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Abstract

Background: Previous studies have shown that there is an association between FMR1 CGG repeats and ovarian
dysfunction. The aim of this study is to assess the association between the number of CGG repeats in FMRT in
Chinese patients with premature ovarian insufficiency (POI) and diminished ovarian reserve (DOR).

Methods: This is a cross-sectional, case-control study, which enrolled 124 patients with POI, 57 patients with DOR
and 111 normal menopausal controls. The demographic details along with other clinical data were recorded. The
FMR1 CGG repeats were analyzed by polymerase chain reaction and microfluidic capillary electrophoresis.

Results: We could detect two premutation carriers in the POI group (1.6%) and one in the control group (0.9%). No
premutation carriers were identified in the DOR group. The frequency of FMRT premutations was not different
between POl or DOR and controls. The most common CGG repeat was 29 and 30, and the repeat length for allele
2 had a secondary peak around 36-39 repeats. The CGG repeats were divided into groups of five consecutive
values, and the distribution of allele 1 in the POI group was different from that in the control group (P < 0.001). No
statistically significant differences were found for allele 1 between DOR group vs. controls, and for allele 2 between
three groups (P> 0.05).

Conclusions: The study shows that the frequency of FMRT premutations is relatively low (1.6%) in Chinese women
with POI. The distribution of allele 1 CGG repeat in patients with POl showed difference from that in healthy
women.
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Introduction

The fragile X mental retardation 1 (FMRI) gene, located
at Xq27.3, is an X-linked gene, carrying CGG repeats in
the 5’-untranslated region. Based on the criteria stated
by the American College of Medical Genetics and Gen-
omics (ACMG), FMRI CGG repeats can be classified as
normal (< 45 repeats), intermediate (45—54 repeats), pre-
mutation (55-199 repeats), and full mutation (> 200 re-
peats) [1].

The ovarian reserve indicates a woman'’s reproductive
potential, which is a function of the number and quality
of oocytes [2]. Premature ovarian insufficiency (POI) is a
condition that accentuates the extreme spectrum of im-
paired ovarian function. It is characterized by failure of
ovarian function in women less than 40 years of age [3].
The decline of ovarian reserve is a continuous, gradual
process and the concept of decreased or diminished
ovarian reserve (DOR) has been explored in few reports
earlier [4]. DOR is not an overt phenotype and was once
described as ‘occult POT" [5]. Compared with women of
similar age, women with DOR commonly have regular
menses but they also have reduced number of ovarian
follicles and reduced fecundity [2]. It is thought that
DOR may or may not progress into POI eventually (de-
pending on whether amenorrhea occurs before the age
of 40 years).

Numerous studies have examined the association be-
tween FMRI CGG repeats and ovarian dysfunction [6—
9]. In western countries, premutation of FMRI are re-
portedly correlated with POI in women [7-9], which is
now referred to as fragile-X-associated primary ovarian
insufficiency (FXPOI). It has been estimated that around
11-14% of familial and 2-6% of sporadic POI cases are
associated with FMRI premutations [3]. Association be-
tween normal or intermediate range FMRI alleles and a
reproductive risk has also been explored [10, 11]. Mul-
tiple association studies of FMRI alleles, i.e. CGG re-
peats >36 [12], 41-58 [13], 45-54 [9], and 35-54 [14]
have been reported to be associated with POI. However,
the distribution of FMRI CGG repeats also varies with
ethnicity [15]. Fewer patients with POI from Asia carried
the FMRI premutations [16].

The pathogenic role of FMRI premutations in Chinese
women is controversial. Three earlier studies have
shown very low prevalence of premutation carriers in
Chinese women with POI (< 1%) [17-19], which is lower
than studies from western countries [3]. Therefore,
FMRI premutation may not be a common explanation
for POI in Chinese women.

With regard to the relationship between DOR and
FMRI1, the results are inconsistent: Women with DOR
might be at a risk of carrying alleles in the premutation
range [5, 20]. Some studies found an association between
DOR and normal/intermediate CGG repeats, including
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<26 [21], <28 [22], 35-54 [23], 45-54 [9, 24], or > 40
[5] and have reported a negative effect on ovarian age-
ing. By contrast, some studies reported that ovarian re-
serve was not affected by CGG repeats [23-27]. The role
of FMRI in Chinese women with DOR has not been ex-
tensively investigated.

The present study assessed the distribution of the
FMR1 CGG repeat numbers in Chinese women with
POIL, DOR and compare it to the control group of nat-
ural menopausal women. The primary aim of this study
is to establish whether CGG repeats are different in the
Chinese population of POI and DOR within normal
women. The association between the numbers of CGG
repeats and endocrine profiles of these patients was also
evaluated.

Methods

This study protocol was approved by the Institutional
Review Board (IRB) of Peking Union Medical College
Hospital (PUMCH) (No. JS-1604).

Study participants

One hundred twenty-four women with POI and 57
women with DOR were included in this cross-sectional
case-control study. All women were clinically diagnosed
with POI or DOR between May 2018 and December
2019 in the Department of Gynecological Endocrinology
and Reproductive Medicine of PUMCH. The inclusion
criteria for POI group were: amenorrhea (> 6 months)
before the age of 40 years and elevated serum follicle-
stimulating hormone (FSH) levels (> 25 IU/L). The inclu-
sion criteria for DOR group: having regular or irregular
menstrual cycles, FSH >10IU/L on days 2—4 of men-
strual cycle and/or anti-mullerian hormone (AMH)
levels <1.1 ng/ml on any day [28] before the age of 40
years. All women had normal karyotype and had no
family history of fragile X syndrome (FXS). Women who
had a history of autoimmune disease, pelvic surgery or
chemo/radiotherapy were excluded.

After obtaining written informed consent, blood sam-
ples were obtained from each participant for both
phenotypic and genotypic analysis. The blood samples
from women with regular menstruation were collected
during the early follicular phase for measurements of sex
hormones. There was no restriction on the day of blood
collection for women with amenorrhea. The serum es-
tradiol (E,) and FSH were measured at PUMCH Clinical
laboratory using a chemiluminescence immunoassay
(Roche®, Switzerland) and AMH was measured using an
electro-chemiluminescent assay (Roche’, Switzerland). A
detailed clinical questionnaire was filled for each subject,
which included details like menstrual and reproductive
history along with personal and family history.



Tang and Yu Reproductive Biology and Endocrinology (2020) 18:82

The control group included 111 post-menopausal
women. The comparison data is from the PUMCH
Aging Longitudinal Cohort of Midlife Women (PALM),
a prospective, open-cohort, which involved with a
community-based longitudinal study, aiming to investi-
gate ovarian ageing in midlife women in China [29]. The
participants were middle-aged female residents of the
TieEr community, Xicheng District, Beijing, China. The
inclusion criteria were women who had undergone nat-
ural menopause after the age of 40 years, no history of
severe systemic diseases, no use of hormonal medica-
tions in the previous 3 months, no history of any
gynecological endocrine diseases, and not pregnant or
lactating in the previous 6 months. An additional blood
sample was obtained from each participant for FMRI
analysis during the follow up in 2018.

FMR1 assay measures

Genomic DNA was extracted from peripheral blood leu-
kocytes of all participants using standard procedures
using commercial DNA extraction kits (Tiangen, Beijing,
China). The FMRI repeat region was amplified by poly-
merase chain reaction (PCR) using the FragilEase PCR
reagent kit (PerkinElmer, USA) following manufacturer’s
protocol. Following primers were used: forward (TCAG
GCGCTCAGCTCCGTTTCGGTTTCA), reverse (FAM-
AAGCGCCATTGGAGCCCCGCACTTCC). Two female
reference DNA samples (30/80 repeats and 20/200 re-
peats) were obtained from the Coriell Institute for Med-
ical Research (Camden, US) to evaluate the analytical
performance of the assay. The reference samples were
concurrently amplified. All PCR products were purified
using the PureLink PCR Micro Kit (Invitrogen) prior to
electrophoresis. And a microfluidic capillary electro-
phoresis instrument (LabChip® MultiDX) was used to es-
timate allele sizing. Calculation of the CGG repeat
lengths was performed using FraXsoft analysis software
(PerkinElmer, USA) by utilizing base pair size data. An
analytical and clinical validation of this kit has been per-
formed previously, which proved that the CGG repeats
obtained using this assay are highly concordant with
those obtained using the conventional reference method
(PCR + Southern blot) for 112 archived samples, includ-
ing 25 samples with a full mutation (the largest allele re-
peat was 1380 repeats) [30]. The intra-assay (coefficient
of variation< 2.5%) and inter-assay imprecision was
within 1 repeat.

Statistical analysis

The FMRI analysis in women provides two numbers of
the CGG repeat length on two X chromosomes. Consist-
ent with the methodologies used in earlier studies [15,
31], the allele with the smaller number of CGG repeats
was termed “allele 17, and the allele with the larger
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number of CGG repeats was termed “allele 2”. Continu-
ous variables with normal distributions were expressed
as mean * standard deviation (SD). Categorical variables
are presented as numbers (percentages). Discrete cat-
egories for CGG repeat categories were presented per 5
repeat lengths. The categorical distributions of allele 1
and allele 2 CGG repeat lengths were compared among
different groups. Comparisons of categorical allele vari-
ables were made using the non-parametric Mann-
Whitney test. Association analysis of continuous vari-
ables was used t-testing (two groups) or ANOVA (three
or more groups).

Since some studies have shown 25-34 repeats as “nor-
mal” [21], a comparison of the proportion of alleles 1
and 2 was made with <25, 25-34, and > 34 repeats be-
tween the POI or DOR group and the controls. A study
which included primarily the Caucasian race (76%) and
11% of Asian race have compared the infertile women
with DOR with the general female population, and found
that the DOR group was more likely to have 35-44
CGG repeats (14.5% vs. 3.9%) [23]. Therefore, compari-
sons were also made between different groups with re-
spect to 35-44 CGG repeats. Previous reports also
showed the onset of amenorrhea occurred significantly
earlier in the patients with >38 CGG repeats [12]. The
comparison of menopausal age between women having
allele 2 with <38 repeats and > 38 repeats was done using
Fisher’s exact test with alpha < 0.05.

All analyses were performed using SPSS software (ver-
sion 24.0 for the OS X system; IBM). All the tests were
two-sided with 0.05 significance level.

Results

Baseline characteristics

We estimated the CGG repeat numbers in the FMRI
gene of 124 patients with POIL, 57 women with DOR,
and 111 controls. Table 1 shows the characteristics of
the three groups. Eight of the 124 women with POI were
primary amenorrhea, whereas 116 women were second-
ary amenorrhea, and the mean + SD of menopausal age
was 28.4 +7.1years. In the DOR group, more than half
the women (50.9%) had FSH values between 10 and 15
IU/L, 29.8% had FSH between 15.1 and 20.0 IU/L, and
12.3% had FSH >20IU/L. About 7.0% of women with
DOR had FSH values lower than 10 IU/L, but had AMH
values lower than 1.1 ng/ml. Forty-one (71.9%) women
had both increased FSH and reduced AMH values.

FMR1 CGG repeat distribution

The FMRI CGG repeat distribution in POI, DOR, and
control groups is shown in Fig. 1a (allele 1) and Fig. 1b
(allele 2). The overall pattern of distribution in different
groups is almost similar. The most common CGG repeat
of both alleles in all the groups was 29 and 30. The
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Table 1 Characteristics of patients with POI, DOR and control women

Parameter POI DOR Control® P,? P,? P3?

N 124 57 111

Enrolled age, yrs, mean + SD 313+65 325+38 480+6.1 <0.001 <0.001 0.149
Age at menarche, yrs, mean + SD 134+16 132+12 0.395
Age at menopause, yrs, mean + SD 284+7.1 NA 50.7 +3.0 <0.001

BMI (kg/m?), mean = SD 221+38 216+35 250+32 <0.001 <0.001 0351
Currently Smoking, No. (%) 327 1(1.8) 2(1.8) 0.307 0.565 0.593
FSH (1U/l), mean + SD 81.7+358 150+ 4.8 30.5+£308 <0.001 <0.001 <0.001
Estradiol (pg/ml), mean + SD 333+384 464+£276 87.7+125. <0.001 0.001 0.027
AMH (ng/ml), mean + SD 006+0.18 080+ 0.76 <0.001
FMR1 Allele1, mean + SD 298+ 2.1 293+£35 299+38 0.694 0.281 0.330
Median [IQR] 29 [29,30] 30 [2931] 30 [29,31]

FMR1 Allele2, mean + SD 334+77 322441 332+50 0.847 0.202 0.290
Median [IQR] 30 [30,36] 31 [30, 34.5] 31 [30,37]

P, indicated POI versus controls, P, indicated DOR versus controls, and P indicated POI versus DOR
b the characteristics presented in the Table were results at baseline assessment of the women in the control group
Abbreviation: POl Premature ovarian insufficiency, DOR Diminished ovarian reserve, FSH Follicle-stimulating hormone, AMH Anti-mullerian hormone, SD Standard

deviation, BMI Body mass index, QR Interquartile range, NA Not applicable

distribution of alleles among groups were compared, and
no significant difference was found.

Screening of the FMRI gene identified 2 premutation
carriers with repeats 31/56, 30/98 in the POI group
(1.6%), and 1 with repeats 40/59 in the control group
(0.9%). Four intermediate repeat carriers were found: 1
in the POI group (0.8%), 1 in the DOR group (1.8%) and
2 in controls (1.8%). No full mutation subtype was found
in all groups. For allele 1, there were no intermediate or
premutation carriers. The repeat lengths for allele 2 were
in the range of 26-98 in all the participants, and had a
secondary peak around 36-39 repeats. Homozygous
CGG repeat lengths were common in both the groups
(POI group: 50.0%; DOR group: 61.4%; control group:
66.7%), and the commonest repeats were 30/30 and 29/
29 repeats in all the groups.

Distribution of CGG repeats in POI, DOI, and controls

The CGG repeats were also divided into groups of five
consecutive values (Table 2). The distribution of allele 1
in the POI group was different from that in the control
group (P<0.001). No statistically significant differences
were found for allele 1 between DOR group vs. controls,
for allele 2 between POI group vs. controls, and DOR
group vs. controls (P>0.05). The proportion of <25,
25-34, 35-44 and >44 group for both the alleles are
shown in Fig. 2. Comparing the distribution between the
POI vs. controls and DOR vs. controls, the distribution
of allele 1 was different between the POI group and the
control group (P =0.044), whereas there was no signifi-
cant difference between the DOR group and controls for
allele 1, and for allele 2 between POI or DOR group and
controls for allele 2 (P> 0.05).

The association between FMR1 CGG repeats and the
age at menopause was explored in POI women (Table
2). Menopausal ages of women with different CGG re-
peats groups showed no statistically significant differ-
ence (P> 0.05). Furthermore, the mean FSH and AMH
values did not show any association with different CGG
repeats in both the POI and DOR groups (Table 2).
Comparison of menopausal age between women having
allele 2 with <38 repeats (# =100) and > 38 repeats (1 =
16) revealed no significant difference (28.1+7.3 vs.
30.0+5.1, P=0.321).

Discussion

In the present study, we compared the distribution of
FMR1 CGG repeats among 124 patients with POI, 57 pa-
tients with DOR and 111 controls in Chinese population.
No statistically significant differences were identified be-
tween the DOR group and the control group, whereas the
distribution of allele 1 CGG repeat in patients with POI
was difference from that in the control group. Frequency
of premutation was relatively low in both healthy women
and patients with ovarian dysfunction in China: two cases
with premutation carriers were identified in the POI
group, 1 premutation carrier in the control group, and no
carriers were found in the DOR group.

POI occurs in 1% of women and has severe conse-
quences, including infertility and chronic hypoestrogenism
that may result in increased cardiovascular risk, impaired
bone health, and considerable psychosocial sequelae [32].
A higher prevalence of spontaneous POI has been re-
ported from a very recent meta-analysis, i.e. 3.7% among
all women worldwide [33]. Hormone replacement therapy,
the principal therapeutic approach for POI, helps alleviate
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Fig. 1 Distribution of FMRT CGG repeat numbers in Chinese patients with POI, DOR and controls. a, b Data from allele 1 (a) and allele 2 (b) (N =124, 57
and 111 for patients with POI, DOR and controls, respectively). Abbreviations: FMRI, the fragile X mental retardation1; POI primary ovarian insufficiency;
DOR diminished ovarian reserve

the related symptoms although this does not effectively
solve the issues related to fertility.

The main cause of POI is unknown, but genetic fac-
tors, autoimmune ovarian damage, iatrogenic and

environmental factors are the known causes. Among all
the genetic factors implicated for POI, the FMRI premu-
tation is regarded as the leading single-gene cause of
POI [34]. If FMRI screening for the target population
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Table 2 Detailed distribution by 5 CGG repeat bands up through the premutation in patients with POI, DOR and controls

FMR1 CGG Repeats N <25 25-29 30-34 35-39 40-44 45-54 (Intermediate)  55-199 (Premutation)
Allele1
POI group, N (%) 124 2 (1.6) 65(52.4) 52(41.9) 4(3.2) 1(0.8) 0 0
Age at menopause, yrs., 16.5 (2.1) 289 (7.3) 28.7 (6.5) 235 (6) 22
mean (SD)
FSH (1U/1), mean (SD) 952 (433) 79 (36.2) 814 (385) 675349 1293
AMH (ng/ml), mean (SD) 0 0.1 (0.3) 0(0.1) 0 0
DOR group, N (%) 57 5(8.8) 22 (38.6) 29(509) 1(1.8) 0 0 0
FSH (IU/1), mean (SD) 17.8 (838) 155 (4.7) 141 (39 169
AMH (ng/ml), mean (SD) 1.0 (0.9 0.7 (0.6) 0.8 (0.8) 09
Control group, N (%) 111 9 (8.1) 24 (21.6) 72(649) 5(4.5) 1(0.9) 0 0
Age at menopause, yrs., 52 (2) 505(33) 50529 5284 51.0
mean (SD)
FSH (IU/1), mean (SD) 273(295) 269 (269) 325(327) 218(296) 529
Allele2
POI group, N (%) 124 0 29 (234) 56 (45.2) 27(21.8) 9(7.3) 1(0.8) 2(1.6)
Age at menopause, yrs., 296 (6.7) 27974 276(75  278(55 300 355 (2.1)
mean (SD)
FSH (IU/1), mean (SD) 872 (368) 808 (395) 765((36.2) 702(296) 1105 59.1 (10.3)
AMH (ng/ml), mean (SD) 0.0 0.1(03) 0.0 0.0 0.0 0.1(0.2)
DOR group, N (%) 57 0 13 (22.8) 30(52.6) 10(17.5) 3(5.3) 1(1.8) 0
FSH (IU/1), mean (SD) 159 (4.7) 144 (5.3) 153 (3.8) 174 (1.5) 11.0
AMH (ng/ml), mean (SD) 05 (0.6) 09(09) 09 (0.6) 04(03) 0.7
Control group, N (%) 111 O 22(19.8) 54(48.6) 26(23.4) 6(54) 2(1.8) 1(0.9)
Age at menopause, yrs., 513 (3) 50.5 (3.1) 509 (3) 51 (1.9) 465 (2.1) 51.0
mean (SD)
FSH (IU/1), mean (SD) 236 (253) 288(30.7) 393(345) 152(188) 689 (323) 529

Fisher's exact tests for allele 1: comparison by POI versus control (P < 0.001); comparison by DOR versus control (P=0.148). Fisher's exact tests for allele 2:
comparison by POI versus control (P =0.903); comparison by DOR versus control (P=0.884). The menopausal ages, values of FSH and AMH of women with

different CGG repeats groups showed no statistically significant difference (P> 0.05)

Abbreviation: POl Primary ovarian insufficiency, DOR Diminished ovarian reserve, FSH Follicle-stimulating hormone, AMH Anti-mullerian hormone

could select women with high risk of POI it has long-
term benefits to family and enables them in planning the
families with an opportunity to adopt alternate methods.
The American College of Obstetricians and Gynecolo-
gists (ACOG) and the European Society of Human
Reproduction and Embryology (ESHRE) recommend
population-based FMRI screening for women younger
than 40 years of age and presenting with ovarian insuffi-
ciency [35, 36]. FMRI testing has a dual role in patients
with ovarian insufficiency: determining the probable
cause of ovarian failure and identifying women at risk of
transmitting mutations to their offspring. However, stud-
ies have shown wide heterogeneity and inconsistency in
the association between FMRI CGG repeats and POI
susceptibility across different ethnicities [15, 37].

FMRI1 premutation carriers showed an increased risk
of POI, especially in a population of European descent
[37]. However, this factor may not contribute to the POI
susceptibility in the Asian population [37, 38]. Studies of

Iranian [39] and Indian [37] populations found no sig-
nificant relationship between the FMRI CGG repeat and
POL Studies from China also showed FMRI premuta-
tion to be an uncommon explanation for POI [18, 19].
The frequency of premutation carriers among Chinese
women with sporadic POI ranges between 0.5 and 0.9%
in three previous studies [17—-19]; these studies analyzed
FMR1 CGG repeats using PCR and capillary electro-
phoresis. Our study shows the premutation frequency in
the POI group was 1.6% using PCR and microfluidic ca-
pillary electrophoresis. A previous study showed that the
repeat sizes determined from both methods were largely
concordant and, on average, were within one repeat size
difference [30]. Then, we speculated that the error rate
within the two methods is acceptable. Our results com-
bined with three previous reports in China, shows the
premutation frequency in Chinese women with sporadic
POI may be 0.87% (6/693). Typically, in healthy women,
the premutation carrier frequency has been reported as
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ovarian insufficiency; DOR diminished ovarian reserve

1/579-1/1955 in China [40-42], 1/781 in Korea [43].
The permutation frequency in Asian women [41] is
much lower than the statistics in white (1/169), African
American (1/124), and Hispanic (1/287) healthy women
[44]. Although limited by sample size, our study found
no statistical difference in the premutation carrier fre-
quency among POI and healthy women. It is possible
that the premutation carrier frequency in Chinese POI
patients is higher than that in healthy women, but the
overall incidence is relatively low in both groups. Further
study with a larger sample size is needed to get a definite
conclusion.

Studies have reported controversial outcomes, wherein
intermediate and normal alleles are associated with POI
frequency [13, 14, 19]. Our study, in agreement with
others, found the distribution of allele 1 in the POI
group was different from healthy women. Another study
from China suggested that the CGG repeats in allele 1,
and not allele 2, were significantly associated with POI
occurrence [17]. The risk of POI occurrence for <26
and 229 CGG repeats in allele 1 was higher than that
for 26-28 CGG repeats. Gleicher et al. [45] demon-
strated that < 26 repeats of both alleles have negative ef-
fects on reproduction.

Various studies also explored the association of FMRI
CGG repeats with DOR. Most of these studies have
shown association of DOR with the number of CGG re-
peats of the FMRI gene [5, 9, 21-24, 46], while few
other studies including ours suggest that the number of
CGGQG repeats of the FMRI gene seems to be independent
of DOR [26, 27]. Our study found no difference in the
CGQG repeats of allele 1 between the DOR and control
groups in Chinese women. Pastore et al. [25] found a
significant difference in the CGG repeats of allele 1 be-
tween the DOR cases and women with a normal repro-
ductive history among the Whites, but not the Asians,

since Asian women seem less likely to have an allele
with <25 CGG repeats than other races [25, 47]. Race
variation may be associated with the different results.

The previously reported frequency of 35—44 repeats is
14.5-17% in the DOR group and 3.9% in the controls [5,
23], suggesting that the CGG repeats of 35-44 may be
markedly overrepresented in women with DOR. We
compared the proportion of 35-44 CGG repeats among
groups in this study, and found no difference of the
prevalence between the DOR group and control. In the
control group, which included women with normal
menopausal age, the frequency of 35-44 CGQG repeats is
28.8%, which is much higher than in previous reports.
The difference might be attributable to the presence of
the secondary modal peak seen in the Asian population.
Women in the present study had a primary modal peak
at 29 to 31 repeats and a secondary modal peak at 36 to
38 repeats of allele 2. Reports showed other Asians such
as Japanese [12, 48] and Indonesians [41] also have a
secondary peak, which was not identified in studies of
western populations [12]. The presence of a secondary
modal peak may be related to varied outcomes across
different races.

The underlying mechanism behind CGG repeats regu-
lating FMRI gene expression in the ovary, and thereby
affecting ovarian function remains unknown. It is un-
clear whether the reduced ovarian reserve represents a
pathological condition resulting from abnormally accel-
erated atresia in a normal antral follicular pool or an ab-
normally small initial pool of oocytes [49]. A recent
study showed that various CGG expansions of an FMRI
allele may lead to changes in RNA level and ratios of
distinct RNA isoforms, which could regulate the transla-
tion and/or cellular localization of fragile X mental re-
tardation protein (FMRP), affecting the expression of
steroidogenic enzymes and hormonal receptors, that
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result in ovarian dysfunction [50]. In addition, Dioguardi
et al. found that the permutation transcript contributes
to the mitochondrial and ovarian abnormalities in per-
mutation mouse models [51]. Studies showed that ovar-
ies from Fmrl knockout mice show increased mTOR
protein [52, 53], and the YAC mice with premutation
CGG repeat show reduced phosphorylated mTOR levels
[54]. Then, both underexpression and overexpression of
mTOR can result in ovarian dysfunction [55]. A recent
study showed a potential relationship between the regu-
lation of FMR1/FMRP expression and the AKT/mTOR
signaling pathway in a human proliferating granulosa
cell model system [56]. The above experiments suggest
the mTOR pathway as a potential therapeutic target.
However, the result of CGG repeats affecting the ovarian
ageing process in various ethnicities is inconsistent, and
the mechanism of heterogeneity in varied ethnicity is
unclear. Further functional studies are needed to explain
the inconsistent results across different ethnicities and
susceptibility to ovarian insufficiency.

The primary strength of this study was the identifica-
tion of women with a well-defined phenotype, independ-
ent of any potential risk factors for analysis of FMRI
CGG@ repeats. Second, as the association FMRI gene and
DOR has not been evaluated, by enrolling both POI and
DOR patients in this study, we could have a comparison
between these two groups in one Center. The primary
limitation of the study however is the relatively small
sample size.

Conclusions

No difference of FMRI alleles in the premutation ranges
were found between POI or DOR and healthy women
and the frequency of premutation was relatively low in
Chinese women. The distribution of allele 1 CGG repeat
in patients with POI showed some different from that in
healthy women. Although FMRI testing has been rec-
ommended in the evaluation of the etiology of ovarian
insufficiency in western countries, screening for the
same among Chinese women is not warranted as the
low frequency of occurrence. Further investigations with
larger sample sizes is necessary to study the incidence of
FMRI expansions in all forms of ovarian insufficiency to
confirm the results of this pilot study.
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