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SUMMARY

CD4+ T cells differentiate into phenotypically distinct
T helper cells upon antigenic stimulation. Regulation
of plasticity between these CD4+ T-cell lineages is
critical for immune homeostasis and prevention of
autoimmune disease. However, the factors that regu-
late lineage stability are largely unknown. Here we
investigate a role for retinoic acid (RA) in the regula-
tion of lineage stability using T helper 1 (Th1) cells,
traditionally considered the most phenotypically
stable Th subset. We found that RA, through its
receptor RARa, sustains stable expression of Th1
lineage specifying genes, as well as repressing
genes that instruct Th17-cell fate. RA signaling is
essential for limiting Th1-cell conversion into Th17
effectors and for preventing pathogenic Th17 re-
sponses in vivo. Our study identifies RA-RARa as a
key component of the regulatory network governing
maintenance and plasticity of Th1-cell fate and
defines an additional pathway for the development
of Th17 cells.

INTRODUCTION

Functional plasticity within cells of the innate and adaptive im-

mune system increases the breadth of response to pathogens

while also limiting responses detrimental to the host. CD4+

T cells diversify into distinct effector subsets upon antigenic

stimulation. Cytokines and other microenvironmental factors

present during T-cell priming direct differentiation via induction

of lineage specifying transcription factors (TFs): T-bet is the

‘‘master’’ regulator for T helper 1 (Th1) cells, RORgt for Th17

cells, and GATA3 directs the Th2 program. In vivo, the presence

of cells that express TFs and cytokines from opposing Th line-
ages indicates flexibility between those subsets. Late-stage

developmental plasticity is potentially perilous: interferon-g

(IFN-g+) Th17 cells have been implicated in several human auto-

immune diseases including inflammatory bowel disease (Annun-

ziato et al., 2007), juvenile idiopathic arthritis (Nistala et al., 2010),

and multiple sclerosis (Kebir et al., 2009); ex-Foxp3+ Th17 cells

play a pathogenic role in rheumatoid arthritis (Komatsu et al.,

2014); and interleukin-17 (IL-17+) Th2 cells have been positively

linked to the severity of asthma (Irvin et al., 2014). Elucidating the

developmental pathways for these hybrid cells and identifying

the factors that regulate Th-cell stability are therefore of critical

importance.

Initial lineage specification is driven by cytokines, which acti-

vate signal transducer and activator and transcription (STAT)

proteins: expression of T-bet is driven by IFN-g-STAT1 and IL-

12-STAT4 (Schulz et al., 2009); RORgt by STAT3 downstream

of IL-6, IL-21, and IL-23 (Zhou et al., 2007). Less is known about

the molecular mechanisms that sustain lineage identity. Epige-

netic modifications stabilize gene expression and as such, are

thought to play a key role in themaintenance of cell-fate commit-

ment. However, the factors that co-ordinate chromatin changes

with evolving TF networks in differentiating Th cells are not fully

defined. One candidate is the vitamin A metabolite, retinoic

acid (RA). RA is known to play a key role in directing the lineage

fate of hematopoietic stem cells (Chanda et al., 2013), dendritic

cells (DCs) (Klebanoff et al., 2013), innate lymphoid cells (ILCs)

(Spencer et al., 2014), andCD4+ T cells (Reis et al., 2013) through

activation of the nuclear RA receptor (RAR). In addition to its

classical role as a transcriptional regulator, recent studies in

embryonic stem cells have identified RA-RAR as an epigenetic

regulator (Kashyap et al., 2013; Urvalek and Gudas, 2014). RA

synthesis is dynamically controlled at sites of T-cell priming dur-

ing inflammation, where RA signaling on T cells has been demon-

strated (Aoyama et al., 2013; Pino-Lagos et al., 2011). These

studies suggest a potential role for RA in Th-cell plasticity.

Indeed, RA is critical for Th1-cell immunity (Hall et al., 2011;

Pino-Lagos et al., 2011) and RA has also been implicated

in Th17-cell differentiation where its impact appears to be
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Figure 1. RA Controls the Balance between

Th1 and Th17 Effector Cells

(A) Splenic CD4+ T cells from dnRara and WT

littermate control mice. Numbers indicate per-

centage CD62LloCD44hi cells (top left) or CD62Lhi

CD44lo T cells (bottom right) gated on CD4+ cells.

(B) Frequency and total number (C) of

CD62LloCD44hi in the CD4+ T-cell population in WT

and dnRara mice (n = 3 or 4 per group).

(D) Intracellular IFN-g and IL-17A expression

in splenic CD4+CD44hi T cells after stimulation

with phorbol 12-myristate 13-acetate (PMA) and

ionoymycin.

(E) Statistical data from cells as in (D).

(F) Quantitative real-time PCR analysis of Tbx21,

Rorc, andGata3 in splenic CD4+CD62loCD44hi cells

(as in 1A), sorted by flow cytometry.

Data are from two or three independent experi-

ments with similar results. Mean ± SEM, *p < 0.05;

****p < 0.0001

See also Figure S1.
dose dependent: physiological concentrations of RA enhance

Th17-cell differentiation in vitro (Takahashi et al., 2012), yet

administration of higher concentrations of RA both in vitro and

in vivo negatively regulates Th17-cell responses (Mucida et al.,

2007; Takahashi et al., 2012; Xiao et al., 2008). Although RARa

has been identified as the critical mediator of RA actions in

CD4+ T cells (Hall et al., 2011), to date a comprehensive analysis

of the transcriptional targets of RARa in CD4+ T cells has not

been reported and the mechanism by which RA regulates these

distinct Th-cell fates remains unresolved.

Here we show that RA-RARa is critical for maintenance of the

Th1-cell lineage. Loss of RA signaling in Th1 cells resulted in the

emergence of hybrid Th1-Th17 and Th17 effector cells. Global

analysis of RARa binding and enhancer mapping revealed

that RA-RARa directly regulated enhancer activity at Th1-cell-

lineage-defining genes while repressing genes that regulate

Th17-cell fate. In the absence of RA signaling, infectious

and oral antigen induced inflammation resulted in impaired

Th1-cell responseswith deviation toward a Th17-cell phenotype.

These findings identify RA-RARa as a key regulatory node that

acts to sustain the Th1-cell response while repressing Th17-

cell fate.

RESULTS

RA-RARa Regulates the Balance between Th1 and
Th17 Cells
To directly assess the role of RA in Th-cell differentiation in vivo

we used mice carrying a sequence encoding a dominant-
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negative form of the RA receptor

RARa (RARa403) targeted to ROSA26

downstream of a loxP-flanked ‘‘stop’’

(lsl) cassette. As shown previously (Pino-

Lagos et al., 2011), interbreeding

with mice expressing Cre recombi-

nase from the Cd4 promoter generates

Cd4crednRaralsl/lsl progeny (dnRara mice)
in which RA signaling is abrogated within the T-cell compart-

ment. In contrast to Rara�/� mice, expression of this dnRARa

disrupts the RA dependent activity of RARa while retaining the

ligand independent effects, allowing the specific analysis of

RA-dependent functions.

To investigate the role of RA in the generation of Th-cell sub-

sets under steady-state conditions, we determined the expres-

sion of cytokines within CD4+ T cells with an activated CD44hi

phenotype. Examination of the peripheral CD4+ T-cell compart-

ment revealed equivalent frequencies and absolute numbers of

CD44hiCD62loCD4+ memory cells in 8-week-old dnRara mice

and in Cre�, wild-type (WT), littermate controls (Figures 1A–

1C). dnRara effector cells displayed reduced production of

IFN-g compared to their WT counterparts with a >5-fold increase

in the frequency of IL-17+ cells (Figures 1D and 1E). Examination

of transcripts for the signature lineage-determining TFs showed

reduced mRNA expression of Tbx21 and significantly higher

expression of Rorc in dnRara effector CD4+ T cells (Figure 1F).

Loss of RA signaling had no impact on Th2 effectors with equiv-

alent levels of Gata3 expression between dnRara and WT mice

(Figure 1F) and similar frequencies of IL-4 producing CD4+

T cells (data not shown).

The frequency and numbers of Foxp3+ T cells in the periphery

and thymus of dnRaramice were similar to control mice (Figures

S1A and S1B), indicating that the increase in Th17 cells was not a

consequence of reciprocal regulation by RA of Foxp3+CD4+

T cells and Th17 cells (Mucida et al., 2007). Therefore it is likely

that under steady-state conditions RA is critical for differentiation

of Th1 cells, while also limiting the differentiation of Th17 cells.



RA Promotes Th1-Cell Differentiation and Inhibits
Development of Th17 Cells from Th1 Cell Precursors
We considered two alternative explanations of why dnRaramice

exhibit reduced memory effector Th1 cells, in parallel with

enhanced Th17 cells. The first possibility was that RA is required

for the development of Th1 cells while independently suppress-

ing the primary differentiation of Th17 cells. The alternative pos-

sibility was that RA is critical in restraining conversion of Th1 cells

to Th17 cells. In order to resolve these two possibilities, naive

CD4+ T cells were differentiated in the presence of Th1 or Th17

polarizing cytokines. dnRara expressing CD4+ T cells differenti-

ated under Th1 cell conditions showed a markedly reduced

capacity for IFN-g production (Figure 2A). Diminished cytokine

production was not a consequence of impaired proliferative

responses as naive CD4+ T cells differentiated under Th1-cell

conditions showed robust proliferation, equivalent to WT cells

(Figure S2A). In addition, upregulation of the activation markers

CD25 and CD44 indicated that dnRara T cells were not impaired

in their ability to differentiate into effector cells (Figure S2B).

Analysis of TF expression showed that ablating RA signaling re-

sulted in a dramatic reduction in the expression of T-bet in CD4+

T cells differentiated under Th1-cell conditions (Figure 2B). Strik-

ingly, a substantial proportion of dnRara Th1 cells expressed

RORgt and co-expression of T-bet and RORgt was observed

at the single-cell level. Although we did not observe intracellular

IL-17A in cells following brief stimulation with phorbol myristate

(PMA) and ionomycin, analysis of supernatants from Th1 polar-

ized cells, reactivated on day 6 of culture on anti-CD3 and

anti-CD28 coated plates for 24 hr in non-polarizing media,

showed increased expression of IL-17A alongside other Th17-

cell-associated cytokines (IL-21 and IL-22) (Figure 2C). Further-

more, mRNA analysis of dnRara Th1 polarized cells revealed

dramatic increases in expression of key signature Th17-cell

genes (Figure 2D). Notably, these Th1 cells displayed the hall-

marks of pathogenic Th17 cells with high amounts of Il23r

expression but reduced amounts of IL-10 mRNA and protein

(Figures 2C and 2D) (Basu et al., 2013).

In order to assess whether enhanced Th17 responses were a

general feature of CD4+ T cells in which RA signaling is disrupted,

naive CD4+ T cells from dnRara mice were differentiated under

Th17 polarizing conditions. In contrast to our observations

above, we did not observe an increase in the frequency of IL-

17+ cells in dnRara mice during primary differentiation into

Th17 cells (Figure S2C), suggesting that RA restrains Th17-cell

differentiation only in the context of a Th1 polarizing cytokine

milieu. In support of this, RORgt expression was not observed

in dnRara expressing naive CD4+ T cells differentiated under

Th0 or Th2 conditions (Figure S2D).

The simultaneous expression of RORgt and T-bet in dnRara

Th1 cells suggested that RA-RARa might act to constrain the

deviation of Th1 committed cells toward the Th17-cell lineage.

To determine whether the RORgt+ cells represented a distinct

T-cell population that arose directly from naive CD4+ T cells or

from previously committed Th1 cells, we interbred IfngeYFP

(Great) reporter mice with the dnRara mice to allow the tracking

of IFN-g+ cells. Naive CD4+ T cells from dnRara-IfngeYFP or litter-

mate control mice were activated under Th1 polarizing condi-

tions. On day 7 of culture, eYFP+ (IFN-g+) cells were FACS sorted

and underwent genome-wide expression analysis. Key signature
Th17-cell genes, including Th17-cell cytokines and receptors for

cytokines that promote Th17-cell differentiation (Il17f, Il21, Il1r1,

Il6ra, and Il23r), were highly expressed in dnRara IFN-g express-

ing cells relative to WT mice, confirming a hybrid Th1-Th17-cell

phenotype (Figure 2E). Of note, these Th1-Th17 cells retained

high expression of Il12rb2 and Cxcr3 mRNA, equivalent to WT

Th1 cells, while also expressing Il23r (Figure S2E). Genes asso-

ciated with the Th2-cell subset such as Gata3 and Il4 were

also dysregulated in dnRara Th1 cells consistent with a role for

T-bet in repression of GATA3 (Zhu et al., 2012). These findings

show that, in the absence of RA signaling, committed Th1-cell

precursors can give rise to cells with a Th17-cell expression

signature providing a new perspective on the origins of Th1-

Th17 cells. Collectively, these data demonstrate that RA is not

only required for Th1-cell differentiation but is also critical in

suppressing Th17-cell development in Th1 polarized cells.

RA-RARa Is Required for Late-Phase, STAT4-Dependent
T-bet Expression in Th1 Cells
Early expression of T-bet following TCR activation is dependent

on IFN-g, whereas late expression of T-bet (post-termination

of TCR signaling) has been shown to be dependent on IL-12

(Schulz et al., 2009). To distinguish a requirement for RA

signaling in Th1-cell commitment from maintenance of Th1-cell

fate, we examined the kinetics of T-bet expression in naive

CD4+ T cells cultured under Th1 polarizing conditions. Induction

of T-bet was observed with comparable amounts of T-bet

expression between WT and dnRara T cells at day 3 of culture,

indicating that RA-RARa signaling is not required for early Th1

lineage commitment (Figure 3A). However, T-bet expression

was not sustained in dnRara Th1 cells, with substantially dimin-

ished expression of T-bet by day 5 of culture. Given that IFN-g

promotes T-bet expression, the expression of T-bet was exam-

ined in the presence of recombinant IFN-g, in order to avoid

potential indirect effects caused by reduced IFN-g production

in dnRara Th1 cells. Exogenous IFN-g enhanced early T-bet

expression in both dnRara and WT Th1 cells but did not rescue

the late (>72 hr) impairment in T-bet expression (Figure 3A).

IFN-g signaling, as measured by STAT1 phosphorylation, was

not impaired at either time point (data not shown).

The late IL-12-dependent peak of T-bet expression observed in

the presence of blocking IFN-g antibodies was abrogated in

dnRara Th1-cell polarized cells (Figure 3A) suggesting impaired

STAT4 activity. At day 3 of culture, comparable amounts of phos-

phorylated STAT4 (pSTAT4) were observed between dnRara and

WT mice. By contrast, at day 6 of culture, IL-12 induced pSTAT4

wasmarkedly impaired in dnRara T cells (Figure 3B) despite com-

parable expression of IL-12Rb2 mRNA and protein expression

and increased expression of Il12rb1 mRNA (Figure 3C and 3D).

Analysis of Stat4 expression, demonstrated impaired induction

of Stat4 in the absence of RA signaling (Figure 3E) with reduced

amounts of total STAT4 protein (Figure 3F). These findings

suggest that the observed reduction in pSTAT4 in dnRara Th1

cells is a consequence of diminished STAT4 expression. Consis-

tent with deviation toward the Th17-cell lineage, we observed

enhanced pSTAT3 activity in Th1-cell polarized dnRara cells

with an increased ratioofpSTAT3/pSTAT4 (FiguresS3AandS3B).

To evaluate whether the impairment in T-bet and STAT4

expression correlated with changes in IFN-g, the time course
Immunity 42, 499–511, March 17, 2015 ª2015 The Authors 501
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Figure 2. RA Signaling Required for Th1-Cell Differentiation and Repression of Th17-cell Fate in Th1-Cell Precursors

Sorted naive CD4+ T cells from dnRara or WT mice were cultured under Th1 conditions for 6 days.

(A) Intracellular expression of IFN-g and IL-17A following stimulation with PMA and ionomycin.

(B) T-bet and RORgt expression. Grey histograms indicate staining for Tbx21–/– (left panel) or isotype control antibody (right panel). Numbers showMFI. Numbers

in quadrants represent percent cells in each.

C) Amount of IL-17A, IL-21, IL-22, and IL-10 in supernatants following restimulation of cells as in (A) with a-CD3 and a-CD28 for 24 hr as measured by multiplex

bead array. Triplicate culture wells.

(D) Quantitative real time PCR analysis of Th1 and Th17-cell signature cytokine and TF genes following stimulation with PMA and ionomycin.

(legend continued on next page)
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Figure 3. RA Required for Late Phase T-bet

Expression

(A) Naive CD4+ T cells from dnRara and WT mice

were differentiated under Th1 conditions with

combinations of IFN-g or IFN-g antibody. T-bet

expression analyzed at the indicated time points.

Histograms gated on CD4+ T cells.

(B) Flow cytometric analysis of STAT4 phosphor-

ylation in naive CD4+ T cells from dnRara and WT

mice differentiated under Th1 conditions. Cells

analyzed directly from culture after 3 days (left

panel) or on day 6 following treatment with (solid

lines) or without (dashed lines) 25 ng/ml IL-12 for

30 min (right panel). Shaded histogram displays

pSTAT4 staining in cells cultured under Th0

conditions.

(C) Cell-surface expression of IL-12Rb2 on day 6 of

culture.

(D) Quantitative real-time PCR analysis of Il12rb1

and Il12rb2 on day 6.

(E) Quantitative real-time PCR analysis of Stat4

in Th1 polarized cells at indicated time points.

Expression relative to naive CD4+ T cells.

(F) Western blot analysis of total STAT4 protein on

day 6 of Th1 culture.

(G) Naive CD4+ T cells from dnRara-IfngeYFP and

control mice were activated under Th1 conditions.

Frequency of IFN-g+ (eYFP+) cells at indicated

time points, gated on viable CD4+.

Data representative of two to three independent

experiments. Mean ± SEM.

See also Figure S3.
of IFN-g expression following initiation of Th1-cell polariza-

tion was analyzed in naive dnRara-IfngeYFP expressing CD4+

T cells. The kinetics of IFN-g induction, as measured by fre-

quency of eYFP+ cells, closely mirrored WT cells during the first

72 hr of culture but expression was not sustained in the absence

of RA signaling (Figure 3G). Collectively, these data show that RA

plays a temporal role in Th1 differentiation, maintaining Th1-cell

commitment through regulation of T-bet and STAT4.

RA-RARa Regulates Th1-Cell Plasticity
Alterations in thestable expressionof lineage-determiningTFsare

thought to underlie Th-cell stability or plasticity. The emergence of

Th1-Th17 cells together with the loss of T-bet expression, sug-
(E) Naive CD4+ T cells from dnRara-IfngeYFP and IfngeYFP mice were cultured under Th1 conditions. IFN-g (eYF

with PMA and ionomycin. Heatmaps displaying the fold changes of genes that were differentially expressed (fo

cytokine receptors (upper panel) and TFs (lower panel). Samples from three independent experiments.

Representative data of at least three (A and B) or two (C and D) independent experiments. Mean ± SEM.

See also Figure S2.

Immunity 42, 499–51
gested a role for RA in the regulation of

Th1-cell plasticity. However, diminished

T-bet and STAT4 activity from day 3 of

primary Th1-cell differentiation prevented

assessment of lineage stability in fully

differentiated Th1 cells. To determine

whether RA-RARa was required for long-

term Th1-cell fate, we differentiated naive
CD4+ T cells from dnRaralsl/lsl mice under Th1-cell conditions,

treated them with TAT-Cre (Wadia et al., 2004) on days 5 and 7,

and restimulated them under Th1-cell conditions for a further

5 days. The temporal loss of RA signaling in Th1 cells resulted in

decreased T-bet expression with a reciprocal increase in RORgt

expression (Figure 4A). �50% of cells expressed RORgt, which

suggests that ongoing RA-RARa activity is critical for sustaining

T-bet and suppressing Th17-cell fate. Alterations in the lineage

determining TFs did not impact on the cytokine phenotype (Fig-

ure S4A). This might in part reflect T-bet independent regulation

of the Ifng locus at late stages in Th1-cell development.

To further examine the role of RA in Th1-cell stability, naive

CD4+ T cells from IfngeYFP mice were differentiated under
P+) cells were sorted on day 7 following stimulation

ld change > 1.5, p < 0.05) for selected cytokines or

1, March 17, 2015 ª2015 The Authors 503
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Figure 4. Loss of RA Signaling in Fully

Committed Th1 Cells Leads to Th1 Plasticity

and Divergence Toward the Th17 Lineage

(A) Naive CD4+ T cells from dnRaralsl/lsl mice were

differentiated under Th1 conditions. Th1 cells were

transduced with TAT-Cre on days 5 and 7 and re-

polarized under Th1 conditions for a further 5 days.

Intracellular expression of T-bet and RORgt.

(B) Naive CD4+ T cells from IfngeYFP mice were

differentiated under Th1 conditions. IFN-g (eYFP+)

cells were sorted on day 7 and restimulated under

Th1 conditions for 5 days in the presence of Veh or

RAi. Intracellular expression of T-bet and RORgt.

Data representative of two independent experi-

ments.

See also Figure S4.
Th1-cell polarizing conditions. eYFP+ (IFN-g+) cells were FACS-

sorted on day 7 of culture and restimulated under Th1-cell con-

ditions in the presence of the RAR inhibitor LE540 (RAi) or vehicle

control (Veh). Inhibition of RA signaling in fully committed Th1

cells propagated for a further 5 days under Th1 conditions re-

sulted in downregulation of T-bet and the emergence of cells

co-expressing RORgt (Figure 4B). Diminished T-bet expression

was associatedwithmodest reductions in IFN-g expression (Fig-

ure S4B). Taken together, these data establish that loss of RA

signaling in fully committed Th1 cells leads to transdifferentiation

to progeny with features of the Th17 lineage and support amodel

where RA constrains late-stage plasticity of Th1 cells.

RA-RARa Regulates Enhancer Activity at Lineage
Determining Th1-Cell Genes
To better understand the molecular mechanism by which RARa

regulates Th-cell fate, we performed genome-wide analysis of

RARa binding in WT Th1 cells by ChIP-Seq, combined with tran-

scriptional profiling of dnRara-expressing Th1 cells in order to

identify functional targets of RARa. Selected loci were validated

by ChIP-qPCR. RARa binding was identified at 1,766 sites in

1,567 genes. RARa binding was detected at 10.3% (76 of 740

genes) of genes downregulated in the absence of RA signaling

(Table S2) (hereafter referred to as positively regulated) and

4.8% (56 of 1,169) of the upregulated genes (Table S3). In keep-

ing with its classical role as a positive regulator of transcriptional

activation there was significant enrichment of RARa binding

at genes positively regulated by RA (Fisher’s exact test, p <

0.0001). However, the presence of RARa at a subset of the nega-

tively regulated genes indicates that RA-RARa also plays a role in

transcriptional repression within Th1 cells.

RA-RARa-dependent loci included Th1-cell lineage-defining

genes (Tbx21 and Stat4-Stat1). In addition to targeting the

Tbx21 promoter (Figures 5A and 5B), modest RARa binding

was observed at the conserved T-bet enhancer element, 12kb

upstream of the transcriptional start site (TSS) (Yang et al.,

2007). This was confirmed by ChIP-qPCR (Figure 5B). Intergenic
504 Immunity 42, 499–511, March 17, 2015 ª2015 The Authors
RARa was also detected at the Stat4-

Stat1 locus and an Ifng enhancer element

(Figures S5A and S5B).

RA binding to nuclear RARa results in

recruitment of co-activator complexes
containing the histone acetyl-transferases p300 and CBP (Kamei

et al., 1996). p300 is highly enriched at enhancer regions where it

acetylates H3K27, a marker of active enhancers (Rada-Iglesias

et al., 2011), suggesting a possible role for RA-RARa in regulating

enhancer activity. To test this, we mapped genome-wide binding

of p300, H3K4me1, H3K4me3, and H3K27ac histone modifica-

tions in dnRara and WT Th1-cells, validating selected regions by

ChIP q-PCR. Active enhancers were operationally defined as re-

gions with increased intensity of H3K4me1, p300, and H3K27ac

with low or absent H3K4me3 (Rada-Iglesias et al., 2011).

RARa binding at the Tbx21, Stat4, and Ifng loci co-localized

with p300 binding at enhancer regions (Figures 5A and S5A).

dnRARa lacks the activation function 2 (AF2) domain which is

required for RA-dependent recruitment of coactivators. Consis-

tent with this, dnRara expressing T cells exhibited a significant

reduction in p300 occupancy and H3K27ac deposition at the

Tbx21 enhancer, supporting the direct regulation of enhancer

activity by RA-RARa (Figures 5A and 5C). p300 binding at the

Ifng and putativeStat4 intergenic enhancers was also dependent

on RA-RARa (Figures S5A and S5C). Loss of p300 binding at the

Stat4-Stat1 intergenic enhancer in dnRara Th1 cells correlated

with reduced Stat4 transcripts, whereas Stat1 expression was

actually increased, suggesting that this enhancer element regu-

lated Stat4 transcription. A recent study identified a role for

STAT4 in the regulation of Th1 enhancers (Vahedi et al., 2012).

Given that STAT4 expression was reduced in dnRara Th1 cells,

it was possible that the loss of p300 was in part due to reduced

expression of STAT4. To address this issue, we assessed the

binding of STAT4 in WT Th1 cells and compared p300 occu-

pancy in WT and Stat4–/– Th1 cells using publicly available

ChIP-seq data (Table S1) (Vahedi et al., 2012; Wei et al., 2010).

Although STAT4 binding was observed at the Tbx21 enhancer,

loss of STAT4 was not associated with obvious differences in

p300 binding (Figure S5D), arguing for a direct contribution of

RARa to p300 recruitment and enhancer activity. Collectively,

these data show that RA regulates expression of key Th1-cell

lineage genes through remodeling of enhancer regions.



RA-RARaRepresses Th17-Cell Fate in Th1Cells through
Direct Regulation of Th17-Cell Genes
The earlier finding that Th1 cells acquired features of Th17 cells in

the absence of RA signaling led us to evaluate direct regulation of

Th17-cell-instructing genes by RA-RARa. We first investigated

effects of RA on the Th17-cell pioneer factors BATF and IRF4.

As previously reported (Basu et al., 2013), these genes were ex-

pressed in WT Th1 cells. Strikingly, kinetic analysis of Batf and

Irf4 expression in naive cells stimulated under Th1-cell condi-

tions revealed dramatic upregulation of IRF4 (40- to 60-fold) dur-

ing the initial phase of Th1-cell polarization with comparable

expression between dnRara and WT cells (Figure 5D). Loss of

RA signaling resulted in derepression of BATF-IRF4 target

genes, Rorc, Il23r, Il22, Il21, and Il12rb1 (Figure 5E). This

suggested that ‘‘balancing’’ factors must be induced in an

RA-dependent manner to restrict the actions of BATF-IRF4 com-

plexes at Th17-cell genes. IRF8, an alternative binding partner

for BATF, previously shown to suppress Th17 differentiation

(Ouyang et al., 2011), was one of the RARa target genes most

suppressed in dnRara Th1 cells. In WT Th1 cells, induction of

Irf8 expression paralleled Irf4 expression. However, in dnRara

cells Irf8 expression was not sustained past 24 hr (Figure 5D).

RARa bound at a putative upstream enhancer (Figures 5F and

5G) and in the absence of RA signaling, reduced p300 and

H3K27ac were observed at this locus (Figure 5H and 5I).

Together, these data show that RA directly regulates expression

of IRF8 in Th1 differentiating cells and suggests a potential

mechanism by which BATF-IRF4 activity is constrained within

early Th1 cells.

Transcriptional activation of BATF-IRF4 target genes is depen-

dent on STAT3 and RORgt (Ciofani et al., 2012). Various genes

for cytokines and cytokine receptors associated with STAT3

activation (Il21, Il1r1, Il6ra, and Il23r) were derepressed in dnRara

Th1 cells (Figure 5E). RARa targeted the promoter and an up-

stream enhancer in the Il6ra locus (Figure 5G) with increased

H3k27ac observed at the enhancer element in dnRara Th1 cells

(Figure 5J). Consistent with this, dnRara Th1 cells failed to down-

regulate mRNA and cell-surface IL6-Ra expression during Th1

polarization (Figures S5E and S5F). These findings suggest

that RA regulates Th1-cell plasticity in part by inhibiting respon-

siveness to IL-6.

RORgt was not a direct target of RARa. However, disruption

of RA signaling resulted in increased expression of Runx1, a TF

associated with transactivation of Rorc (Figure S5E) (Zhang

et al., 2008). ChIP analysis confirmed direct regulation of short

and long Runx1 isoform promoters by RA-RARa (Figure 5G).

In Th1 cells, the Rorc locus is epigenetically silenced by T-bet

(Mukasa et al., 2010). However, in dnRara cells, the repressive

H3K27me3 mark was reduced at RORgt isoform-specific exon

(Figure 5K), consistent with loss of T-bet. These findings suggest

that increasedRORgt expression in theabsenceofRARasignaling

is in part due to increased accessibility of the Rorc locus, with un-

restrained activation by Runx1. Collectively these data indicate

that RA-RARa antagonises the activity of the core Th17-cell in-

structing TFs (IRF4, BATF, STAT3, and RORgt), both directly and

indirectly, to suppress the Th17-cell gene program. Notably,

Th2-cell-associated genes were not identified as targets of

RARa (TablesS2andS3) suggesting thatdirect repressionofalter-

native cell fates by RA-RARa is specific to the Th17-cell program.
Th1-like Th17 Cells Emerge during Infection with
L. monocytogenes in the Absence of RA Signaling
To assess the significance of these findings for immune re-

sponses in vivo, we intravenously infected WT and dnRara

mice with an attenuated strain of L. monocytogenes (DActA),

Lm-2W, which allows tracking of CD4+ T cells specific for

listeriolysin O peptide LLO190–201 (LLOp). At the peak of the

response, CD4+ T cells were isolated from the spleen and

LLOp antigen-specific T cells were assayed for expression of

cytokines and the TFs, T-bet, and RORgt. dnRara mice

mounted an effector-T-cell response of similar magnitude to

WT mice with comparable frequencies and total numbers of

CD44hiLLOp:I-Ab-specific CD4+ T cells (Figures 6A and 6B). In

WT mice, Lm-2W induced a Th1-cell restricted response, as

evidenced by high T-bet expression within the LLOp-specific

T-cell fraction (Figure 6C). LLOp:I-Ab+ CD4+ T cells from dnRara

mice expressed lower amounts of T-bet and a substantial

proportion expressed RORgt, with co-expression of these TFs

observed in a subset of cells (Figure 6C). At day 7 post-infec-

tion, a significant proportion of CD4+ T cells isolated from the

spleen of dnRara mice were IL-17+ or dual IL-17A+IFN-g+ with

a trend toward reduced frequency of IFN-g+ cells (Figure 6D).

Measurement of cytokine protein concentrations from spleno-

cytes restimulated with LLOp confirmed reduced amounts of

IFN-g and concomitant increase in IL-17A (Figure S6A). We

did not detect IL-4 production by intracellular staining or protein

secretion (Figure S6A and S6B). Consistent with our in vitro data

showing downregulation of IL6-Ra on WT Th1 cells, cell-sur-

face IL-6Ra was not detectable on WT LLOp:I-Ab+ CD4+

T cells. However, dnRara LLOp:I-Ab+ CD4+ T cells retained

expression of IL-6Ra (Figure S6C), supporting a potential role

for IL-6 signaling in the regulation of Th1-cell plasticity. These

findings establish that RA-RARa signaling in T cells constrains

the emergence of Th17 cells in a Th1-cell-instructing micro-

environment in vivo.

RA Regulates the Th1-Th17-Cell Axis in the Gut and
Prevents the Development of Intestinal Inflammation
RA is constitutively synthesized by a subset of DCs in the gut.

To address the physiological importance of RA signaling

in the regulation of pathogenic intestinal CD4+ T cells, we inter-

bred dnRara mice with OTII mice that transgenically express an

ovalbumin (OVA)-specific TCR and transferred naive CD4+

T cells from OTII(dnRara) or WT OTII mice into Rag1�/� hosts.

Recipients were maintained on an OVA-containing diet for

7 days to induce differentiation within the transferred cells and

migration to the intestinal tissue. Consistent with the infection

experiments, feeding OTII(dnRara)-recipient mice OVA resulted

in a shift in the Th1-Th17-cell balance with a deficiency in IFN-g-

producing cells and increased frequency of IL-17+ and dual

IFN-g+IL-17+ cells in the mesenteric lymph node (MLN), lamina

propria lymphocytes (LPL), and spleen (Sp), 7 days after transfer

(Figures 7B and 7C). To address the functional significance of

the dysregulated cytokine response in dnRara T cells, we orally

challenged mice with OVA and evaluated them for development

of intestinal inflammation and diarrhea (Figure 7A). Recipients of

OTII(dnRara) cells developed accelerated wasting disease rela-

tive to mice that received WT OTII cells (Figure 7D). Whereas all

of the recipients of OTII(dnRara) cells developed severe diarrhea
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Figure 6. RA Signaling Required to Prevent

the Generation of Th17 Cells during Infec-

tion with L. monocytogenes

(A) Frequency of LLOp:I-Ab CD4+ T cells isolated

from spleen of dnRara and WT mice 7 days

after infection with an attenuated strain of

L. monocytogenes (Lm-2W). Gated on CD4+

T cells.

(B) Absolute numbers of LLOp:I-Ab CD4+ T cells

as in (A).

(C) Intracellular T-bet and RORgt expression gated

on LLOp:I-Ab CD4+ T cells.

(D) Intracellular staining for IFN-g and IL-17A

following stimulation of splenocytes with LLOp for

6 hr, 7 days after infection with Lm-2W. Gated on

CD4+ T cells. Right panel shows statistical data

pooled from three independent experiments (3–6

mice per group).

Representative data of at least three (A and B), or

two independent experiments (C). Mean ± SEM.

See also Figure S6.
by day 12 (Figure 7E), recipients of WT cells remained diarrhea

free. Cytokine production was also assessed after the first

gavage and confirmed an increased frequency of IL-17+ cells

with concomitant reduction in IFN-g+ cells. Notably, enhanced

IL-17 responses were not a consequence of impaired Foxp3+

conversion (Figure 7F). Homing of transferred cells to the gut

was not affected in this model with similar frequencies of

CD4+ T cells detected in the gut tissues (Figure S7A). We

conclude that loss of RA signaling leads to deviation from Th1

to Th17 phenotype both in the periphery and the gut where

these Th17 cells are associated with significant intestinal

inflammation.
Figure 5. RA-RARa Regulates Enhancer Activity at Th1 Lineage Associated Loci and Represse

Naive CD4+ T cells from WT and dnRara mice were cultured for 6 days under Th1 conditions prior to chrom

(A) ChIP-seq binding tracks at Tbx21 locus for RARa in WT Th1 cells and p300 binding, H3K27ac, H3K4me1,

cells.

(B) Validation of the RARa-binding regions in WT Th1 cells by ChIP-qPCR. Untr6 region serves as a negative c

‘‘Enrichment.’’

(C) The effects of dnRara expression on p300 and H3k27ac abundance at the Tbx21 locus were validated b

(D) Quantitative real-time PCR analysis ofBatf, Irf4, and Irf8mRNA in naive CD4+ T cells from dnRara orWT ce

48, 72 hr. Mean ± SEM, replicate wells.

(E) Log2 values of fold changes in gene expression as measured by microarray analyses. Average fold chan

(F) ChIP-seq binding tracks at Irf8 locus for cells as in (A).

(G) Validation of RARa ChIP-seq regions by ChIP-qPCR.

(H–J) ChIP analysis of p300 and H3K27ac at selected loci.

(K) ChIP analysis of H3K27me3 at the RORc locus. Actb locus serves as a negative control.

Data from three independent experiments (E) or representative of two independent experiments (B–D, G–K);

pro, promoter.

See also Figure S5.
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DISCUSSION

Dysregulated Th-cell responses underlie

the pathogenesis of autoimmune and

allergic disease. In contrast to T regulato-

ry (Treg) cells and Th17 cells, the Th1-cell

lineage is thought to be relatively stable.

However, the factors that control mainte-

nance of the Th1-cell lineage were not
previously known. This study identifies RA-RARa as a central

regulatory node in the transcriptional network governing Th1-

cell stability. We found that RA-RARa directly sustained the

expression of lineage determining Th1-cell-associated genes

during naive T-cell differentiation while also repressing signature

Th17-cell-associated genes. Ablation of RA signaling in Th1-

committed cells resulted in enhanced Th1-cell plasticity with

deviation towards a Th17-cell phenotype. Using ChIP-seq to

identify regulatory elements, we found that RARa bound at en-

hancers and recruitment of p300 to these regions was depen-

dent on RA signaling. In vivo, both Th17 and Th1-Th17 cells

emerged during infection with L. monocytogenes and in a model
s Th17 Genes

atin precipitation and transcriptional profiling.

and H3K4me3 modifications in WT and dnRara Th1

ontrol. Binding events per 1,000 cells displayed as

y ChIP-qPCR.

lls differentiated under Th1-cell conditions for 0, 24,

ge depicted.

Mean ± SD unless noted otherwise. Abbreviation:
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Figure 7. Loss of RA Signaling Causes Dysregulated Th1 and Th17 Response and Increased Pathogenicity in a Model of Gut Inflammation

(A) Schematic illustration of the adoptive transfer experiment.

(B) Intracellular expression of IL-17A and IFN-g among CD4+ cells from the spleen (Sp), mesenteric lymph nodes (MLN), and lymphocytes from the lamina propria

(LPL) of mice as in (A) 7 days after transfer.

(C) Statistical data for frequency of IFN-g+, IL-17+, and IFN-g+IL-17+ cells as in (B) in MLN and Sp.

(D) Percentile change of original body weight in Rag1�/� recipients treated as in (A) (n = 5–7 per group). Mean ± SD.

(E) Frequency of diarrhea-free mice among Rag1�/� recipients as in (A) (OTII recipients n = 3, OT-II(dnRara) recipients n = 5).

(F) Frequencies of IL-17, IFN-g, and Foxp3 in CD4+ cells isolated from Sp, MLN, LPL, and IELs of mice as in (A), 9 days after transfer (n = 5 or 6 per group).

Data from one experiment (B and C), pooled from two independent experiments (D and F), or representative of two independent experiments (E). Mean ± SEM

unless otherwise noted.
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of oral tolerance. In the latter, their presencewas associated with

significant pathology.

Enhancers play a key role in directing cell fate through the

regulation of lineage specifying genes. Enhancer profiling in

WT and dnRara T cells revealed RA-dependent activation of en-

hancers at genes critical for Th1 identity (Tbx21, Stat4, Ifng, and

Irf8). RA-dependent changes in p300 and H3K27ac were re-

flected at the transcriptional level suggesting that, in addition

to its classical role as a transcriptional regulator, RA regulates

gene expression in an enhancer-dependent manner. Although

the ability of RA-RARa to target p300-CBP complexes to nucle-

osomes is well established, regulation of enhancers by RA has

not been widely studied. We propose that unliganded RARa at

enhancer elements acts as a gatekeeper, enabling initiation of

enhancer activation once T cells sense RA in the microenviron-

ment. A similar role has been demonstrated for STAT proteins

(Vahedi et al., 2012), suggesting that environmental cues act

as checkpoints for initiation of enhancer activation and T-cell

fate. Although H3K4me1 modifications are present at early

time points during T-cell differentiation, conversion to ‘‘active’’

status requires acquisition of H3K27ac, which is often not

evident until later stages of differentiation (Hawkins et al.,

2013). Consistent with a temporal role for enhancers in mainte-

nance of gene expression, RA signaling was not required for initi-

ation of transcription of target genes but rather acted to maintain

their expression. These data highlight the importance of en-

hancers in maintenance of cell identity and plasticity. It is

possible that RA-RARa regulation of enhancers represent the

major mechanism by which RA regulates cell fate. A recent study

identified enrichment of RARa at enhancers in embryonic stem

cells (Chen et al., 2012). Given that the RA-RARa axis is a highly

conserved signaling pathway, which plays a critical role in regu-

lating cell-fate specification during embryogenesis and cell dif-

ferentiation, it will be important to evaluate a broader role for

RA-RARa in regulation of enhancer functionality, both in alterna-

tive Th-cell subsets and outside of the immune system.

In addition to sustaining expression of Th1-cell-associated

genes, we found that RA actively silences genes implicated in

Th17-cell differentiation. Among genes known to regulate the

Th17-cell program, Runx1 and Il6ra were directly repressed by

RA-RARa. In addition, BATF-IRF4 target genes were dere-

pressed in the absence of RA signaling. In Th17 cells, BATF-

IRF4 complexes act co-operatively as pioneer factors at key

Th17 genes (Ciofani et al., 2012), modulating chromatin accessi-

bility to facilitate binding of STAT3 and RORgt. On the basis of

their expression in alternative Th-cell subsets, it has been sug-

gested that BATF-IRF4 complexes play a universal role in estab-

lishing binding of lineage-specific TFs (Ciofani et al., 2012).

However, BATF deficiency does not impact on Th1-cell differen-

tiation (Schraml et al., 2009). An alternative model is that upregu-

lation of BATF and IRF4 confers plasticity in early Th1 cells,

poising chromatin specifically at Th17-cell-associated genes.

IRF8, an alternative binding partner for BATF, negatively regu-

lates Th17-cell differentiation (Ouyang et al., 2011). Our results

identified IRF8 as a member of the Th1-cell transcriptional

network whose expression was critically dependent on RA

signaling. Induction of IRF8 would be expected to limit plasticity

of Th1 cells by repressing Th17 differentiation, potentially by

competing for binding to BATF. In support of a role for IRF8 in
regulation of Th1-Th17 axis, patients with mutations in IRF8

have impaired Th1 responses (Hambleton et al., 2011) and single

nucleotide polymorphisms (SNPs) in Irf8 are associated with

several autoimmune diseases in which IFN-g+ Th17 cells play a

pathogenic role (Franke et al., 2010; Cunninghame Graham

et al., 2011). It will be of interest to identify transcriptional targets

of BATF, IRF4, and IRF8 in Th1 cells.

RA signaling was critical to maintain appropriate Th1-cell

responses and suppress the development of IL-17+ and IFN-

g+IL17+ cells. Hybrid Th1-Th17 cells are implicated in the patho-

genesis of several autoimmune diseases. Their development has

been attributed to the plasticity of Th17 cells. Our findings sug-

gest that these cells might alternatively reflect Th1 plasticity

and suggest a novel developmental pathway for Th17 cells.

Th1 derived ‘‘Th17’’ cells expressed high levels of the receptor

for IL-23, a critical determinant of Th17 pathogenicity (Basu

et al., 2013), and were associated with significant gut inflamma-

tion and pathology in a model of oral tolerance. Further experi-

ments are required to test the prediction that pathogenic Th17

and IFN-g+IL-17+ cells which arise in autoimmunity emerge

from Th1 cells when RA is deficient or its signaling perturbed.

A range of inflammatory stimuli can induce RA synthesis and

signaling during the course of an immune response. Our results

suggest that in a Th1-cell instructing microenvironment the

dominant action of RA is to repress Th17-cell fate and promote

Th1-cell responses. We did not observe enhanced Th17-cell

responses during primary Th17-cell differentiation, suggesting

that the impact ofRAonT-cell stabilitymight varyboth temporally

and among tissues. Previously we have shown in a model of skin

allograft rejection that impaired Th1 responses in dnRara mice

were accompanied by increased Th2-cell cytokines (Pino-Lagos

et al., 2011). We did not identify direct repression of Th2-cell-as-

sociated genes by RARa. However, T-bet suppresses GATA3

(Zhu et al., 2012) and in the presence of a Th2 skewing micro-

environment, such as the skin, impaired expression of T-bet in

the absence of RA signaling renders cells susceptible to Th2 de-

viation. Thus, the effects of RA on T-cell fate are likely dependent

on external and intrinsic factors that shape T-cell polarity.

In summary, we show that RA signaling plays a critical role in

regulating stability and functional plasticity of Th1 cells. Regula-

tion of enhancer activity at lineage determining genes by RA-

RARa provides mechanistic evidence for reciprocal regulation

of Th1 and Th17-cell programs. In the absence of RA signaling,

downmodulation of T-bet, STAT4, and IFN-g, and loss of repres-

sion of Th17-cell genes, creates a permissive environment for

transdifferentiation of Th1 cells to Th17 cells. This study iden-

tifies the RA-RARa axis as a potential node for intervention in

diseases in which dysregulation of the Th1-Th17-cell axis is

observed.
EXPERIMENTAL PROCEDURES

Mice

C57Bl/6 dnRara mice have been described previously (Pino-Lagos et al.,

2011). IfngeYFP (GREAT) mice were purchased from the Jackson Laboratory.

Mice were bred and maintained at Charles River Laboratory, UK, in path-

ogen-free conditions. All animal experiments were conducted in accordance

with the UK Animals (Scientific Procedures) Act 1986. C57Bl/6 OTII(dnRara),

OTII, andRag1�/�micewere bred andmaintained at the Rockefeller University

specific pathogen-free animal facility.
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Cell Isolation, Cell Culture, and Flow Cytometry

Sort purified, naive CD4+CD25–CD44loCD62Lhi T cells were cultured with T-cell

depleted splenocytes (APCs) and anti-CD3 under polarization conditions for

Th0, Th1, Th2, and Th17-cell-associated subsets. Details are provided in the

Supplemental Experimental Procedures. For analysis of cytokine production,

cells were restimulated with 100 ng/ml phorbol 12-myristate 13-acetate (PMA)

and 500 ng/ml ionomycin in the presence of monensin for 4–5 hr at 37�C. Cells
were stained with LIVE/DEAD Dead Cell Stain (Invitrogen), followed by staining

for cell-surface markers and then fixed and permeabilized (BD Biosciences)

for staining of intracellular antigens. Flow cytometry was performed on a LSR

Fortessa (BD Biosciences) and analyzed with Flowjo software (Tree Star).

TAT-Cre Transduction

Sort purified naive CD4+ T cells were differentiated under Th1 conditions. After

5 days, cells were treated with 50 mg/ml TAT-Cre peptide for 45 min at 37�C,
then washed and expanded in IL-2-containing medium. After 48 hr cells

were retreated with Tat-Cre followed by polarization under Th1 conditions.

Real-Time Quantitative PCR

Total RNA was extracted from cells with RNeasy Mini kit (QIAGEN) and cDNA

was synthesized with Qscript RT kit (Quanta). Quantitative gene-expression

analysiswasperformedusingTaqmanprimer probe sets (AppliedBiosystems),

listed in Table S4. Expression of target genes was normalized to b-actin.

Microarray Gene-Expression Profiling

For gene-expression analysis Affymetrix (for IfngeYFP dataset) or Agilent (for

the dnRara Th1 dataset) microarray chips were used. Differentially expressed

genes were detected using fold-change and t test analysis. See Supplemental

Experimental Procedures for further information.

Chromatin Immunoprecipitation and ChIP-Seq

Immunoprecipitation and DNA sequencing was performed by Active

Motif. The following antibodies were used: anti-H3K27me3 (Millipore 07–

449), anti-p300 (Santa Cruz sc–551X), anti-H3K4me1 (Active Motif 39287),

anti-H3K4me3 (Active Motive 39159), anti-H3K27ac (active Motif 39133),

anti-RARa (Diagenode C15310155). Illumina sequencing libraries were pre-

pared from the ChIP and Input DNAs. For ChIP q-PCR, enrichment calculated

as binding events per 1,000 cells using Active Motif’s normalization scheme.

Detailed methods for ChIP-seq and binding site analyses are provided in the

Supplemental Information.

L. monocytogenes Infection

Mice were infected i.v. with 1 3 106 cfu L. monocytogenes and spleens were

harvested 7 days later. Splenocytes were enriched for CD4+ T cells with a

CD4+ T-cell negative selection microbead kit (Miltenyi Biotec) and stained

with PE labeled, LLO:I-Ab dextramer (Immudex) and cell-surface antibodies.

For analysis of intracellular cytokine production, splenocytes were restimu-

lated with LLO peptide (PiProteomics) at 10 mg/ml for 6 hr.

Food-Antigen-Induced Diarrhea Model

Naive CD4+ T cells from OTII or OTII(dnRara) were intravenously transferred

to Rag1�/� mice. These mice were then maintained on a diet containing

OVA for 7 days and challenged with oral OVA on days 9 and 10. Lymphocytes

were isolated from the intestinal epithelium, lamina propria, MLN, and spleen

at the indicated time points after the start of oral OVA exposure of the recipient

mice. Detailed experimental procedures are described in the Supplemental

Experimental Procedures.

Statistical Analysis

Statistical significance was calculated by unpaired two-tailed Student’s t test

with Graphpad Prism software. p values < 0.05 were considered significant.

p values are denoted in figures as follows: *, p < 0.05; **, p < 0.01; ***, p <

0.001; ****, p < 0.0001.

ACCESSION NUMBERS

Chip-seq and microarray data are available under GEO accession number

GSE60356.
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ization and imprinting of type 1 T helper lymphocytes by interferon-gamma and

interleukin-12. Immunity 30, 673–683.

Spencer, S.P., Wilhelm, C., Yang, Q., Hall, J.A., Bouladoux, N., Boyd, A.,

Nutman, T.B., Urban, J.F., Jr., Wang, J., Ramalingam, T.R., et al. (2014).

Adaptation of innate lymphoid cells to a micronutrient deficiency promotes

type 2 barrier immunity. Science 343, 432–437.

Takahashi, H., Kanno, T., Nakayamada, S., Hirahara, K., Sciumè, G., Muljo,
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