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Abstract: For the prevention and treatment of bone loss related diseases, focus has been put on
naturally derived substances such as polyphenols. Based on human intervention studies, this review
gives an overview of the effects of dietary significant polyphenols (flavonoids, hydroxycinnamic
acids, and stilbenes) on bone turnover. Literature research was conducted using PubMed database
and articles published between 01/01/2008 and 31/12/2018 were included (last entry: 19/02/2019).
Randomized controlled trials using oral polyphenol supplementation, either of isolated polyphenols
or polyphenols-rich foods with healthy subjects or study populations with bone disorders were
enclosed. Twenty articles fulfilled the inclusion criteria and the average study quality (mean Jadad
score: 4.5) was above the pre-defined cut-off of 3.0. Evidence from these studies does not allow
an explicit conclusion regarding the effects of dietary important polyphenols on bone mineral
density and bone turnover markers. Differences in study population, habitual diet, lifestyle factors,
applied polyphenols, used doses, and polyphenol bioavailability complicate the comparison of
study outcomes.
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1. Introduction

The human skeleton is continuously remodeled throughout life by osteoclast- (bone resorbing
cells) and osteoblast (bone forming cells) activities [1]. Bone remodeling ensures mineral homeostasis,
maintains the integrity of the skeleton, and is responsible for removal and repair of damaged tissue [2].
The underlying close communication and interaction between osteoclasts and osteoblasts consist of four
consecutive phases: activation, resorption, formation, and termination/resting [2,3]. In brief, during the
activation phase, an initiating remodeling signal is detected by bone cell receptors supporting the
migration of partially differentiated mononuclear preosteoclasts to the bone surface. Multinucleated
osteoclasts are then formed promoting resorption of bone mass. In the third phase mononuclear cells
prepare the bone surface for the osteoblast-mediated formation and initiate osteoblast differentiation and
–migration. Osteoblasts replace the removed bone with an equal quantity of new bone. Flattened lining
cells cover the surface and mineralization occurs [2,3].

The main regulators of bone turnover are mechanical strain, systemic factors (e.g., calcitriol,
calcitonin, growth hormone, insulin-like growth factor 1, glucocorticoids, and sex hormones),
and local factors (e.g., the osteoprotegerin [OPG] - receptor activator of nuclear factor-kappa B
ligand [RANKL] - receptor activator of nuclear factor-kappa B [RANK] system) [4–6].

Aside from these, the physiological balance between oxidants and antioxidants (redox status)
also seems to be important for the maintenance of a balanced osteoclast- and osteoblast activity and
therefore a successful bone remodeling process (Figure 1) [7,8]. Several in vitro and animal studies
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have shown that reactive oxygen species (ROS) production is involved in the regulation of bone status
and in mineral tissue homeostasis mainly by promoting bone resorption [9–12]. Moreover, ROS act
as signaling molecules in several signaling pathways in bone cells and enhance osteoclastogenesis
(Figure 1) [8].
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19]. Oxidative stress associated with increased lipid peroxidation seems to enhance bone resorption 
resulting in reduced bone mineral density (BMD) [16,17]. A higher value of the superoxide dismutase 
(SOD)/glutathione peroxidase (GPx) ratio was observed in subjects with osteoporosis [18]. SOD 
generates H2O2 by removing superoxide and therefore has to collaborate with H2O2-removing 
enzymes like GPx or catalase to prevent oxidative stress [20]. The imbalance created by an altered 
SOD/GPx ratio leads to an increase in H2O2 levels [21]. High H2O2 levels promote osteoclastic 
differentiation and inhibit osteoblastic differentiation, which results in bone resorption [22,23]. 

Numerous observational studies have shown that intake of several portions of fruits and 
vegetables per day (~240 – 400 g) is associated with greater BMD and decreased fracture risk [24–26]. 
Recent reviews summarizing observational studies in Asia conclude that the consumption of soy 
isoflavonoids is inversely associated with the incidence of hip fractures and osteoporosis risk in 
postmenopausal women [27,28]. Epidemiological studies focusing on tea drinking (green- and black 
tea) show adverse results with respect to bone health [29–33]. Observational studies evaluating the 
effects of habitual tea drinking on bone health showed, however, inconsistent results in both men 
and women [34]. The generally positive effects of fruit-, vegetable-, and tea consumption seem to be 
partly attributed to their content of alkaline-precursors which contribute to neutralizing acid loads 
from other components of the diet so that the skeleton is not used as a buffer to resorb and neutralize 
acid loads [35].  

More important might be their content of active phytochemical compounds, such as polyphenols 
[36–39]. Due to their antioxidative potential, polyphenols may protect cells against oxidative damage 
induced by ROS and thereby attenuate the risk for the development of degenerative diseases such as 
cardiovascular diseases, cancer, diabetes, and osteoporosis [40,41]. In vitro- as well as animal studies 
suggest that polyphenols, apart from their antioxidative properties, affect bone metabolism by anti-

Figure 1. Impact of reactive oxygen species (ROS) on bone turnover [8–14]. ROS promote bone
resorption by enhancing receptor activator of nuclear factor-kappa B ligand [RANKL]-induced osteoclast
activity, by activation of osteoclastogenesis related signal transduction cascades (c-Jun N-terminal kinase
(JNK), p38 mitogen-activated protein kinases (p38), extracellular signal-regulated kinase (ERK 1/2)),
and by suppressing osteoblastogenesis. ↑, activation; ↓ inhibition.

Under normal physiological conditions the ROS production by osteoclasts contributes to bone
remodeling by stimulating the destruction of calcified tissue [13,14]. Exceeding ROS production and
osteoclastic activity, however, were observed in different skeletal pathologies such as osteoporosis
and bone fractures [15]. Several studies indicate a relation between oxidative stress and bone
loss [16–19]. Oxidative stress associated with increased lipid peroxidation seems to enhance bone
resorption resulting in reduced bone mineral density (BMD) [16,17]. A higher value of the superoxide
dismutase (SOD)/glutathione peroxidase (GPx) ratio was observed in subjects with osteoporosis [18].
SOD generates H2O2 by removing superoxide and therefore has to collaborate with H2O2-removing
enzymes like GPx or catalase to prevent oxidative stress [20]. The imbalance created by an altered
SOD/GPx ratio leads to an increase in H2O2 levels [21]. High H2O2 levels promote osteoclastic
differentiation and inhibit osteoblastic differentiation, which results in bone resorption [22,23].

Numerous observational studies have shown that intake of several portions of fruits and vegetables
per day (~240—400 g) is associated with greater BMD and decreased fracture risk [24–26]. Recent reviews
summarizing observational studies in Asia conclude that the consumption of soy isoflavonoids is
inversely associated with the incidence of hip fractures and osteoporosis risk in postmenopausal
women [27,28]. Epidemiological studies focusing on tea drinking (green- and black tea) show adverse
results with respect to bone health [29–33]. Observational studies evaluating the effects of habitual
tea drinking on bone health showed, however, inconsistent results in both men and women [34].
The generally positive effects of fruit-, vegetable-, and tea consumption seem to be partly attributed to
their content of alkaline-precursors which contribute to neutralizing acid loads from other components
of the diet so that the skeleton is not used as a buffer to resorb and neutralize acid loads [35].

More important might be their content of active phytochemical compounds, such as
polyphenols [36–39]. Due to their antioxidative potential, polyphenols may protect cells against
oxidative damage induced by ROS and thereby attenuate the risk for the development of degenerative
diseases such as cardiovascular diseases, cancer, diabetes, and osteoporosis [40,41]. In vitro- as well as
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animal studies suggest that polyphenols, apart from their antioxidative properties, affect bone
metabolism by anti-inflammatory actions, suppression of osteoclastogenesis, and activation of
osteoblastogenesis via different bone related pathways [42–50].

Polyphenols can be distinguished according to their chemical structure (number and arrangement
of carbon atoms). Based on that, they can be classified into nine subgroups (Figure 2) [51]. Depending on
the amount of vegetables and fruits consumed, the daily intake of polyphenols sums up to >500 mg/day
(five portions of vegetables and fruits per day). The additional consumption of tea (green-, black-,
white-, and Oolong tea), coffee, and cocoa can lead to intakes up to 1000—1500 mg/day [52].
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Figure 2. Polyphenol classification (modified from Crozier et al. [51]) The nine polyphenol subgroups
are classified according to their chemical structure and are found throughout the plant kingdom. HCA,
hydroxycinnamic acids.

Relevant nutritive polyphenol subgroups are flavonoids, hydroxycinnamic acids, and stilbenes [51].
Flavonoids are found in a variety of fruits, vegetables, herbs, and beverages. [53]. The most abundant
flavanols are (+)-catechin, (-)-epicatechin (EC), (+)-gallocatechin (GC), and (-)-epigallocatechin
(EGC) and the gallic acid esters (-)-epicatechin gallate (ECG) and (-)-epigallocatechin gallate
(EGCG). Tea (camellia sinensis) is the most quantitative source of these compounds worldwide [53].
The predominating flavonols are quercetin, kaempferol, myricetin, and isorhamnetin [53]. They usually
occur as glycosides and are mainly located in the flowers, leaves, and outer parts of the plant as peel
or skin. Important dietary sources are onions, apples, and leafy vegetables [54,55]. Flavanones are
mainly found in citrus fruits [56]. The dominant flavanone in lemon, mandarin, and sweet orange
is the rutinoside hesperidin. Sour oranges and grapefruits are dominated by the neohesperidoside
naringin [57]. Major flavones are luteolin and apigenin. They are usually present as O- and C-glycosides.
Aglycons of flavones are not found in fresh plants but can occur after processing [53]. Luteolin and
apigenin have been identified in several vegetables such as celery and artichoke and in different herbs
such as rosemary, thyme, or parsley [58,59]. Isoflavonoids, such as genistein, daidzein, and glabridin are
also referred to as phytoestrogens due to their estrogenic activity. Important dietary sources for genistein
and daidzein are legumes such as soybeans [60]. Glabridin is an isoflavan found in the licorice root [61].
Anthocyanins are responsible for the red, blue, or purple color of several fruits and vegetables such as
plums, cherries, raspberries, blackberries, blackcurrants, beetroot, and red cabbage [62]. Aglycons,
such as cyanidin or delphinidin are rarely found in plants and most commonly bounded sugars are
glucose, galactose, rhamnose, and arabinose, usually as 3-glycosides [63]. Hydroxycinnamic acids
(HCA) are also widely found in the human diet and main derivates are caffeic-, ferulic-, %-coumaric,-
and sinapic acid. They usually occur as esters or glycosides of quinic acid. O-glycosylated ferulic-,
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caffeic-, and ρ-coumaric acids are present in tomatoes [64]. Other fruits containing hydroxycinnamic
acids are plums, blueberries, cherries, and apples [65]. Stilbenes are present in vegetables and fruits
such as spinach, berries, apples, and grapes. In plants, they are produced in response to stress, injury,
or disease. The parent compound resveratrol can occur in cis- and trans configuration, as glucosides,
aglycones, monomers, or polymers [66]. In higher concentrations resveratrol can be found in red
grapes and, thus, in red wine, depending on the species [67].

The role of nutritive polyphenols in maintaining bone health is not finally resolved. Indeed,
a final conclusion of the qualitative and quantitative role of nutritive polyphenols on bone metabolism
and bone health can only be made on the basis of intervention studies. Thus, the aim of this
literature review is to summarize and evaluate results of recently published human intervention studies
investigating the effects of nutritive polyphenols, either as single substrates or as ingredients of foods,
on bone metabolism.

2. Methods

The systematic literature search (U.S. National Library of Medicine National Institutes of Health
online database PubMed) sought to identify all eligible English articles published between 2008 and
2018 in peer-review journals (last entry: 19/02/2019) with a clear focus on the major polyphenol
subgroups. The following search terms were used and at least one of the terms in each of the following
four lists had to be present in the title and/or abstract of the article: (1) clinical, experimental,
human, in vivo, intervention; (2) bone, bone turnover, bone markers, bone loss; (3) nutrition,
nutritional, supplementation, oral; (4) polyphenols, flavonoids, flavanols, flavonols, flavanones,
flavones, isoflavonoids, isoflavones, anthocyanins, stilbenes, hydroxycinnamic acids. The following
PubMed filters were applied: publication date (from 01/01/2008 to 31/12/2018) and species (humans).
In addition, reference lists of articles identified during the literature search have been checked for
complete identification of eligible articles.

2.1. Article Selection

Studies meeting the following inclusion criteria were included in the evaluation: (a) randomized
controlled trials; (b) oral polyphenol supplementation; (c) supplementation of isolated polyphenols
or polyphenol-rich foods; (d) healthy subjects or study populations with bone loss related diseases
(e) outcomes: BMD or bone turnover markers; (f) publication date: 2008—2018. As shown in Figure 3,
20 articles were finally included in this review.

Two independent and experienced reviewers manually screened the title and/or the abstract of
the articles that were flagged during the literature search for adherence to the above eligibility criteria.
When the reviewers disagreed about the eligibility of a particular article the whole text of the article
was read and a consensus decision was reached.

2.2. Data Presentation

Data extraction followed a predefined protocol. Human trials were categorized according to
the polyphenol subclass (flavanols, flavonols, flavanones, flavones, isoflavonoids, anthocyanins,
hydroxycinnamic acids, stilbenes) administered, or in the case of food consumption, according to the
dominant polyphenol ingredient of the food items under investigation. To evaluate study quality
the Jadad score was calculated for each study included [68]. In this score randomization, blinding,
and dropout description are assessed. The scale ranges from 0 (low quality) to 5.0 (high quality) [68].
Scores above a defined cut-off of 3.0 indicate that reliable conclusions can be drawn.
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Figure 3. Study selection diagram. The literature search revealed 1513 hits (PubMed filters: publication
date (from 01/01/2008 to 31/12/2018) and species (humans). After removal of further animal- and in vitro
studies 387 records were screened. Full-text was assessed for 103 records and 83 articles did not meet
the inclusion criteria. Twenty articles were included.

3. Results and Discussion

Study details of the included studies are summarized in Table 1. The volunteer characteristics,
intervention protocols, characterization of the control group, study duration, and observed effects on
bone are shown. Most of the human trials were performed in postmenopausal women and participant
numbers range from twelve to 431. Time of intervention varied between eight weeks and three years
and health status of volunteer collectives differed.
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Table 1. Overview of human intervention studies included.

Participants Intervention
Control Group Duration

Power
Analysis Effects on Bone

Jadad
ScoreNumber Age

(Year) Gender Health Status (Powder/Food Item)

Flavanols

Dostal et al. 2016
[69] 121 50–70 Female

Overweight/obese,
postmenopausal,

high breast cancer risk

GTE
(843 mg EGCG/d)

Overweight/obese,
postmenopausal women with

high breast cancer risk
1 year Yes (80%) Total body BMD↔ 5

Shen et al.
2012 [70] 171 >50 Female Postmenopausal,

osteopenic
GTE

(500 mg/d)
Postmenopausal,

osteopenic women 6 months Yes
(85-90%)

bAP ↑
TRAP↔

bAP/TRAP ratio ↑
5

Flavonols

Law et al. 2016
[71] 30 40–80 Female,

male Healthy Onion juice
(100 ml/d) Healthy men and women 8 weeks No

Total body BMD↔
bAP ↓

PTH↔
Calcium↔

5

Flavanones
Martin et al.

2016
[72]

12 >50 Female Postmenopausal,
healthy

Hesperidin
(500 mg)

Postmenopausal,
healthy women 3 months Yes

(80%)
bAP↔
DPD↔ 5

Isoflavonoids

Alekel et al. 2010;
Shedd-Wise et al. 2011

[73,74]
255 46–65 Female Postmenopausal,

healthy
Soy isoflavonoids
(80 and 120 mg/d)

Postmenopausal,
healthy women 3 years Yes

(94%)

Total body BMD↔
spine BMD↔
femur BMD↔
neck BMD↔

5

Arcoraci et al. 2017;
Marini et al. 2008

[75–77]
389 49–67 Female Postmenopausal,

osteopenic
Genistein
(54 mg/d)

Postmenopausal, osteopenic
women 2 years Yes (80%)

Femur BMD ↑
spine BMD ↑

PYD ↓
DPD ↓
bAP ↑

RANKL ↓
OPG ↑

5

Brink et al. 2008
[78] 237 53±3 Female Early postmenopausal,

healthy

Isoflavonoid enriched
foods

(110 mg isoflavonoid
aglycones/d)

Early postmenopausal,
healthy women 1 year Yes (84%) Total body BMD↔

bone markers↔ 5

Kenny et al. 2009
[79] 131 >60 Female Postmenopausal,

healthy
Isoflavonoids

(105 mg/d)
Postmenopausal,
healthy women 1 year No

Total body BMD↔
femur BMD↔
spine BMD↔
wrist BMD↔

4

Sathyapalan et al. 2016
[80] 200 >50 Female Early postmenopausal Isoflavonoids

(66 mg/d) Early postmenopausal women 6 months Yes (95%) ßCTX ↓
P1NP ↓ 5

Tai et al. 2012
[81] 431 45–65 Female Postmenopausal with

bone loss
Isoflavonoids

(300 mg/d)
Postmenopausal women with

bone loss 2 years Yes (80%) Femur BMD↔
Bone markers↔ 5

Vupadhyayula et al. 2009
[82] 203 >50 Female Postmenopausal,

healthy
Isoflavonoids

(90 mg/d)
Postmenopausal,
healthy women 2 years Yes (80%) Spine BMD↔

Femur BMD↔ 4

Wong et al. 2009
[83] 403 40–60 Female Climacteric,

healthy
Soy isoflavonoids
(80 and 120 mg/d)

Climacteric,
healthy women 2 years Yes (80%)

Total Body BMD ↑
(120 mg/d)

Bone markers↔
5
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Table 1. Cont.

Participants Intervention
Control Group Duration

Power
Analysis Effects on Bone

Jadad
ScoreNumber Age

(Year) Gender Health Status (Powder/Food Item)

Anthocyanins

Hooshmand et al. 2011
and 2014

[84,85]
160 >50 Female Postmenopausal,

osteopenic
Dried plums

(100 g/d)
Postmenopausal,

osteopenic women 1 year No

Ulna BMD ↑
Spine BMD ↑

OPG↔
Sclerostin↔

3

Hooshmand et al. 2016
[86] 48 65–79 Female Postmenopausal,

osteopenic
Dried plums

(50 and 100 g/d)
Postmenopausal,

osteopenic women 6 months No Total BMD ↑
TRAP ↓ 3

Simonavice et al. 2014
[87] 27 64 ± 7 Female Postmenpausal,

breast cancer survivors
Dried plums

(90 g/d)
Postmenpausal women,
breast cancer survivors 6 months Yes (80%)

Spine BMD↔
Femur BMD↔

Forearm BMD↔
Bone markers↔

3

Stilbenes

Ornstrup et al. 2014
[88] 74 49 ± 6 Male Obese,

metabolic syndrome
Resveratrol

(150 and 1000 mg/d)
Obese men with

metabolic syndrome 16 weeks Yes (80%)

Spine BMD ↑
(1000 mg/d)

bAP ↑
(1000 mg/d)

OPG↔
P1NP↔
CTX↔
NTX↔

5

↔, no changes; ↑, significant increase; ↓, significant reduction; GTE, green tea extract; BMD, bone mineral density; bAP, bone alkaline phosphatase; TRAP, tartrate-resistant acid phosphatase;
PTH, parathyroid hormone; DPD, desoxypyridinolin; PYD, pyridinolin; RANKL, receptor activator of nuclear factor-kappa B ligand; ßCTX, ß C-telopeptide of type I collagen; P1NP,
aminoterminal propeptide of type I collagen; OPG, osteoprotegerin; CTX, C-telopeptide of type I collagen; NTX, N-telopeptide of type I collagen; d: day.
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The number of intervention studies conducted for the different polyphenol subgroups differ
broadly (one study each for flavanols and stilbenes and ten studies for isoflavonoids). The main class of
flavonoids investigated for their potential effects on bone metabolism is isoflavonoids because of their
structural similarity to estrogen and their ability to bind to the estrogen receptor [89]. Another reason
for the higher number of studies for this polyphenol subgroup might be their dietary significance
particularly in Asian countries and for vegetarian- and vegan lifestyles.

The sample size of the included studies vary between twelve volunteers [72] and 431 subjects [73]
and study durations range from two months [71] to two years [75]. Most studies (except four) conducted
a power calculation prior to the beginning of the study.

Apart from that, outcome variables investigated differ broadly. Most studies examined
BMD of volunteers [69,71,73,78], whereas other investigators analyzed different markers of bone
turnover [70,72,80]. Bone turnover markers, such as bone alkaline phosphatase (bAP), aminoterminal
propeptide of type I collagen (P1NP), C-telopeptide of type I collagen (CTX), and N-telopeptide of
type I collagen (NTX) are beside the BMD good indicators for fracture risk. They are sometimes even
stronger associated with this risk than BMD, as they predict fractures in two different ways: (1) the
direct reduction of BMD via high bone turnover and (2) independently of BMD, by affecting bone
microarchitecture and -fragility [90]. Bone markers are also often used to monitor anti-resorptive
therapies and provide a good method for the investigation of nutritional interventions, as changes
can be observed more rapidly compared to BMD [90]. As summarized by Eastell et al. early changes
in bone turnover markers may be predictive of BMD changes [90]. Reduction of CTX- and NTX
concentrations, for instance after six months predict an increase in lumbar spine BMD 2.5-4 years later
and an increase of P1NP after three months is associated with changes in lumbar spine BMD after
18 months [90]. For shorter intervention periods (two to three months) it, therefore, might be reasonable
to accompany the investigation of BMD with the examination of bone turnover markers as BMD
changes might not be observed at this time point. Six of the nine studies that investigated the effects of
BMD and bone turnover markers observed similar effects on these parameters (e.g., no changes for
both outcomes) [75–78,81,86–88]. Three studies investigating both outcomes showed contradictory
results [71,83–85]. Law et al. did not find any changes in total body BMD but observed a reduction in
the bone formation marker bAP after consumption of 100 ml onion juice per day for two months [71].
The study duration might not be long enough to already see changes in BMD. Hooshmand et al. found
an increase of ulna- and spine BMD after one year of dried plum consumption [84,85]. The changes for
OPG and sclerostin they observed were not statistically significant but showed a trend in the same
direction [84,85].

Studies examining the effects on bone metabolism in healthy volunteers (prevention of bone
loss) did not find any beneficial effects [71–73,78,79,82]. Only one study investigating the effects
in healthy women found a smaller reduction in whole-body BMD after 2 years of soy isoflavonoid
supplementation (120 mg/d) compared to placebo [83]. However, the authors stated that the difference
only translates to a minimal clinical effect and the supplementation did neither slow bone loss at
key fracture sites nor affected bone marker concentrations [83]. Studies that investigated the effect of
polyphenols as a treatment for osteopenic women (therapeutic effect) observed a positive impact on
bone metabolism [70,75,84,86]. One might speculate that polyphenols may only have a therapeutic- but
no preventive effect. However, further studies are needed to investigate and confirm this observation.

Doses applied show a high variation between the different studies (several mg up to 1 g per day).
Results, however, do not indicate a dose-dependent effect, as 843 mg EGCG did not affect BMD [69],
whereas 54 mg genistein improved BMD [75,76]. It has to be taken into account that we here compare
different polyphenol subgroups. They might have a different potency and therefore different doses
are needed.

Variations in study population (ethical background and age of participants), habitual diet
(substituted polyphenols might not have an additional effect if volunteers already have a balanced
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diet), and lifestyle factors such as physical activity are other factors that might impact study results
and lead to contrary findings.

A comparison between human- and animal studies shows that human intervention studies did not
consistently confirm the beneficial effects found in animal models. The transferability of results from
animal models to humans, however, is limited, because of differences in e.g., physiology, metabolism
and bioavailability. It is likely that animals and humans metabolize polyphenols differently. This has
to be considered in the evaluation of these results. Moreover, supra-nutritional doses are mostly used
in animal studies and these amounts are not attainable within a plant-based diet by humans.

The bioavailability might be a further explanation of inconsistent study results. Bioavailability
of polyphenols depends on external (e.g., food related factors and chemical structure) and internal
factors (gender, age, colonic microflora, etc.) [91]. Interactions with other food components, such as fat,
proteins, or other polyphenols, for instance, can affect the bioavailability of a single compound [92].
This is important for the valuation, particularly, of those studies investigating the effects of a single
compound on bone metabolism. The presence of other polyphenols for example seems to increase
the polyphenol bioavailability [92]. Therefore, it might be interesting to investigate whether the
effective dose of single compounds can be reduced if they are applied with other polyphenols or as
polyphenols-rich foods.

4. Conclusions

Obviously, recent intervention studies investigating the effects of nutritive polyphenols,
either ingested via food or given as single compounds, on bone health showed inconsistent results.
Consequently, final conclusions cannot be drawn. Differences in study population, habitual diet, lifestyle
factors, and polyphenol bioavailability complicate the comparison of study outcomes. Future studies
should take these confounding factors into account. Moreover, it might be of specific interest to evaluate
whether the application of polyphenol mixtures (supplements) can lead to beneficial synergistic effects.
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