


	Discussion
	Weakened Functional Segregation and Integration
	Different Age-Associated Trajectories for Provincial and Connector Hubs
	Different Age-Associated Trajectories in Young - Middle Age Stage
	Different Age-Associated Trajectories in Middle – Old Age Stage


	Conclusion and Limitations
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Supplementary Material
	References


