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Purpose: To develop artificial intelligence (AI)-based deep learning (DL) models for

automatically detecting the ischemia type and the non-perfusion area (NPA) from color

fundus photographs (CFPs) of patients with branch retinal vein occlusion (BRVO).

Methods: This was a retrospective analysis of 274 CFPs from patients diagnosed

with BRVO. All DL models were trained using a deep convolutional neural network

(CNN) based on 45 degree CFPs covering the fovea and the optic disk. We first

trained a DL algorithm to identify BRVO patients with or without the necessity of retinal

photocoagulation from 219 CFPs and validated the algorithm on 55 CFPs. Next, we

trained another DL algorithm to segment NPA from 104 CFPs and validated it on 29

CFPs, in which the NPA was manually delineated by 3 experienced ophthalmologists

according to fundus fluorescein angiography. Both DL models have been cross-validated

5-fold. The recall, precision, accuracy, and area under the curve (AUC) were used to

evaluate the DL models in comparison with three types of independent ophthalmologists

of different seniority.

Results: In the first DL model, the recall, precision, accuracy, and area under the curve

(AUC) were 0.75 ± 0.08, 0.80 ± 0.07, 0.79 ± 0.02, and 0.82 ± 0.03, respectively, for

predicting the necessity of laser photocoagulation for BRVOCFPs. The second DLmodel

was able to segment NPA in CFPs of BRVO with an AUC of 0.96 ± 0.02. The recall,

precision, and accuracy for segmenting NPA was 0.74 ± 0.05, 0.87 ± 0.02, and 0.89

± 0.02, respectively. The performance of the second DL model was nearly comparable

with the senior doctors and significantly better than the residents.

Conclusion: These results indicate that the DL models can directly identify and

segment retinal NPA from the CFPs of patients with BRVO, which can further guide laser

photocoagulation. Further research is needed to identify NPA of the peripheral retina in

BRVO, or other diseases, such as diabetic retinopathy.

Keywords: deep learning, non-perfusion area, color fundus photograph, branch retinal vein occlusion, artificial

intelligence, automatic segmentation
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INTRODUCTION

Retinal non-perfusion area (NPA) is a vision-threatening
condition that is strongly associated with retinal
neovascularization (NV) (1), vitreous hemorrhage, and macular
edema in retinal diseases, such as diabetic retinopathy (DR)
(2) and branch retinal vein occlusion (BRVO) (3, 4). In
ophthalmological practice, a standard and early location of NPA
is critical for clinical decision-making, such as prompt laser
photocoagulation (2, 5).

It is acknowledged that fundus fluorescein angiography
(FFA) is the gold standard for circling the NPA. However,
FFA might not be acceptable for those with serious liver or
kidney dysfunction, or with a drug allergy history (6). Serious
complications can occur with FFA, such as an anaphylactic
reaction (7). In other circumstances, when patients with
undetermined vitreous hemorrhage are receiving diagnostic pars
plana vitrectomy, laser photocoagulation is usually performed
after the clearance of vitreous hemorrhage, which might not be
precise if in the absence of FFA.

Recently, artificial intelligence (AI) has been showing
promising potential in assisting the diagnosis and treatment
of medical conditions based on medical imaging (8). Deep
learning (DL), as a particular form of AI, allows systems to
learn predictive features from raw images based on a large
dataset of labeled examples without specifying rules or features.
In ophthalmology, a number of studies have demonstrated the
feasibility of using DL algorithms for the identification of various
retinal diseases, such as diabetic retinopathy (DR) (9). In the
study of Arcadu F et al. (10), DL was reported to be able to predict
key quantitative traditional optical coherence tomography (TD-
OCT) measurements related to macular thickening from color
fundus photographs (CFPs) and enhance the efficiency of
diabetic macular edema (DME) diagnosis in teleophthalmology
programs. In a more recent investigation, DL was used to
automatically segment the NPA in OCTA images of patients
with DR (3, 10), which provides a measure for monitoring
peripheral vascular perfusion in eyes with early diabetic disease
and the therapeutic response of eyes undergoing treatment for
proliferative diabetic retinopathy (PDR) or DME (11–13). In the
present study, we stepped forward and employed AI to interpret
NPA areas directly from CFP images.

Branch retinal vein occlusion refers to the obstruction of a
branch of the retinal vein at an arteriovenous crossing, which
has become the second most common retinal vascular disease
after diabetic retinopathy. Studies have found the risk of BRVO
to be 1.6–1.8%. The compression of the vein is thought to cause
turbulent blood flow that leads to thrombus formation, and the
thrombosis can result in engorged veins frequently accompanied
by variable amounts of retinal non-perfusion. Branch retinal vein
occlusion may present with a sudden onset of painless vision
loss or visual field defect correlating to the area of perfusion of
the obstructed vessels. The complete dilated fundus examination
can help diagnose early BRVO (14, 15). As reported, retinal NV
developed in 9% within 12 months from onset and in 15% within
36 months from onset, and optic disc NV developed in 8.3%
within 12 months from onset and in 10.4% within 30 months
from onset (16). Thus, scatter argon laser photocoagulation

is promising for use in the involved sector in major BRVO,
especially when NV exists (17). Given that BRVO is relatively
uniform in clinic and is characterized by blockage of the branch
retinal vein and non-perfusion status where laser therapy is
needed, here, we first tried the DL methods in BRVO (18).

METHODS

Dataset
The study was conducted in accordance with the Declaration
of Helsinki, and the study protocol was approved by the Ethics
Committee of the First Affiliated Hospital of Nanjing Medical
University (2021-SR-330).

The dataset used in this study included CFPs and FFA
images from patients diagnosed with BRVO from March 2018
to October 2020 in the First Affiliated Hospital of Nanjing
Medical University. CFPs were captured with a digital retinal
camera (Canon INC, CR-2 AF, Japan) and FFA was performed
with the Spectralis HRA2 (Heidelberg Engineering, Heidelberg,
Germany). The inclusion criteria were as follows: (1) patients
with the diagnosis of BRVO after FFA examination. (2) patients
with simultaneous CFPs and FFA images; and (3) high quality
CFPs and FFA images. The fair-quality images were defined as
photographs with partial visibility of distinct retinal vessels, optic
nerve, and retinal backgrounds. Photographs with blurred retinal
components that abnormal lesions could not be distinguished
were defined as poor-quality images. We used Matlab software
(MATLAB 8.3 R2014a, The MathWorks, Natick, Massachusetts)
to manually register the CFPs and FFA images and then scaled
them to the size of 1,024 pixels× 1,024 pixels.

Research Strategies
Figure 1 shows the main research strategies of the work. The
CFPs and FFA images of diagnosed BRVO cases were reviewed by
three experienced ophthalmologists. In the first step, the BRVO
cases were divided into two groups, with or without the need
for prompt laser photocoagulation. In the former cases, scatter
laser therapy was performed on the involved sector of BRVO
and was done only if there were neovascular vessels. The latter
cases were defined as those with fresh retinal hemorrhage, low-
quality CFPs, and FFA images, or with no NPA. The first DL
model was trained to differentiate the two BRVO statuses. Next,
we removed the CFPs and FFA images with no need for prompt
laser photocoagulation. We then registered the CFP images with
the FFA through the superposition of the blood vessels. The NPA
in the FFA images were then labeled in the CFP for the second
DL training (Figure 2). Finally, the segmentation ability of the
second DL model is compared with that of three doctors.

Deep Learning Algorithms
To automatically figure out the status of BRVO in the first step,
we employed a convolutional neural network (CNN) with a
(VGG)1 (19) architecture, which was typically designed for the

1VGG Net is the name of a convolutional neural network (CNN) invented by

Simonyan and Zisserman from Visual Geometry Group (VGG) at University of

Oxford in 2014.
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FIGURE 1 | The research strategy of this study.

FIGURE 2 | Example of the comparison between the second DL model and FFA in detecting the non-perfusion area. (A) Color fundus photograph (CFP). (B) FFA

image shows the superior-temporal non-perfusion area. (C) Labeling the NPA in the CFP according to the FFA images. The CFP image was registered with the

corresponding FFA image through the superposition of the blood vessels. The NPA in the FFA image was then labeled in the CFP for the following DL training. (D) TP,

True positive; yellow region; TN, true negative, colorless region; FP, false positive, green region; and FN, false negative, red region. Green plus yellow shows the NPA

indicated by the DL model; red plus yellow shows the true NPA indicated by FFA. DL, deep learning; CFP, color fundus photograph; FFA, fundus fluorescein

angiography; NPA, non-perfusion area.

image classification tasks. To automatically segment out the NPA
regions in the second step, we employed another CNN with a
modified U-Net (20) architecture. The U-Net architectures were
widely used in the medical image segmentation tasks (21, 22).

Both two DL models are trained in an end-to-end manner,
which means that we can get the classification and the
segmentation results without any subsequent processing.

Network Architecture
We used a VGG network consisting of 13 convolutional layers,
3 fully connected layers, and one extra adaptive averaging
pooling layer between convolutional layers and fully connected
layers. The first 13 convolutional layers extract sematic features
from CFPs from 3 channels to 512 channels and process 5
times max-pooling as spatial downsampling. For enhancing the
feature extraction ability, we used per-trained parameters in
ImageNet (23) as the initial parameters of the convolutional

layers. After extracting the features of 512 dimensions by the
last convolutional layer, the adaptive averaging pooling layer
was used to resize the special size of feature to 1 × 1,
which led to the feature being a vector of 512 dimension.
Finally, three fully connected layers map the features from
512 to 4,096, from 4,096 to 4,096, and from 4,096 to 2,
respectively. Thus, we get the probabilities of two states of
the BRVO.

The U-Net network we used is an encoder-decoder
architecture with skip-connections to concatenate features
with the same resolution of the encoder and the decoder. Thus, it
can retain pixel-level detail information at different resolutions,
which is important for pixel-wise segmentation. The detail of the
network is shown in Figure 3.

In comparison with the original U-Net architecture, we
increased the network depth to achieve a large enough receptive
field. Meanwhile, to reduce the parameters, the number of
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convolutional filters was increased from 32 to 1,024 in the
encoder. Moreover, to obtain the same output size as the input
CFPs, we used a 3× 3 convolution kernel size with padding 1. In
total, the network has 23 convolutional layers.

Data Augmentation
Supervised learning with neural networks usually requires a large
number of image-label pairs. The data of BRVO were relatively
small for training DLmodels and were hard to expand because of
the strict inclusion criteria. To mitigate the data requirements of
DL models, we used several data augmentation strategies.

We randomly rotated, resized, and flipped the CFPs for both
tasks, which can teach models about rotation invariance, scale
invariance, and inversion invariance. In addition, we performed
experiments that retained other parameters from the experiments
and added random modifications to the brightness, saturation,
and contrast of the input images in the data augmentation
to determine whether these factors have an impact on the
performance of models. Additionally, we randomly clipped them
to the size of 256 × 256 for the second task, which allows a
larger batch size to improve the efficiency of training. During
training, we selected one or more of the above strategies to
dynamically augment the data. The data augmentation improves
the robustness of the models effectively.

Loss Calculation
We used the Cross-Entropy Loss Lce as the loss function for both
two tasks. In the first task, it is defined as:

Lce1 =
1

N

∑

i

−[yi log(pi)+ (1− yi) log(1− pi)], (1)

where yi taken from 0 and 1 represents the two BRVO statuses
and pi represents the probability that the CFP is predicted to be
with NPA by the classification model.

In the second task, it is defined as:

Lce2 =
1

N

∑

x,y

−[yx,y log(px,y)+ (1− yx,y) log(1− px,y)], (2)

where yx,y taken from 0 and 1 indicates whether the pixel behaves
as NPA and px,y represents the probability according to the
segmentation model.

Training Model
In both tasks, we performed one 5-fold cross-validation test to
train our models for performance evaluation and comparison. In
the first task, 133 CFPs with NPA and 141CFPs without NPAwere
split into five parts separately. For every part, we randomly took
20% of CFPs with NPA and 20% of CFPs without NPA without
repetition so that the proportion of positive and negative samples
in the training set and verification set is equal. Furthermore, in
the second task, 133 CFPs with NPA were split into five groups.
In our experiments, 4 groups were used for training and 1 group
was used for testing. Then, we executed this process 5 times in a
loop until each group was used as the training and testing objects.

Through trial and error, we finally set the hyper parameters as
shown in Table 1 for the first task and in Table 2 for the second

task. To make the model converge, we adjusted the learning rate
as the training went on. In the first task, we set the initial learning
rate to 0.0001 and reduced it after every epoch. In the second task,
we set the initial learning rate to 0.001 and linearly decreased
it to 0.0005 in the last thousand groups of epochs. We used an
Adam optimizer (24) to update themodel parameters for efficient
stochastic optimization with little memory requirement.

Evaluation of the DL Models
Table 3 illustrates the confusion matrix using binary
classification. In the result, we figured out the number of
true positive (TP), true negative (TN), false positive (FP),
and false negative (FN). TP represents the number that was
correctly classified as positive, FP represents the number that
was incorrectly classified as positive, FN represents the number
that was incorrectly classified as negative, and TN represents the
number that was correctly classified as negative.

In the classification task, cases with the NPA needing prompt
laser photocoagulation were defined as positive, and the other
cases were defined as negative. In the segmentation task, we
defined the pixels of the NPA region in CFPs as positive, and the
other pixels as negative.

To increase the accuracy of the evaluation indicators, we did
not include the black edge around the circular fundus image. In
addition, we calculated the model accuracy, precision, recall rate,
F1, receiver operating characteristic (ROC), and area under the
curve (AUC).

Accuracy describes the proportion of correct predictions
defined as:

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

Precision (also called positive predictive value) describes the
proportion of all predicted positive cases that are correctly
predicted positive, which is defined as:

Precision =
TP

TP + FP
(4)

Recall or sensitivity (as it is called in psychology) describes the
proportion of real positive cases that are correctly predicted
positive, which is defined as:

Recall =
TP

TP + FN
(5)

In the segmentation task, our proportion of positive and negative
samples approached 1:2. At this time, accuracy may yield
misleading results. Thus, more attention needs to be paid to
precision and recall (25).

F1 score was used to calculate the harmonic mean of the
precision rate and the recall rate.

F1 =
2

1
precision +

1
recall

(6)

The ROC curve shows the FP rate on the x-axis and the
true positive rate on the y-axis when the positive identification
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FIGURE 3 | The U-net architecture (3 × 256 × 256 input, for instance). Each green arrow corresponds to two 3 × 3 convolutions each followed by a rectified linear

unit (ReLU). Red arrows correspond to a 2 × 2 max pooling operation with stride 2 for downsampling. The orange arrows indicate upsampling with bilinear

interpolation. The gray arrows indicate the skip-connection in the U-Net. A 1 × 1 convolution is represented by a purple arrow at the end of the model.

TABLE 1 | Hyper-parameters of the first task.

Hyper-parameters Values

Epoch 100

Batch Size 5

Iteration 47

Learning Rate 10−4 × (1− ( epochnow500 )0.9)

Optimizer Adam

TABLE 2 | Hyper-parameters of the second task.

Hyper-parameters Values

Epoch 4000

Batch Size 10

Iteration 10

Learning Rate 10−3 ×min(1, 1−
2×(epochnow−3000)

epochtotal
)

Optimizer Adam

threshold is different. In addition, the AUC is the area under the
value ROC curve. The higher the value of AUC, the better the
performance of the model.

In addition, we compared the performance among the AI and
three groups (number of each group = 3) of ophthalmologists
with different experiences. The senior group had doctors with

TABLE 3 | Confusion matrix.

Total population

(P+N)

Predicted condition

Positive (PP) Negative (PN)

Actual Condition Positive (P) True positive (TP) False negative (FN)

Negative (N) False positive (FP) True negative (TN)

over 10 years of clinical training. The inexperienced group
comprised doctors with <3 years of experience and the resident
group had doctors with an experience of <1 year. All of the
doctors were blind to all the cases and were guided to use the
method to label the areas they considered to be NPA on the CFPs
as mentioned above (Figure 4).

The TP, TN, FP, and FN of each CFP were averaged
among three doctors and were compared with those in AI
using an independent T-test. Data were expressed as mean
± standard deviation (SD). A p-value < 0.05 was considered
statistically significant.

RESULTS

In total, 274 BRVO images from 274 patients (mean age: 66.3 ±
10.6 years; 141 men and 133 women; 139 left eyes and 135 right
eyes) were analyzed.
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FIGURE 4 | The procedure of the comparison among the artificial intelligence (AI) and three groups of ophthalmologists.

In the first DL model, the recall, precision, accuracy, and
AUC were 0.75 ± 0.08, 0.80 ± 0.07, 0.79 ± 0.02, and
0.82 ± 0.03, respectively, for predicting the necessity of laser
photocoagulation for BRVO CFPs.

The standard NPA was annotated by senior doctors based on
FFA images (Figure 2). With regard to the second DL model for
predicting NPA of BRVO, the recall was 0.74± 0.05, the precision
was 0.87 ± 0.02, and the accuracy was 0.89 ± 0.02. The ROC of
an average 5-fold cross validation is shown in Figure 5, and the
value of AUC obtained was 0.96± 0.02 (Table 4). In addition, the
prediction ability of models that data augmented with brightness,
saturation, and contrast did not show a significant difference
(Supplementary Table 1).

In comparison with three independent doctors, our DL model
was nearly comparable with the senior doctors in segmenting the
NPA and was significantly better than the inexperienced doctors
and residents (Table 5).

DISCUSSION

In this study, the DL model identifying and segmenting the NPA
from CFPs of eyes with BRVO showed high recall, precision,
accuracy, and good performance of AUC. The DL model might
facilitate the clinical decision for oculists in the treatment of
BRVO with no need for invasive FFAs.

At present, with the rapid development of DL models, such
as deep CNNs (26, 27), DL models have been intensively applied

in ophthalmology (14), such as in detecting diabetic retinopathy
(28), age-related macular degeneration (29), RVO (18, 30), and
vitreous-retinal interface disorder (31) with CFPs orOCT images.
Recently, studies have shown the application of AI for identifying
microaneurysms (10, 32, 33) and NPA in DR based on FFA
images (28, 34). However, FFA is an invasive method and is
seldom used during surgery. As for the OCTA, a non-invasive
method, it can identify the NPA (18) but with a relatively limited
field. Here, our results show the possibility of detection of NPA
using DL models with non-invasive CFPs. The results further
demonstrated that the performance of the DL model may be
close to an experienced ophthalmologist, which means that the
algorithm can assist junior doctors to identify the NPA directly
from the CFPs. DL models were compared with individual
doctors, which has also been reported in previous studies (12,
13).

In some recent studies, DL has been reported to automatically
identify NPA areas, especially in patients with diabetic
retinopathy (DR) complicated by DME and retinal NV.

However, these identification models were almost achieved
based on FFA images, or occasionally on wide-angle OCTA,
which is still in their infancy, expensive, and not widely used.
Although FFA is the gold standard to identify NPA, there are
some limitations of FFA as described above. Notably, the FFA
examination is invasive, and the quality of images may be
influenced by eye movement, the poor focus of the camera, or
uneven illumination due to the prolonged examination time.
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FIGURE 5 | The receiver operating characteristic (ROC) curve of averaged 5-fold cross-validation.

TABLE 4 | Evaluation indicators obtained by a 5-fold cross-validation.

ID Accuracy Precision Recall F1 AUC

0 0.87 0.84 0.69 0.76 0.94

1 0.90 0.90 0.75 0.82 0.97

2 0.88 0.87 0.67 0.76 0.94

3 0.90 0.88 0.76 0.82 0.97

4 0.91 0.87 0.82 0.84 0.98

Average 0.89 ± 0.02 0.87 ± 0.02 0.74 ± 0.05 0.80 ± 0.03 0.96 ± 0.02

AUC, area under the curve; F1, F1 score is to calculate the harmonic mean of the precision

rate and the recall rate.

These studies also did not achieve automatic registration of FFA
images and CFPs.

Our study creatively proposed to identify and segment
NPAs only based on CFPs without the need for FFA and
validate it for the first time in patients with BRVO. The
performance reached by our DL models was similar to that
obtained by previous models and human grader agreement.
This convenient and inexpensive model can greatly aid those
patients with contraindication of sodium fluorescein, as well
as relieve the pressures of the exponential increase in clinical
appointments. Our models can also facilitate ophthalmology
clinicians, especially enabling junior doctors to make laser
treatment decisions. The combination of the DL model and
CFPs might also facilitate telemedicine. This approach may be

TABLE 5 | Performance of DL model and senior doctor in identifying

non-perfusion area (NPA).

Accuracy Precision Recall F1

Senior doctor 0.91 ± 0.04 0.79 ± 0.17 0.89 ± 0.07 0.82 ± 0.12

DL model 0.90 ± 0.05 0.87±0.23 0.70±0.24 0.76 ± 0.22

t −0.21 1.77 −4.11 −1.50

p 0.83 0.09 0.00 0.15

DL, deep learning; t, t statistic; p, p-value.

particularly useful in areas with a shortage of FFA instruments
or experienced examiners. With a clear CFP, patients with BRVO
can immediately receive a precise segmentation of NPA and be
guided with further laser photocoagulation (35). This study is an
in-depth study from computer-aided diagnosis to treatment, and
the potential use of this DL algorithmwill be an outcomemeasure
in clinical trials and a decision tool in clinical practice, which will
be the theoretical basis for the application of intelligent guided
laser (34, 36).

The present study also had some limitations. First, we
compared only CFP images of BRVO eyes and did not include
CFP images of normal eyes or other retinal diseases, which
means that the FP possibility was not evaluated. Second, the
scan area of CFPs was not large enough to detect the entire
NPA in the montage FFA images, which calls for further training
of peripheral CFPs or wide-field CFPs. Third, the sample size
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included was relatively small, and further studies using larger
samples and involving other retinal diseases, such as DR, are
required to evaluate the performance and versatility of DL for the
detection of NPA.

In conclusion, our study proposed a conception of detecting
the NPA directly from a CFP in the absence of FFA. Here, we
first tried in the eyes with BRVO and demonstrated the DLmodel
with a high level of accuracy. This model can also potentially be
developed for the identification of NPA of the peripheral retina
and other diseases, such as DR in the future.
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