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Model Averaging with AIC Weights
for Hypothesis Testing of Hormesis at
Low Doses

Steven B. Kim1 and Nathan Sanders1

Abstract
For many dose–response studies, large samples are not available. Particularly, when the outcome of interest is binary rather than
continuous, a large sample size is required to provide evidence for hormesis at low doses. In a small or moderate sample, we can
gain statistical power by the use of a parametric model. It is an efficient approach when it is correctly specified, but it can be
misleading otherwise. This research is motivated by the fact that data points at high experimental doses have too much con-
tribution in the hypothesis testing when a parametric model is misspecified. In dose–response analyses, to account for model
uncertainty and to reduce the impact of model misspecification, averaging multiple models have been widely discussed in the
literature. In this article, we propose to average semiparametric models when we test for hormesis at low doses. We show
the different characteristics of averaging parametric models and averaging semiparametric models by simulation. We apply the
proposed method to real data, and we show that P values from averaged semiparametric models are more credible than P values
from averaged parametric methods. When the true dose–response relationship does not follow a parametric assumption, the
proposed method can be an alternative robust approach.
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Introduction

In toxicology, hormesis is known to be a biphasic dose–

response relationship with a stimulatory response at low doses

and an inhibitory response at high doses.1,2 In this article, we

focus on statistical hypothesis testing for hormesis when the

outcome of interest is binary. The null hypothesis is the

absence of hormesis denoted by H0, and the alternative hypoth-

esis is the presence of hormesis denoted by H1. For illustration,

2 models for H0 and 2 models for H1 are shown in Figure 1.

Mathematically speaking, we do not have a sign change in

the slope of a dose–response curve at low doses when H0 is

true. The slope is entirely positive at low doses (top left in the

figure), or the zero slope (ie, flat line) becomes a positive slope

after passing some threshold dose point (top right in the figure).

On the other hand, we have 1 sign change in the slope at low

doses when H1 is true. The starting slope is negative, and the

slope becomes positive at some dose point (bottom left and

bottom right in the figure). When H0 is true, for a given sig-

nificance level a, we want the probability of rejecting H0 to be

at a or below. When H1 is true, we want the statistical power as

high as possible.

We can increase the statistical power by increasing the

number of experimental doses and/or the sample size inside

the hormetic range. In such a case, various statistical methods

are available including polynomial, fractional polynomial

modeling, splines, and nonparametric smoothing techniques.3

However, having such an ideal experimental design is not

always possible in practice. Although we prefer statistical

methods that require weak assumptions, we need to borrow

a parametric assumption to gain statistical power in small-

sample studies. Several useful parametric models used in

dose–response assessments are equipped in Benchmark Dose

Model software.4 These models can be modified to quadratic

or other alternative forms in order to model a nonmonotonic
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dose–response relationship.5-7 A parametric model yields a

high statistical power when it is correctly specified, but it can

lead to a very low statistical power when it is misspecified.

The loss of statistical power due to model misspecification

will be shown in this study. There are 2 main reasons. First,

the observed data points cannot be adequately modeled by

the parametric structure.3 Second, in the case of model mis-

specification, data points at high doses make situations even

worse because they have too much contribution in the para-

meter estimation. Such data points are called high-leverage

points.8

We have 2 aims in this article. First, we explicitly address

the impact of model misspecification and high-leverage

points in parametric modeling when we perform hypothesis

testing for hormesis at significance level a. Second, we pro-

pose averaging multiple semiparametric models using the

weights calculated by Akaike information criterion (AIC).9

In both frequentist and Bayesian frameworks, model aver-

aging methods have been widely discussed in cancer risk

assessments, particularly for the estimation of benchmark

dose. Model averaging allows us to reduce the impact of

model misspecification and to account for model uncer-

tainty.7,10-13 In this article, we present the simulation study

to compare parametric methods and the proposed semipara-

metric method. For illustration, we apply the methods to some

data discussed in Calabrese and Baldwin14 which seem to

show evidence for hormesis at various degrees. In the appli-

cation, we show that P values calculated from parametric

models can be misleading, and P values calculated from the

semiparametric method better match with observed dose–

response trend.

Statistical Methods

In this section, we review a logistic regression model in

“Logistic Regression Model” subsection We base our discus-

sion on the logistic model among many parametric models

because of its popularity, and the same discussion can be car-

ried out for another form of parameterization. We briefly

review the model averaging method based on the AIC in

“Model Averaging in Parametric Models (L3 and L4)” subsec-

tion. We then discuss the application of model averaging to

semiparametric models in “Application of Model Averaging to

Semiparametric Models” subsection. More mathematical detail

is included in the Appendix.

The following notation is used in the section. Let xj � 0

denote the jth fixed experimental dose for j ¼ 1, . . . , J, where J

is the total number of experimental doses. Without loss of

generality, let x1 ¼ 0 be the control dose and x1 < x2 < . . . <

xJ. Let Yij denote the binary random variable, where Yij ¼ 1 if

the ith experimental unit treated at dose xj shows a toxic out-

come and Yij ¼ 0 otherwise. Let pj denote the unknown prob-

ability of observing Yij ¼ 1 (ie, the probability of observing a

toxic outcome at does xj). Let nj denote the number of experi-

mental units observed at dose xj, and let N ¼ Sj nj denote the

total sample size for the experiment.

Logistic Regression Model

To model a potential “J-shaped” dose–response relationship, a

logistic regression model with the quadratic term

log
pj

1� pj

� �
¼ b0 þ b1 xj þ b2 x2j

is briefly discussed by May and Bigelow.3 They considered the

log dose, but it is not an important distinction in our discussion.

Throughout the article, the logistic regression model is referred

to as the L3 model, where L3 stands for the logistic regression

model with 3 parameters b0, b1, and b2. The quadratic term

allows a hormetic dose–response curve at low doses, and sim-

ilar parameterizations are discussed by Bogen6 and Kim et al7

using different link functions. In the quadratic form, hypothesis

testing for hormesis is simply formulated as H0: b1 � 0 versus

H1: b1 < 0. In a large sample, we can make inference for b1

based on the maximum likelihood estimator for b1, but we

usually do not observe such a large sample size particularly

inside the hormetic range in practice.3 In this article, we base

our inference on bootstrapping to approximate the sampling

distribution of the maximum likelihood estimator for b1.15 Our

focus is on the consequence of wrong implementation of this

model.

The L3 model is an efficient statistical strategy when it is

correctly specified. On the other hand, when the model is mis-

specified, it can lead us to a misleading result even in a large

sample. Under model misspecification, observations made at
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Figure 1. Dose–response relationships. The top figures show 2
hypothetical monotonic dose–response relationships (null hypothesis,
denoted by H0), and the bottom figures show 2 hypothetical hormetic
dose–response relationships (alternative hypothesis, denoted by H1).
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high experimental doses have too much contribution in the

estimation of b1 (known as high-leverage points), and it can

significantly decrease statistical power. Motivated by a power

transformation described by Tukey transformation,16 the L3

model can be modified as

log
pj

1� pj

� �
¼ b0 þ b1ðxjÞb3 þ b2ðx2j Þ

b3

where b3 > 0. This parameterization is referred to as the L4

model, where L4 stands for the logistic regression with 4 para-

meters b0, b1, b2, and b3. A similar parameterization was dis-

cussed by Kim et al.17 Compared to the L3 model, the L4

model is more flexible while it maintains the same form of

hypothesis testing H0: b1 � 0 versus H1: b1 < 0. As shown in

Figure 2, the L3 model is limited to a symmetric hormetic zone

only (figure on the left), and the L4 model is able to generate an

asymmetric hormetic zone by adding the power parameter b3

(figures in the middle and on the right). Note that the L3 model

is a special case of the L4 model when b3 ¼ 1.

Model Averaging in Parametric Models (L3 and L4)

The advantage of the L3 model is efficiency (high statistical

power) when the true hormetic zone is symmetric and the true

dose–response relationship follows the quadratic form. The

disadvantage is a loss of statistical power when the model is

misspecified. It is also sensitive to high-leverage points. The

impact of model misspecification and high-leverage points can

be increased particularly when the experiment is poorly

designed. On the other hand, the advantage of the L4 model

is flexibility, and it can maintain relatively high statistical

power when the true hormetic zone is asymmetric. The disad-

vantage of L4 is a loss of statistical power due to overparame-

terization when the true hormetic dose–response relationship

can be adequately modeled by the L3 model. To compromise

the characteristics of L3 and L4, we may consider the model

averaging method based on the AIC.9 The method of AIC

model averaging is often used to account for model uncertainty

and to reduce the impact of model misspecification when a

single model is used for inference.10,18,19

Let wL3 and wL4 denote the AIC weight calculated from the

observed data, where wL3 þ wL3 ¼ 1 (see Appendix). When a

fitted model has a higher value of the likelihood function than

the other fitted model, it receives a higher weight. In addition, it

penalizes an additional model parameter to balance between

goodness of fit and overparameterization. When we have 2

bootstrap distributions from L3 and L4, we can consider a

mixture distribution according the AIC weights. Since both

L3 and L4 determine hormesis by the sign of b1, we can per-

form the hypothesis testing H0: b1 � 0 versus H1: b1 < 0 based

on the mixture distribution of estimated b1. At significance

level a ¼ .05, we reject H0 in favor of H1 when the (1 �
a)th quantile of the distribution is below 0. Throughout the

discussion, this model averaging method is referred to as MAP

(model averaging with the parameter models). When H0 is true,

the type I error rate under MAA is fairly close to the minimum

of the type I error rate under L3 and the type I error rate under

L4 (see Appendix and Simulation Result).

Averaging b1 in L3 and b1 in L4 is a meaningless procedure

when our goal is parameter estimation. However, our goal is

hypothesis testing not parameter estimation. Though b1 in L3

and b1 in L4 have different meanings, both b1 < 0 in L3 and b1 <

0 in L4 have the same meaning (presence of hormesis) in the

context of our hypothesis testing. Under each model using boot-

strapping, we may seek evidence for b1 < 0 through the bootstrap

distribution of estimated b1. Therefore, when a mixture boot-

strap distribution of estimated b1 is mostly negative (regardless

of magnitude), it may be regarded as evidence for hormesis.

Application of Model Averaging to Semiparametric
Models

Recall that we let pj denote the probability of a toxic outcome

at dose xj. In general, we need evidence for p1 > p2 to reject H0
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Figure 2. Hormetic dose–response relationships generated by the logistic regression models. The left figure is the L3 model with b0¼�1.5, b1

¼�5, and b2¼ 10, the middle figure is the L4 model with b0¼�1.5, b1¼�5, b2¼ 10, and b3¼ 0.5, and the right figure is the L4 model with b0

¼ �1.5, b1 ¼ �5, b2 ¼ 10, and b3 ¼ 2.
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in favor of H1. In this section, we introduce a proposed model

averaging method which does not require a link function

between the probability of a toxic outcome and the dose.

Let M1 denote the saturated model with J free parameters,

p1, p2, . . . , pJ, so each pj is estimated by the observed propor-

tion at dose xj. Let M2 denote a model with J � 1 free para-

meters by the condition p2 ¼ p3, so p2 is estimated by the

observed proportion at the 2 doses x2 and x3. Let M3 denote a

model with J � 2 free parameters by the condition p2 ¼ p3 ¼
p4, so p2 is estimated by the observed proportion at the 3 doses

x2, x3, and x4. Using general notation, let Mk denote the model

with J � k þ 1 free parameters such that p2 ¼ . . .¼ pkþ1. We

consider up to MJ�2 and obtain the AIC-weights w1, . . . , wJ�2

by maximizing the log-likelihood function (see Appendix for

detail). When we have more experimental units inside the hor-

metic range, the model averaging will become more robust

regardless of the values of x1, . . . , xJ because the model struc-

ture depends on the order x1, . . . , xJ and estimated p1, . . . , pJ. It

does not assume a particular shape of dose–response curve.

For each Mk, we can obtain the bootstrap distribution of

estimated p1 � p2, then we test for hypothesis testing H0:

p1 � p2 � 0 versus H1: p1 � p2 > 0 based on the mixture of

the J � 2 bootstrap distributions weighted by the AIC weights.

At significance level a, we reject H0 in favor of H1 when the

ath quantile of the mixture distribution exceeds 0. Throughout

the discussion, this model averaging method is referred to as

MASP (model averaging with semiparametric models).

Results

In this section, we compare the operating characteristics of the

4 aforementioned models: L3, L4, MAP, and MASP. We con-

sider 16 simulation scenarios with 5 scenarios under H0 and 11

scenarios under H1 (see Simulation Design). We summarize the

simulation results by the probability of rejecting H0 under each

scenario and for each model (see Simulation Result). Then, we

apply the 4 models to the data discussed in Calabrese and

Baldwin14 which provided some degree of evidence for horm-

esis at low doses (see Application).

Simulation Design

To control noise in the simulation, for all 16 scenarios, we

assumed J ¼ 6 experimental doses geometrically spaced as

x1 ¼ 0, x2 ¼ 0.0625, x3 ¼ 0.125, x4 ¼ 0.25, x5 ¼ 0.5, and x6

¼ 1, and we assumed nj ¼ 50 for each dose group so that N ¼
300 is the total sample size. For the case of H0, we generated

data under the logistic models L3 or L4 (scenarios 1-5). For the

case of H1, we generated data under L3 (scenarios 6 and 7), L4

(scenarios 8-13) and neither (scenarios 14-16).

The scenarios under the parametric structures are shown in

Figure 3 (scenarios 1-13). For these parametric scenarios, the

parameter values are presented in Table 1. For scenarios 14 to

16, we broke the parametric structures, so both L3 and L4 are

misspecified models in the 3 scenarios. We made pointwise

assumptions p1 ¼ 0.2, p2 ¼ 0.09, p3 ¼ 0.1, p4 ¼ 0.2, p5 ¼

0.4, and p6 ¼ 0.6 in scenario 14; 0.2, 0.09, 0.07, 0.2, 0.4, and

0.6 in scenario 15, respectively; and 0.2, 0.07, 0.08, 0.2, 0.4,

and 0.6 in scenario 16, respectively. Each scenario was simu-

lated 1000 times, and 2000 bootstrap samples were used per

simulated sample. We fixed the significance level at a ¼ .05,

and the probability of rejecting H0 was recorded for each

method under each scenario.

Simulation Result

Table 2 provides the simulation results. When H0 was true in

scenarios 1 to 5, the L3 model violated a ¼ .05 in some sce-

narios at mild degree, and the L4 model violated a ¼ .05 at

serious degree in scenario 2. The estimated type I error prob-

ability was .082 which is difficult to believe that it just hap-

pened by chance for 1000 replications of the scenario. In each

scenario, the model averaging method MAP rejected H0 with a

probability between the resulting probabilities in L3 and L4

with an anticipated result. The model averaging method MASP

obeyed a ¼ .05 in the 5 null scenarios.

In scenarios 6 and 7, when H1 was true under the L3 model,

the L4 model led to slightly lower statistical powers than the L3

model due to overparameterization. The MAP model yielded

statistical power between the results in M3 and M4 as antici-

pated. On the other hand, the MASP yielded substantially lower

statistical powers in the 2 scenarios. When the true dose–

response curve is generated under the simple L3 model, the

L3 model outperformed which is not surprising.

In scenarios 8 to 13, when H1 was true under the L4 model,

the L3 model could not tolerate model misspecification by

showing substantially lower statistical powers due to the inflex-

ibility. The L4 model mostly showed outperformance because

the scenarios belong to its own parameterization. In these 6

scenarios, the MASP model was consistently more powerful

than the MAp model despite the contribution of the true L4

model to MAP. In scenarios 9 to 11, the MASP model showed

comparable results to the results from the true L4 model.

We now turn our focus on scenarios 14, 15, and 16. Recall

that these 3 scenarios did not belong to any of L3, L4, MAP,

and MASP. The M3 model could not reject H0 even once, the

L4 model showed statistical powers of .180, .200, and .268,

respectively, and the MAP model showed statistical powers of

.107, .144, and .200, respectively. On the other hand, the

MASP showed statistical powers of .438, .580, and .666,

respectively.

The take-home message is clear. The parametric L3 and L4

models sometimes showed outperformance within their own

parameterizations (statistical power of .984 and .998 from L3

in scenarios 6 and 7, respectively; statistical power of .570,

.474, .706, .525, and .768 from L4 in scenarios 8, 9, 10, 12 and

13, respectively; see Table 2), but they performed poorly when

the truth was not under the model (statistical power of 0 from

L3 in scenarios 14, 15, and 16; statistical power of .180, .200,

and .268 from L4 in scenarios 14, 15, and 16 which are less

than one half when compared to .438, .580, and .666 from

MASP in the respective scenarios; see Table 2). This is a

4 Dose-Response: An International Journal



general phenomenon in statistics. On the other hand, the MASP

model was relatively less sensitive, and the model averaging

among the semiparametric model (MASP) showed greater sta-

tistical power than the model averaging among the parametric

models (MAP) in the scenarios except when L3 was the true

model (see scenarios 8-16 in Table 2).

Application

In this section, we apply the 4 models (L3, L4, MAP, and

MASP) to some of binary data discussed in Calabrese and Bald-

win14 and compare P values from the 4 models.

Calabrese and Baldwin14 discussed the effects of saccharin

on hyperplasia of the urinary bladder. The 6 experimental

doses were 0, .01, .1, 1, 5, and 7.5 (% in diets). The respective

observed proportions of tumor incidence were 10/73 (14%), 6/

71 (8%), 4/81 (5%), 4/76 (5%), 6/64 (9%), and 19/62 (31%)

for male rats (see the top left panel in Figure 4). When we

implemented the L3, L4, MAP, and MASP models, the respec-

tive P values were .042, .027, .034, and .059, respectively.

This is one of the cases when the parametric models ade-

quately described the dose–response relationships, and the

MASP model could not achieve the significance level a ¼
.05. At the same experimental doses, the respective observed
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Figure 3. Simulation scenarios generated by the logistic models (scenarios 1-13). The parameter values are provided in Table 1.

Table 1. Parameter Values for Scenarios 1 to 13 Under the Logistic Model.

Scenario 1 2 3 4 5 6 7 8 9 10 11 12 13

b0 �1.3 �1.3 �1.3 �1.3 �2.3 �1.39 �1.39 �1.39 �1.39 �1.39 �1.39 �1.39 �1.39
b1 0 0 0 0 0 �7.33 �10.02 �5.18 �4.62 �7.09 �6.31 �7.33 �10.02
b2 0 1 3 1 3 14.66 20.04 7.33 5.82 10.02 7.95 14.66 20.04
b3 0 1 1 .5 .5 1 1 .5 .33 .5 .33 .5 .5
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proportions of incidence were 3/85 (4%), 0/81 (0%), 0/81

(0%), 3/90 (3%), 5/88 (6%), and 10/76 (13%) for female rats

(see the top right panel in Figure 4). When we implemented

the L3, L4, MAP, and MASP models, the respective P values

were .811, .070, .207, and .014, respectively. As shown in the

figure (the top right panel), the data points in the observed

range are not symmetric, so the L3 model was not able to

model the observed nonmonotonic dose–response relation-

ship adequately.

Calabrese and Baldwin14 also discussed the effect of 3-

Methylcholanthrene on pulmonary tumors in female rats.

The 9 experimental doses were 0, .005, .015, .046, .137,

.4, 1.2, 3.7, and 11.1 (mg). The observed proportions of tumor

incidence were 15/34 (44%), 1/18 (6%), 5/19 (26%), 7/18

(39%), 6/20 (30%), 12/24 (50%), 8/11 (73%), 10/10

(100%), and 11/11 (100%), respectively (see the bottom left

panel in Figure 4). Compared to the previous data set (effect

of saccharin on urinary bladder), it has a smaller total sample

size but a larger number of experimental doses. The L3, L4,

MAP, and MASP models yielded P values of .869, .070, .224,

and .003, respectively. As shown in Figure 4 (the bottom left

panel), the L3 model was not flexible enough to describe the

observed data, and the L4 model was quite flexible to follow

the observed nonmonotonic trend though it did not achieve

statistical significance. Under the MASP model, the data

served as significance evidence for hormesis with a P value

.003 < a ¼ .05.

As a final example, the same paper14 discussed the effect of

cadmium chloride on testicular tumors. From the 7 experimen-

tal doses 0, 1, 2.5, 5, 10, 20, and 40 (mmol/kg), the observed

proportions of incidence were 8/45 (17.8%), 1/30 (3.3%), 3/29

(10.3%), 3/30 (10.0%), 4/30 (13.3%), 21/29 (72.4%), and 24/29

(82.8%), respectively (see the bottom right panel in Figure 4).

Despite the strong hormetic trend, P values from L3, L4, MAP,

and MASP were .99, .64, .65, and .06, respectively, and they

seem to be influenced by the 2 data pints at the high doses 20

and 40 mmol/kg. The P values from the parametric methods

(L3, L4, and MAP) do not seem credible, and the P value from

averaging the semiparametric models seems more credible

based on the observed trend before modeling. In the figure

(the bottom right panel), the L3 model was not able to model

the asymmetric hormetic trend, and the flexibility of the L4

model was used to chase the 2 data points at the high experi-

mental doses rather than the data points at low doses. An

interesting issue with the L4 model is discussed in the follow-

ing section.

Discussion

The focus of this article is not to argue the existence of horm-

esis for a particular carcinogen. Our focus is a valid hypothesis

testing for a hormetic effect at low doses. We presented the

different characteristics of averaging parametric models and

averaging semiparametric models. In conclusion, when the true

hormetic relationship is under the simple L3 model, the para-

metric approach MAP (and individual L3 and L4) outperformed

the semiparametric approach MASP, which is not surprising.

On the other hand, when we compare the 2 averaging methods,

MASP outperformed MAP when the true hormetic relationship

is nonparametric and even when the truth is generated under the

parametric L4 model. It is also shown that the parametric

approaches cannot tolerate model misspecification for the

hypothesis testing. To this end, when the truth does not follow

a parametric form, MASP can be useful for more robust and

higher statistical power.

In large sample studies with many experimental doses in a

hormetic range, a nonparametric method can be a more reason-

able approach because it can disconnect information between

doses inside a hormetic range and higher doses. May and Bige-

low3 discussed the practical challenges due to insufficient sam-

ple sizes and a lack of experimental doses (missing a potential

hormetic range). In small sample studies, borrowing mathemat-

ical structure (ie, parametric models) to gain efficiency seems

inevitable. As discussed in “Results,” however, it sometimes

gives us a misleading result not simply due to a lack of evi-

dence but due to model misspecification and high-leverage data

points (recall the low statistical power from L3, L4, and MAP in

scenarios 14-16 in Table 2). Motivated by this fact, we consid-

ered averaging semiparametric models (MASP) with AIC

weights to test for a hormetic effect at low doses. When we

implemented to real data, calculated P values from MASP made

more sense than P values from L3, L4, and MAP particularly in

the last applied example in “Application” (cadmium chloride

on testicular tumors).

In the simulation study, we showed pros and cons of the

parametric methods (L3, L4, and MAP) and of the semipara-

metric method (MASP). Under the correctly specified para-

metric form, the statistical power from L3 was highest

among the 4 methods as shown in scenarios 6 and 7 in Table

Table 2. Simulation Results, the Probability of Rejecting H0 Based on
1000 Simulated Data per Scenario.a

Scenario True Model L3 L4 MAP MASP

1 L3/L4 .055 .044 .042 .044
2 L3/L4 .056 .082 .061 .037
3 L3/L4 .019 .029 .018 .020
4 L3/L4 .066 .038 .043 .025
5 L3/L4 .000 .003 .000 .019
6 L3 .984 .764 .894 .279
7 L3 .998 .845 .948 .400
8 L4 .277 .570 .467 .474
9 L4 .135 .474 .327 .470
10 L4 .387 .706 .641 .673
11 L4 .145 .635 .517 .689
12 L4 .318 .525 .446 .475
13 L4 .453 .768 .660 .670
14 – .000 .180 .107 .438
15 – .000 .200 .144 .580
16 – .000 .268 .200 .666

aL3 represents logistic regression model with the 3 parameters b0, b1, and b2;
L4, logistic regression model with the 4 parameters b0, b1, b2, and b3; MAP,
model averaging with the parametric models L3 and L4; MASP, model averaging
with the semiparametric models.
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2, and MAP outperformed MASP in the 2 scenarios generated

by L3. Under the wrong parametric form, we lost statistical

power substantially as shown in scenarios 14 to 16 (zero sta-

tistical power from L3 in Table 2). We observed that MASP

outperformed MSP in the 3 scenarios generated outside of L3 or

L4. Even when the true scenario was generated by L4, MASP

could yield higher statistical power than MAP as shown in

scenarios 8 to 13 (see Table 2). In practice, we cannot guaran-

tee that observed outcomes (which are based on the unknown

true dose–response relationship) will follow a parametric

model as seen in the cadmium chloride data, and it is not under

our control. Instead, the proposed model averaging method

with semiparametric models does not require the parametric

form, and we learned that it is relatively less sensitive to the

shape of observed dose–response trend.

For the L4 model, we refitted the cadmium chloride data

with the restriction 0 < b3 < 1. The restricted parameterization

yielded a P value lower than a ¼ .05 by adequately modeling

the asymmetric hormetic zone. However, when we ran a simu-

lation study under the null scenarios, it violated the significance

level a ¼ .05 seriously. In other words, the restricted parame-

terization tended to favor H1 too often when H0 is true. Addi-

tionally, we implemented the nonparametric regression method

discussed in Hall and Heckman20 in the simulation study. The

advantage of a nonparametric method is insensitivity to data

points at high doses, but it yielded lower statistical powers than

MASP in all of the alternative scenarios (generally below .2).

We also studied other methods among others. We modified the

test statistic in Baraud et al,21 which is more appropriate for the

binomial data (ie, difference in the 2 probabilities, comparing

the control group and the lowest nonzero dose group). It tended

to be too conservative, and it did not seem appropriate for a

sparse experimental doses. Similarly, we tested an umbrella

shape at low doses (decreasing then increasing) using the addi-

tive constrained regression.22 Due to the small number of dose

groups, the model fitted the data exactly, and it inflated the type

I error rate in null scenarios. A nonparametric method is often

useful for a large sample study, but 50 experimental units per

dose group with 6 experimental units do not seem sufficiently

large particularly for binary outcomes.
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Figure 4. Fitted dose–response curves under the L3 and L4 models using the maximum likelihood estimates.
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To further study L3, L4, MAP, and MASP for increased

sample sizes (fixing the experimental doses), we manipu-

lated the cadmium chloride data by doubling the sample size

while maintaining the observed proportions, that is 16/90

(17.8%), 2/60 (3.3%), 6/58 (10.3%), 6/60 (10.0%), 8/60

(13.3%), 42/58 (72.4%), and 48/58 (82.8%). Recall the P

values were .99, .64, .65, and .06 for L3, L4, MAP, and

MASP, respectively, before the manipulation (see Applica-

tion). After the manipulation, the P values changed to .999,

.727, .727, and .006 for L3, L4, MAP, and MASP, respec-

tively. When we multiplied the sample size by 10, that is

80/450 (17.8%), 10/300 (3.3%), 30/290 (10.3%), 30/300

(10.0%), 40/300 (13.3%), 210/290 (72.4%), and 240/290

(82.8%), the P values were close to 1, .943, .943, and close

to 0 for L3, L4, MAP, and MASP, respectively. Then, we

tested an additional simulation scenario under the assump-

tions (1) p1 ¼ .178, p2 ¼ .033, p3 ¼ .103, p4 ¼ .100, p5 ¼
.133, p6 ¼ .724, and p7 ¼ .828 and (2) n1 ¼ 450, n2 ¼ 300,

n3 ¼ 290, n4 ¼ 300, n5 ¼ 300, n6 ¼ 290, and n7 ¼ 290. The

resulting statistical powers were near 0, .005, .005, and near

1 for L3, L4, MAP, and MASP, respectively. The results

illustrate the impact of model misspecification even with

large data under the parametric methods when we test for

hormesis.

The Generic Hockey Stick model proposed by Bogen6 is a

parametric model with the enhanced polynomial flexibility

and the link function used in the linearized multistage

model.23 In sparse data, it may have the advantage of utilizing

3 parameters to allow greater flexibility than the L3 models

considered in this study. However, the Fisher expected infor-

mation tells us that the parameter estimation still heavily

depends on high data points when we use a polynomial pre-

dictor. In practice, high-response data are removed when (1)

they are irrelevant to low-dose inference and (2) they severely

deviate from an assumed parametric model. We concern

about too few data points after removing the data points, and

it may increase the type I error rate under the null scenario. It

is our future study.

Based on the simulation study, we have thought that aver-

aging L4 and MASP can balance the sensitivity (when the

observed data points can be approximated by the assumed

parametric structure) and the robustness (when they do not

follow the assumed parametric structure). It is our current

research direction.

Appendix

Model Averaging of L3 and L4

Let yij ¼ 1 if we observe the ith experimental unit treated by

dose xj showed a toxic outcome (and yij ¼ 0 otherwise) for

i ¼ 1, . . . , nj and j ¼ 1, . . . , J (see Model Averaging in

Parametric Models [L3 and L4] subsection). Let pj denote

the probability of observing a toxic event at dose xj which is

unknown for j ¼ 1, . . . , J. Given the data, the log-likelihood

function is

l ¼
XJ
j¼1

Xnj
i¼1

�
yijlogðpjÞ þ ð1� yijÞlogð1� pjÞ

�

The L3 model assumes

pj ¼
eb0þb1xjþb2x

2
j

1þ eb0þb1xjþb2x
2
j

so l is a function of b0, b1, and b2, denoted by lL3(b0, b1, b2).

The L4 model assumes

pj ¼
eb0þb1x

b3
j þb2x

2b3
j

1þ eb0þb1x
b3
j þb2x

2b3
j

so l is a function of b0, b1, b2, and b3, denoted by lL4(b0, b1,

b2, b3). Let l̂L3 denote the maximized lL3(b0, b1, b2) with

respect to (b0, b1, b2), and let l̂L4 denote the maximized

lL4(b0, b1, b2, b3) with respect to (b0, b1, b2, b3). The AIC of

the L3 model is defined as AICL3 ¼ �2̂lL3 þ 2p ¼ �2̂lL3 þ 6
because the model has p ¼ 3 parameters. The AIC of the L4

model is defined as AICL4 ¼ �2̂lL4 þ 2p ¼ �2̂lL3 þ 8 because

it has p ¼ 4 parameters. Then the AIC weight of the L3 model

and of the L4 model is

wL3 ¼
e�0:5AICL3

e�0:5AICL3 þ e�0:5AICL4
; wL4 ¼

e�0:5AICL4

e�0:5AICL3 þ e�0:5AICL4
;

respectively.

Type I Error Rate Under MAP

Assume the null hypothesis H0 is true (see Model Averaging

in Parametric Models [L3 and L4] subsection). Let B denote

the number of bootstrap samples. Let w be a number between

0 and 1 (ie, AIC weight). Let p3 denote the proportion of

bootstrap estimates such that b^1 > 0 under the L3 model.

Consider a significance level a ¼ .05. In this case, under the

L3 model, we reject H0 in favor of H1 when B � p3 < .05 � B.

Similarly, let p4 denote the proportion of bootstrap estimates

such that b^1 > 0 under the L4 model. Under the L4 model, we

reject H0 in favor of H1 when B� p4 < .05� B. Now, consider

a mixture bootstrap distribution of estimated b1 (ie, averaging

the 2 bootstrap distributions from L3 and L4). If L3 is

weighted by w and L4 is weighted by 1 � w, we reject H0

in favor of H1 when B [w � p3 þ (1 � w) � p4] < .05 � B

under the model averaging MAP. Now let R3, R4, and RMA

denote the event that H0 is rejected under L3, L4, and MAP,

respectively. We consider the 4 cases. If R3 ∩R4 occurs, it

implies RMA (case 1). If R3 ∩RC
4 occurs (ie, H0 is rejected

under L3 but not under L4), it is inconclusive (case 2). If

RC
3 ∩R4 occurs, it is inconclusive (case 3). If RC

3 ∩RC
4 occurs,

it implies RC
MA. To this end,

PðRMAÞ � PðR3 ∩R4Þ þ PðR3 ∩RC
4 Þ þ PðRC

3 ∩R4Þ
¼ PðR3Þ þ PðRC

3 ∩R4Þ

and

8 Dose-Response: An International Journal



PðRMAÞ � PðR3 ∩R4Þ þ PðR3 ∩RC
4 Þ þ PðRC

3 ∩R4Þ
¼ PðR4Þ þ PðR3 ∩RC

4 Þ

In other words, the type I error rate under MAP has the upper

bound

PðRMAÞ � min
�
PðR3Þ þ PðRC

3 ∩R4Þ;PðR4Þ þ PðR3 ∩RC
4 Þ
�

If we observe an unusual original sample against H0, both

the probability of R3 and the probability of R4 increase, so

PðRC
3 ∩R4Þ and PðR3 ∩RC

4 Þ are fairly small. To this end, the

type I error rate under MAP cannot be too far away from a range

between the type I error rate under L3 and under L4. In the

simulation study (“Simulation Result” and Table 2), we

observe that P(RMA) is close to the minimum of P(R3) and

P(R4) under the null scenarios (scenarios 1-5).

Model Averaging of M1, . . . , MJ�2

Assuming model Mk, for k ¼ 1, . . . , J � 2, the log-likelihood

function is given by (see Application of Model Averaging to

Semiparametric Models subsection)

lkðp1; :::; pJ Þ ¼
XJ
j¼1

Xnj
i¼1

�
yijlogðpjÞ þ ð1� yijÞlogð1� pjÞ

�

with the restriction p2 ¼ . . .¼ pkþ1.

� For model M1, it is the saturated model, so the maximum

l̂1 can be achieved by letting pj ¼ Si yij/nj, the observed

proportion of toxic outcomes at dose xj.

� For model M2 with the restriction p2¼ p3, the maximum

l̂2 can be achieved by letting pj ¼ Si yij/nj for j not being

equal to 2 or 3 and p2 ¼ p3 ¼ (Si yi2 þ Si yi3)/(n2 þ n3)

which is the pooled estimation.

� For model M3, with the restriction p2 ¼ p3 ¼ p4, the

maximum l̂3 can be achieved by letting pj¼ Si yij/nj for j

not being equal to 2, 3, or 4 and p2¼ p3¼ p4¼ (Si yi2þ
Si yi3 þ Si yi4)/(n2 þ n3 þ n4).

� This pattern continued up to MJ�2, where J is the num-

ber of fixed experimental doses.

The AIC of model Mk is AICk ¼ �2̂lk þ 2pk , where pk ¼ J

� kþ 1 is the number of free parameters in the model. Then the

AIC weight of Mk is given by

wk ¼
e�0:5AICk

e�0:5AIC1 þ . . . þ e�0:5AICJ�2
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