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Abstract: Background and aim: Tumor staging in non-small cell lung cancer (NSCLC) is important
for treatment and prognosis. Staging involves expert interpretation of imaging, which we aim to
automate with deep learning (DL). We proposed a cascaded DL method comprised of two steps to
classification between early- and advanced-stage NSCLC using pretreatment computed tomography.
Methods: We developed and tested a DL model to classify between early- and advanced-stage using
training (n = 90), validation (n = 8), and two test (n = 37, n = 26) cohorts obtained from the public
domain. The first step adopted an autoencoder network to compress the imaging data into latent
variables and the second step used the latent variable to classify the stages using the convolutional
neural network (CNN). Other DL and machine learning-based approaches were compared. Results:
Our model was tested in two test cohorts of CPTAC and TCGA. In CPTAC, our model achieved
accuracy of 0.8649, sensitivity of 0.8000, specificity of 0.9412, and area under the curve (AUC) of 0.8206
compared to other approaches (AUC 0.6824–0.7206) for classifying between early- and advanced-
stages. In TCGA, our model achieved accuracy of 0.8077, sensitivity of 0.7692, specificity of 0.8462,
and AUC of 0.8343. Conclusion: Our cascaded DL model for classification NSCLC patients into
early-stage and advanced-stage showed promising results and could help future NSCLC research.

Keywords: non-small cell lung cancer; computed tomography; deep learning; convolutional neural
network; autoencoder

1. Introduction

Non-small cell lung cancer (NSCLC) accounts for 85% of lung cancers and proper
staging provides critical information for treatment and prognosis [1]. Staging tumors
depends on image interpretations performed by experts [2]. The current staging of NSCLC
is based on the size and extent of the tumor, the degree of spread to lymph nodes, and the
degree of metastasis [3]. Since improving survival in advanced patients with stage II-IV is
difficult and treatment methods should be tailored to the progress of the disease, accurate
staging of early-stage patients is crucial [4,5].

Radiomics is an approach where features related to staging are available [6]. Imaging
data are transformed into mathematically defined high-dimensional features focusing
on tumor appearance and intra-tumoral heterogeneity and researchers can mine features
related to diagnosis and prognosis [7]. Palumbo et al. [8] used shape and texture fea-
tures from PET/CT to classify solitary pulmonary nodule into malignant and benign
and showed better performance than using standard imaging features alone. Features
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adopted in radiomics are considered as handcrafted features because they are based on
the experts’ mathematical knowledge [9]. There are hundreds and sometimes thousands
of features in radiomics and thus the features are likely to include information needed in
staging [6]. Even if there are many radiomics features, we could still be missing uncovered
abstract information from imaging data that is not properly modeled according to current
knowledge [10].

Recently, a subdiscipline of machine learning known as deep learning (DL) has
emerged and made a significant impact in medical image analysis, capitalizing on the
advances of computing hardware, algorithms, and big data [10]. The neural networks of
DL extract features in a data-driven fashion and thus could uncover potentially missing
abstract radiomics information using handcrafted features. Noting this potential, Bianconi
et al. [11] applied deep learning methods for semi-automated segmentation of pulmonary
nodules on CT and showed that deep learning methods outperformed conventional meth-
ods such as edge detection. Paing et al. [12] applied back propagation network and machine
learning methods to classify T-stage of lung tumors. Nibali et al. [13] extracted lung nodule
patches from coronal, sagittal, and axial views and used three separate DL networks to
distinguish between benign and malignant nodules in lung cancer. Ciompi et al. [14] used
an ensemble classifier to classify pulmonary peri-fissural nodules. Jiang et al. [15] proposed
multi-resolution residual networks to perform lung tumor segmentation.

In this thesis, we proposed a serial DL method to classify between early- and advanced-
stage NSCLC using pretreatment computed tomography (CT). Our method was trained
and tested for overall pathological staging information from six publicly available datasets.
The first step of our method contained an autoencoder to compress the imaging data into
latent variables. The second step used the latent variable to classify the stages using the
convolutional neural network (CNN). The overall workflow of this study is shown in
Figure 1. Our main contribution was to adapt a well-established DL methodology to solve
an important clinical problem.

Figure 1. Overall workflow.

2. Materials and Methods
2.1. Patient Cohorts and Imaging Data

We obtained six NSCLC cohorts with pathological staging information from the
public domain of the cancer imaging archive (TCIA). This study was a retrospective anal-
ysis of anonymized data and institutional review board (IRB) approval was obtained at
Sungkyunkwan University. All data were obtained with informed written consent. The co-
horts were NSCLC-Radio-genomics [16–19], NSCLC-Radiomics-Genomics [19–21], CPTAC-
LUAD [19,22], CPTAC-LSCC [19,23], TCGA-LUAD [19,24], and TCGA-LUSC [19,25] co-
horts. The CPTAC-LUAD and TCGA-LUAD contained lung adenocarcinoma and the
CPTAC-LSCC and TCGA-LUSC contained lung squamous cell carcinoma. The first two
cohorts were combined and used as training and validation sets. The CPTAC-LUAD and
CPTAC-LSCC cohorts were combined and used as the first test set. The TCGA-LUAD
and TCGA-LUSC cohorts were combined and used as the second test set. Some patients
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had both contrast-enhanced and non-contrast CT, while some patients had only one. We
included patients with non-contrast CT that led a total of 65 in NSCLC-Radio-genomics, 33
in NSCLC-Radiomics-Genomics, 17 in CPTAC-LUAD, 20 in CPTAC-LSCC, 13 in TCGA-
LUAD, and 13 in TCGA-LUSC cases. The cases were further grouped into training (n = 90),
validation (n = 8), CPTAC-test cohorts (n = 37) and TCGA-test cohort (n = 26). Details
regarding patient information are given in Table 1. The six cohorts had non-contrast CT
imaging performed with various scanners, obtained with the following parameters: detec-
tor collimation 0.3184 to 1.3672 mm; reconstruction interval 0.5 to 5 mm. The most typical
CT imaging setting was the 0.625 mm detector collimation and 1.34 mm reconstruction
interval. Some cohorts, NSCLC-Radio-genomics and NSCLC-Radiomics-Genomics, did
not provide the overall pathological stage, but provided TNM staging information. TNM
represents the size and extent of the main tumor, the spread to nearby lymph nodes, and
the metastasis to distant sites, respectively. Thus, we computed the overall stage using
the available TNM stage information provided by the open database according to the
American Joint Committee on Cancer staging manual (7th version) [3]. The stages were
binarized to early-stage (stage I) and advanced-stage (stages II-IV).

Table 1. Patient information for various cohorts.

Training and Validation CPTAC-Test TCGA-Test

NSCLC-Radio-
Genomics

NSCLC-Radiomics-
Genomics

CPTAC-
LUAD

CPTAC-
LSCC

TCGA-
LUAD

TCGA-
LUSC p-Value

n 65 33 17 20 13 13
Age

mean (STD)
68.97

(9.1532) N/A 68.47
(6.30)

68.05
(6.36)

68.08
(10.56)

68
(11.53) 0.9023

Sex 0.6943
Male 49 25 10 13 8 9

Female 16 8 7 7 5 4
N stage

N0 54 24 15 16 10 9
N1 4 7 2 4 - 3
N2 7 2 - - 3 1

Early stage
Stage I 45 17 8 12 8 5

Advanced-stage
Stage II 9 13 11 4 1 6
Stage III 9 2 1 1 3 2
Stage IV 2 1 - - 1 -

The NSCLC-Radio-genomics and NSCLC-Radiomics-Genomics cohorts were com-
bined into one set and we randomly split them into training cohort (n = 90) and validation
cohort (n = 8) keeping the relative frequency of early- and advanced-stage (i.e., 0.63 and
0.37) similar between cohorts. The validation cohort was used to tune the hyperparameters
of the two networks. We combined CPTAC-LUAD and CPTAC-LSCC cohorts to form the
first test cohort (CPTAC-test, n = 37) and combined TCGA-LUAD and TCGA-LUSC to
form the second test cohort (TCGA-test, n = 26). The datasets were assigned based on the
data collection institutions.

2.2. Data Preprocessing

We focused on primary tumors. For cohorts with tumor region of interest (ROI) (i.e.,
NSCLC-Radio-genomics and NSCLC-Radiomics-Genomics), the center of the tumor was
computed from the centroid of the ROI and for cohorts without ROI (i.e., CPTAC-LUAD,
CPTAC-LSCC, TCGA-LUAD, and TCGA-LUSC), the center of the tumor was manually
specified by a thoracic radiologist (H.Y.L with 15 years of experience). Because the imaging
data were collected from multi-sites, we resampled the CT images to isotropic 1 mm
resolution to make a fair comparison among different cohorts. CT images were resampled
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by b-spline interpolation methods and ROIs were resampled by the nearest neighbor
method. Each CT image was cropped into one patch with size 128 × 128 × 3 whose center
slice showed the largest spatial extent of the tumor in 2D. The in-plane extent of 128 mm
was chosen to accommodate the largest tumor. CT intensities were linearly normalized to
lie between 0 and 1.

2.3. Autoencoder Network to Extract Latent Variables

U-net is a deep neural network that works well in many medical imaging analysis
tasks such as segmentation, registration, and reconstruction [26]. Here we used it to extract
latent variables of the input images while the network tried to reconstruct the original
image. Our U-net architecture consisted of contracting and expanding paths with several
blocks. Each block had two CNN layers with kernel size 3 × 3, batch normalization,
and rectified linear unit (ReLU). In the contracting paths, the blocks were connected with
max pooling layer with stride 2 for down-sampling. Up-sampling layer with bilinear
interpolation was used for connections between blocks in the expanding paths. A total of
23 convolutional layers were employed in our U-net. Figure 2 shows the detail of the U-net
autoencoder architecture. We extracted latent variables of size 8 × 8 × 512 from the last
layer of the contracting path before ReLU. To train the autoencoder model to reconstruct
the original images, we used a fixed set of input images with Gaussian noise (mean = 0 and
standard deviation = 0.1) added. The mean square error (MSE) loss and stochastic gradient
descent (SGD) with a learning rate of 1 × 10−2 with a batch size of 16, and 0.9 momentum
were used.

Figure 2. Model architectures. (a) U-net autoencoder for reconstructing CT images. (b) Classification networks for
classifying early- and advanced-stage utilizing latent variable (noted with A) from (a) as input.
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2.4. Classification Network for Staging

To classify the patients into early- or advanced- stages, we employed an architecture
based on CNN followed by a fully connected (FC) layer using latent variables obtained from
the autoencoder as inputs. Figure 2 shows the architecture of the classification network.
The network consisted of two CNN layers of 256 filters with a kernel size of 3 × 3 and
padding size 1 for each direction. Between the CNN layers, batch normalization, ReLU,
and 3 × 3 average pooling were adopted. CNN layers were followed by five FC layers
with 128, 32, 16, 16, and 2 nodes, respectively. Dropout (ratio 0.5) was applied between all
layers. Final prediction probabilities were calculated after the fifth FC layer by softmax.
The cross-entropy loss and gradient-based stochastic optimizer Adam with a learning rate
of 1 × 10−6 and a batch size of 16 was used.

2.5. Comparison with Other Models

We compared our model in four aspects. First, we compared with autoencoder models
that compressed the input images further with higher compression ratios. Our U-net
network described in Section 2.3 used 3, 64, 128, 256, 512, and 512 channels to compress
the features along the blocks. To make more compressed latent variables, we designed
two U-net networks that share the same backbone as our proposed model except for the
number of channels in each block. In the first compared model, the number of channels
was 3, 32, 64, 128, 256, and 256 in each block and resulted in 8 × 8 × 256 latent variables.
In the second compared model, the number of channels was with 3, 16, 32, 64, 128, and 128
in each block and resulted in 8 × 8 × 128 latent variables. The two models were referred to
as U-net (256) and U-net (128) models based on the size of the compressed feature maps.
The SGD with a learning rate of 1 × 10−2, a batch size of 16, and 0.9 momentum were used
for both models.

Second, we compared ours with a basic CNN-based network in terms of image
reconstruction. In the basic CNN reconstruction model, each block in U-net was replaced
with a single CNN layer without residual connection. The basic CNN reconstruction
model had contracting and extracting paths as the U-net based autoencoder. The basic
CNN reconstruction model was designed to have the same down sample steps as our
autoencoder so we could extract the equal-sized latent variables after the contracting path.
The contracting path consisted of five layers with 3 × 3 CNN layer and 2 × 2 max pooling
layer with stride 2 for down-sampling. The expanding path repeated the layers in the
contracting path except that the max-pooling layer was replaced with an up-sampling layer.
The SGD with a learning rate of 1 × 10−1, a batch size of 16, and 0.9 momentum were used.

Third, we compared our classification networks with other approaches. Our classifi-
cation networks were compared with support vector machine (SVM) and random forest
methods. We also compared ours with a network where latent variables were extracted
from the basic CNN reconstruction model. The latent variables of the basic CNN recon-
struction model were extracted at the end of the contracting path whose size was 8×8×512
to keep the size of the latent variable the same as ours.

Finally, we compared ours with a fine-tuned single-stage model of pre-trained ResNet50
using 128 × 128 image patches as input to classify between the early- and advanced stages.

2.6. Statistical Analysis

We used ANOVA to compare continuous-valued information and the Chi-square
test to compare categorized information in the demographics. Classification performance
was measured with accuracy, sensitivity, specificity, and area under the curve (AUC). All
statistical analyses were performed with the Statistics Toolbox of “scipy” and “statsmodels”
in Python.

2.7. Training Setup

Pytorch (version 1.4.0) was used to build our neural networks. Our U-net autoencoder
was trained for 300 epochs and the classification network was trained for 500 epochs. For
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each network, we utilized early stopping where the validation loss was the minimum. It
took 6 min 40 s for training our U-net autoencoder and took 44 s for training classification
network using NVIDIA GeForce RTX 2070 SUPER graphics card. Our code is available at
GitHub: https://github.com/Jieun1203/Classifying-Non-small-cell-lung-cancer-stage.

3. Results
3.1. Clinical Characteristics of Cohorts

Demographic information of study cohorts is attached in Table 1. No difference was
found among NSCLC-Radio-genomics, NSCLC-Radiomics-Genomics, CPTAC-test, and
TCGA-test cohorts in either age (p = 0.9023) and sex (p = 0.6943). The distribution of staging
(early- and advanced-stage) in training, validation, and test cohorts is described in Table 2.
A significant difference was not observed in staging (p = 0.5777).

Table 2. Patients information for training, validation, and test cohorts.

Training Validation CPTAC-Test TCGA-Test p-Value

Stage 0.5777
Early- 57 5 20 13

Advanced- 33 3 17 13
Total 90 8 37 26

3.2. Reconstructing Images Using U-Net Autoencoder

Our U-net autoencoder performed well in reconstructing the original image with MSE
as 0.0007 in the test cohort. In comparison, the U-net (256) showed MSE 0.0008, the U-net
(128) performed reconstruction with MSE 0.0009, and the basic CNN reconstruction model
resulted in an MSE of 0.0019. Figure 3 shows qualitative differences between our U-net
autoencoder and the basic CNN reconstruction model in reconstructing original images
both in early-stage and advanced-stage cases.

Figure 3. Representative reconstruction results of our U-net autoencoder, U-net (256), U-net (128), and basic CNN reconstruc-
tion model. (a) Original image of NSCLC patients in early-stage (b) noise added images of NSCLC patients in early-stage (c)
reconstructed images of the proposed U-net (512) autoencoder in early-stage (d) reconstructed images of U-net autoencoder
using latent variables with 256 channels in early-stage (e) reconstructed images of U-net autoencoder using latent variables
with 128 channels in early-stage (f) reconstructed images of the basic CNN reconstruction in early-stage (g) original image
of NSCLC patients in advanced-stage (h) noise added images of NSCLC patients in advanced-stage (i) reconstructed images
of the proposed U-net autoencoder (512) in advanced-stage (j) reconstructed images of U-net autoencoder using latent
variables with 256 channels in advanced-stage (k) reconstructed images of U-net autoencoder using latent variables with
128 channels in advanced-stage (l) reconstructed images of the basic CNN reconstruction in advanced-stage.

3.3. Classification of Early and Advanced Stages

Our model was compared with various approaches as shown in Table 3. Our model
achieved accuracy of 0.8649, sensitivity of 0.80, specificity of 0.9412, and AUC of 0.8206 in

https://github.com/Jieun1203/Classifying-Non-small-cell-lung-cancer-stage
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the CPTAC-test cohort showing higher performance in most of the performance criteria.
The approach that combined U-net denoising autoencoder with SVM achieved AUC of
0.7176, while the approach combining U-net denoising autoencoder with random forest
achieved AUC of 0.7206. Using the basic CNN reconstruction model with our classification
networks showed AUC of 0.6824. We also compared our results with previous studies.

Table 3. Performance comparison of various models.

Accuracy Sensitivity Specificity AUC

U-net autoencoder + SVM 0.62 0.80 0.41 0.72

U-net autoencoder + random forest 0.62 1.0 0.18 0.72

Basic CNN reconstruction + DL 0.57 0.45 0.71 0.68

Sun et al. (2018) [25] - - - 0.67

Single-stage ResNet50 0.62 0.85 0.35 0.54

U-net (128) autoencoder + DL 0.76 0.70 0.82 0.71

U-net (256) autoencoder + DL 0.78 0.85 0.71 0.75

Proposed U-net (512) autoencoder + DL (TCGA) 0.81 0.77 0.85 0.83

Proposed U-net (512) autoencoder + DL (CPTAC) 0.86 0.80 0.94 0.82

Note. The best performance of each evaluation criteria is shown in bold.

To distinguish between early- and advanced-stages. Sun et al. (2018) [27] used a
deep restricted Boltzmann machine to predict each NSCLC staging (i.e., stages I to IIIb).
The mean AUC for predicting stage I, stage II, stage IIIa, stage IIIb, was 0.69. The AUC
for predicting stage I, the same task as ours, was 0.67. Utilizing the Resnet50 showed an
AUC of 0.5441. Using more compressed latent variable from U-net (128) achieved AUC of
0.7088 and using U-net (256) led to showed AUC of 0.7529. We also tested our model in the
TCGA-test cohort, which led to an AUC of 0.8343. Figure 4 shows the receiver operating
characteristic (ROC) curve plots for various approaches.

Some researchers dichotomized early- and advanced-stages using stage III as the
cutoff (i.e., stage I-II vs. stage III-IV) [28]. They extracted radiomics features from CT and
selected important features that were used in random forest to classify between early-stage
(stage I-II) and advanced-stage (stage III-IV) in TCGA-LUAD and TCGA-LUSC. For the
TCGA-LUAD portion, the study showed performances of 0.2857 (accuracy), 0 (sensitivity),
1 (specificity), and 0.80 (AUC). For the TCGA-LUSC portion, these were 0.6296 (accuracy),
0.75 (sensitivity), 0.4545 (specificity), and 0.68 (AUC). These performance numbers were
obtained from literature and thus were not directly comparable to our results because of
cutoff to dichotomize stages, and inclusion criterion.

3.4. Possible Confirmation Using Activation Maps

We adopted gradient-weighted class activation mapping (grad-CAM) [29] to provide
potential confirmations of our approach. The grad-CAM maps were computed from the
second CNN layers in the classification network. As shown in Figure 5, the activations
were mostly focused on the tumor area for successful classification cases. For unsuccessful
cases, the activation maps focused on other areas such as bone and non-lung regions rather
than primary tumor and led to incorrect classifications.
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Figure 4. Receiver operating characteristic curve. ROC curves of various models. Curves correspond
to SVM with latent variable of U-net (512) autoencoder, random forest with latent variable of U-net
(512) autoencoder, deep learning classifier with latent variable of basic CNN reconstruction, single-
stage ResNet50, deep learning classifier with latent variable from U-net (128), deep learning classifier
with latent variable from U-net (256) and deep learning classifier with latent variable of U-net (512)
autoencoder. The AUC of our methods is higher than others in both test cohorts.

Figure 5. Grad-CAM results. Grad-CAM of classification results. Red represents high contribution and blue stands for low
contribution for classification. The first row, (a–f), has cases of early-stage samples and the second row, (g–l) has cases of
advanced-stage samples. The first column, (a,g), has input CT images for valid interpretations, while the fourth column,
(d,j), has input CT images for invalid interpretations. The second column, (b,h), shows the ground truth tumor areas for
valid interpretations. The fifth column, (e,k), shows the ground truth tumor areas for invalid interpretations. The third
column, (c,i), has activation maps from (a,g). The last column, (f,l), has activation maps from (d,j).

4. Discussion

We proposed a serial deep learning network model to classify NSCLC patients into
early-stage and advanced-stage using pretreatment CT. Our U-net autoencoder used the
input of noisy CT images to reconstruct CT images robustly and obtained latent variables
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that were robust and compact representations of the CT. The ensuing classification network
of CNN followed by FC layers was able to perform binary classification well between
early-stage and advanced-stage (AUC of 0.8206 and 0.8343) outperforming existing studies.

Our approach has the advantage of extracting compact data-driven features using
the autoencoder. Our autoencoder-derived features could be novel features not described
by existing handcrafted features, which might account for the improved performance.
Another benefit is reduced human intervention. Previous methods, especially radiomics
approaches, require tumor ROIs that require expert annotation [30], while our approach
only requires the tumor center to be specified, which takes less effort.

Our autoencoder model adopted a 2.5D model, which considered three consecutive
axial patches centered at the tumor centroid, not the full 3D model where the full extent of
the lung parenchyma spanning was considered. A full 3D model is likely to extract more
comprehensive information from the whole lung besides the tumor, but it comes at a cost
of high computational resources and an increased sample size. 3D datasets would have
different sizes, so we might need to fix the size for proper training. Since our model is a
2.5D model with only a few patches to consider, our model has a lighter computational
load with reduced sample size requirements.

Our latent variables were extracted from the U-net autoencoder. There was a signifi-
cant performance difference (AUC 0.82 vs. 0.68) between using latent variables from U-net
autoencoder and the basic CNN reconstruction model. This showed that our autoencoder
was able to produce compact and robust features related to staging. In related work, Cui
et al. (2019) [31] extracted latent variables from the variational autoencoder (VAE) and
successfully applied them for predicting radiation pneumonitis. VAE has the advantage of
regularizing the latent variable for better generalization potential, which we plan to adopt
in future studies.

Our method shows better performance than radiomics, conventional machine learning
methods (SVM and random forest), and a single-stage ResNet50 as shown in Table 3.
Radiomics tends to rely on handcraft features while ours can extract abstract latent variables
tailored to the data and hence could lead to better performance [8]. The latent variables
were subjected to the deep neural network, SVM, and random forest classifiers and our
approach fared the best due to the increased complexity of many layers in the deep neural
network. The single-stage ResNet50 has more complexity than ours and could suffer from
overfitting the training data, especially when the training sample size is not big enough [32].

Visualization of the activation maps showed that correct classification might have
occurred when the attention was focused on the tumor area and more importantly on
the margin of the tumor (Figure 5). The region of tumor margin is an important region
where dynamic interaction occurs between tumor cells and the surrounding microenviron-
ment [33]. Our activation confirmed that this important tumor margin might have played
a role in the decision making of our algorithm.

The cut-off to separate early- and advanced-stage in NSCLC could be either stage
I or II. We grouped stage I as early-stage and other stages as advanced-stage following
an existing study [4]. Others assigned stage I and II as early-stage and other stages as
advanced-stage [34]. We chose the former approach because it led to having a more
balanced number of samples in early- and advanced-stage groups.

Our datasets were entirely from the public domain that led to heterogeneity in image
acquisition. This was partly mitigated by resampling the imaging data to 1 mm isotropic
resolution. Still, there is heterogeneity within and across training, validation, and test
cohorts. However, many datasets from the clinic are heterogeneous in image acquisition
and thus our developed model might better reflect the clinical reality.

Our model focused on image patches with tumor. However, it is possible to feed the
whole slice image instead of the tumor patch to the neural network, but with that approach
less important information of background and normal tissue is fed to the network. With
limited samples, we needed to focus on the important tumor region. We built another
model where resized whole slices were fed and observed that performed worse than our
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main model. The whole slice model showed accuracy of 0.7027, sensitivity of 1.0, specificity
of 0.2353, and AUC of 0.5647.

Our study has some limitations. First, we adopted a 2.5D model to lessen the com-
putation burden. However, a full 3D model might extract more powerful latent variables
for staging. This needs to be explored in future studies using a larger cohort. Second, our
method requires the center of the tumor to be specified. This was possible when ROI infor-
mation was available. For data without the ROI, a separate method to segment the tumor
ROI is necessary. There are studies showing high performance for segmentation [35–37].
These have the potential to detect tumor centers well. We hope to use this technology
combined with increased samples to construct an end-to-end automatic network for tumor
grading in the future. In a similar vein, we plan to perform a three-way classification of
normal, early-stage, and advance-stage using DL approaches. Third, DL models tend to
scale well in performance as sample sizes are increased. Although we showed generalizable
performance in two independent test cohorts, having more samples could lead to better
models. Future studies need to apply more complex DL models using larger cohorts to
improve performance. Fourth, our data had enough samples in dichotomous classification
into early- vs. advanced-stages, but we had very few samples in stages III and IV due to the
limitation of the public database. With enough samples in each stage, further studies could
be designed to fully model the distribution of all four stages. Lastly, we dichotomized the
stages without considering whether the patient received surgery due to the limitation of
open datasets. In the future, we look forward to incorporating surgical treatment when
dichotomizing stages.

5. Conclusions

In this study, we proposed a cascaded neural network for automated staging in NSCLS
using pretreatment CT. Our proposed method performed the binary classification between
early-stage and advanced-stage well (AUC of 0.8206 and 0.8343) outperforming existing
studies. The results of our study might be useful in future DL studies of NSCLC.
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