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Investigation of the monopole magneto-chemical
potential in spin ices using capacitive torque
magnetometry
Naween Anand1,5, Kevin Barry1,2,6, Jennifer N. Neu1,2,7, David E. Graf 1, Qing Huang 3, Haidong Zhou 3,

Theo Siegrist1,4, Hitesh J. Changlani 1,2 & Christianne Beekman 1,2✉

The single-ion anisotropy and magnetic interactions in spin-ice systems give rise to unusual

non-collinear spin textures, such as Pauling states and magnetic monopoles. The effective

spin correlation strength (Jeff) determines the relative energies of the different spin-ice states.

With this work, we display the capability of capacitive torque magnetometry in characterizing

the magneto-chemical potential associated with monopole formation. We build a magnetic

phase diagram of Ho2Ti2O7, and show that the magneto-chemical potential depends on the

spin sublattice (α or β), i.e., the Pauling state, involved in the transition. Monte Carlo

simulations using the dipolar-spin-ice Hamiltonian support our findings of a sublattice-

dependent magneto-chemical potential, but the model underestimates the Jeff for the β-

sublattice. Additional simulations, including next-nearest neighbor interactions (J2), show

that long-range exchange terms in the Hamiltonian are needed to describe the measure-

ments. This demonstrates that torque magnetometry provides a sensitive test for Jeff and the

spin-spin interactions that contribute to it.
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Geometrically frustrated systems have an inherent incom-
patibility between the lattice geometry and the magnetic
interactions resulting in macroscopically degenerate

ground-state manifolds1–5. The large magnetocrystalline aniso-
tropy and magnetic interactions in these systems give rise to
unusual non-collinear spin textures, such as a spin-ice state that
hosts emergent quasiparticle excitations equivalent to magnetic
monopoles6–9. As in ref. 10, we denote the two-in/two-out Paul-
ing states with (2:2), the 3-in/1-out monopole states as (3:1), and
the all in/all-out configurations as (4:0). The effective spin-pair
coupling (Jeff) determines the energy per tetrahedron for each of
these states; only considering nearest-neighbor exchange inter-
actions, 2J1,eff is required to trigger the (2:2)→ (3:1) transition.
Importantly, the value of Jeff is altered if interactions beyond
nearest neighbor (i.e., dipolar D and 2nd and 3rd nearest-
neighbor exchange J2, J3) are included (see Table 1 and Fig. 1a), as
described in previously reported models1,11–14. Similar to applied
biases controlling the electro-chemical potential of electrons in a
material, an applied field lowers the chemical potential of specific
configurations leading to magnetic transitions between various
non-collinear spin textures depending on the field direction and
strength2,10,15–17 (see Figs. 1, 2).

Field-induced phase transitions in these systems have been
studied by magnetometry, neutron scattering, ultrasound and
dilatometry techniques, experimentally, or through numerical
methods2,12,15,18–23. In this work, we employ capacitive torque
magnetometry (CTM) to characterize the spin-ice system
Ho2Ti2O7 (HTO) and to measure the effective spin-pair corre-
lation strength between field-decoupled spins and the mean field.
Conventional torque magnetometry is traditionally used to
identify magnetic easy axes within crystalline materials24. How-
ever, the large magnetocrystalline anisotropy25 makes HTO an
ideal test-bed to reveal the unique capabilities of CTM in probing
magnetic interaction energies, rather than the crystal field. From
field dependent torque data, we extract the difference in magneto-
chemical potential (MCP) between the (2:2) and (3:1) states, i.e.,
the MCP of monopole creation. Note, in the field range of this
study, these are transitions between ordered states thus they
cannot be classified as Kasteleyn transitions26,27.

A striking result is that the extracted MCP (2Jαeff and 2Jβeff)
associated with monopole formation is different, depending on
whether the monopoles nucleate on the α- or β-spin sublattices21

(see Figs. 1b, 2). While this conclusion is supported by classical
Monte Carlo (MC) simulations using the standard (dipolar spin
ice) (DSI) model (including dipolar interaction D, see Table 1), a
comparison with the data clearly reveals the shortcomings of
this form of the DSI Hamiltonian. Addition of a next-nearest-
neighbor exchange term (J2 ~ 0.35 K) improves the correspon-
dence between the simulated and measured torque data for the
transition involving the α-spins, providing an estimate for J2. This
term only marginally increases the stability (i.e., angular range) of

the (2:2)X state, thus, a good agreement between the simulated
and measured torque curves is still lacking for this transition.
Additional third-nearest-neighbor exchange terms, Ja3 and Jb3, are
therefore required to fully describe the field-induced phase
transitions in HTO. The idea of needing long-range exchange
interactions for the complete description of spin ices is not new.
Values for Dy2Ti2O7 have been extracted via modeling of sus-
ceptibility and neutron data11,12,14,28, but to the best of the
authors’ knowledge, no such modeling has been reported
for HTO.

Results
Torque rotations in the (001) and (1�10) planes. Torque mag-
netometry measurements have been performed on crystal-
lographically oriented HTO single crystals as a function
of external field strength, field direction, and temperature.
Figures 3a, b show the torque responses when the field is rotated
within the (001) and the (1�10) plane of the unit cell, respectively.
The zero-field contribution has been subtracted for all curves to
show the magnetic response of the system, which is characterized
by multiple sharp turnovers and zero crossings, with intermediate
sinusoidal responses that are directly related to different crystal-
lographic axes of the spin-ice system (see Methods and Supple-
mentary Note 1).

A phenomenological single-unit-cell model is used to map out
the evolution of magnetic phases as a function of field orientation
for a given field strength. In this model, the sinusoidal torque
curves are generated by explicitly calculating the torque response
for one 16-site cubic unit cell for the different spin textures shown
in Fig. 2 (solid curves in Fig. 3c, d) and intermediate mixed
textures (dotted curves in Fig. 3c, d). These curves provide an
objective way to determine the half-way point of each of the
transitions. Based on a comparison of the model curves and the
data, the (2:2)0 is the only stable phase in the (001) plane, except
near the [110] and the [�110] directions when all β-spins flip and

Table 1 Interaction energy scales for HTO.

Model Energy scales (K)

NN (no dipolar) J1 = 5.40, J1,eff = 1.8
Standard-DSI (NN-dipolar) Js-DSI1 = −1.56, D =1.41, Js-DSI1;eff ¼ J1þ5D

3 = 1.83

Standard-DSI (long-range
dipolar)

Js-DSI1 ¼ �1:56; D =1.41, Js-DSI1;eff ¼ J1þ4:53D
3 = 1.61

Generalized-DSI (long-range
exchange)

J1 = −1.56, D = 1.41, J2 ~ 0.35,

J2;eff ¼ J2�D=
ffiffi
3

p
3 = −0.155, Ja3 = ?, Jb3 = ?

Values for the effective spin-pair interactions in HTO are provided for nearest-neighbor model
(NN), the standard dipolar spin-ice model (s-DSI, NN-dipolar13), and for the s-DSI model with
long-range dipolar interactions (i.e., Ewald Summation)1,2,12. The generalized DSI (g-DSI) model
includes couplings up to third neighbors, which have also been shown to depend on phonon-
induced distortions to the lattice14. In the g-DSI model, values have only been reported for
Dy2Ti2O7. The values presented in the bottom row are based on this work.
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Fig. 1 Magneto-chemical potential (MCP) of spin-ice states. a Schematic
of the total energy of the pyrochlore lattice per tetrahedron (NN model) for
the spin-ice states at zero field (we assign −J1,eff to an in-out pair and +J1,eff
to an in-in/out-out pair)10. Note, if an isolated tetrahedron is considered,
the energy of the (2:2) states would be −2J1,eff. Each tetrahedron could
adopt one of six possible (2:2) Pauling states at low temperatures.
Monopole states, i.e., a (3:1) tetrahedron (eight possible configurations),
reside at higher energy and these states freeze out at low temperature. The
all-in/all-out (4:0) (2 configurations) are at much higher energy.
b Schematic of the chemical potential difference (Δμ) between the Pauling
states ((2:2)0 and (2:2)X) and the (3:1) state. The MCP, 2Jαeff and 2Jβeff,
depends on the field direction, i.e., whether monopoles nucleate on the α-
or β-spin sublattice (defined in Fig. 2) for B k 112h i and B k 110h i,
respectively.
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Fig. 2 Spin textures of the ordered spin-ice states for different applied fields. Spin-ice magnetic phases displayed as a 2D projection of the HTO unit cell
down the z-axis. The orange squares are tetrahedra. The square in the center (gray) is not a tetrahedron; the diagonally opposing spins are in the same
lattice plane. The +/− signs indicate the spin directions along the z-axis2,16,17,21. a (2:2)0 state with a net magnetic moment (m̂) in the z-direction ((2:2)0
states also form with m̂ in the x- or y-directions, depending on the field direction); (b) (2:2)X state (with m̂ k[110]) in which the α-spins (blue) are polarized
and the β-spins (red) are antiferromagnetically aligned in chains (highlighted by the open arrows). The (2:2)X state also forms when B is directed along any
of the family of 110h i directions; and (c) (3:1) state with one spin flip per tetrahedron with m̂ k[111] (the (3:1) state forms when B is directed along any of the
family of 111h i directions with ∣B∣ ≥ 2 T). The spins denoted by the light blue boxes in panels (a) and (c) indicate the spin sublattice that becomes decoupled
from the field when the magnetic field is directed exactly along the [112] direction. The direction of the magnetic field is indicated for each spin texture. The
total energies per 16-site unit cell, i.e., interaction energies summed over 1st, 2nd and 3rd nearest neighbors and the Zeeman energies, are calculated for
each of these ordered state, details regarding this calculation are provided in Supplementary Note 7.

Fig. 3 CTM angular measurements. Measured capacitance change as a function of angle in various applied fields for an HTO single crystal, measured at
T = 0.5 K. a CTM response when B rotates in the (001) plane (the [100] direction corresponds to 0∘). b CTM response when B rotates in the (1�10)
plane (the [11�2] direction corresponds to 0∘). c, d CTM response in a 6 T applied field for the (001) plane and the (1�10) plane, respectively. The 6 T data
(solid black line) was scaled according to sample volume and cantilever sensitivity. The data are plotted alongside calculated torque curves using the
phenomenological model described in the Methods section and Supplementary Notes 1, 2. The solid colored model curves correspond to stable phases,
while the dotted lines are calculated using volume fractions of spin flips on the α and β sublattices. For each panel, crystallographic directions are indicated
by vertical dashed lines.
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the net magnetization sharply rotates by 90∘. At low field, with the
(3:1) states energetically out of reach, hysteresis appears around
this transition, which is a clear sign of glassy behavior (see Fig. 3a
and Supplementary Notes 1, 5).

For the rotation within the (1�10) plane all three spin textures
show appreciable angular stability against misalignment of the
field (see Fig. 3b, d). While this may not be surprising for the
(2:2)0 and (3:1) phases, we find the (2:2)X phase to be strikingly
stable around the [110] direction, especially in small applied
fields. Although a single-unit-cell model is not adequate to
describe the long-range antiferromagnetic alignment of the β-
spins of this phase, its stability indicates that a long-range ordered
phase is present around this crystallographic direction, rather
than a transient domain state as observed in the (001) plane
rotation (Fig. 3a, c). [For field-angle phase diagrams, see
Supplementary Fig. 2.]

A way to visualize the surprising anisotropy in the (2:2)X
stability between the two rotation planes is to explore the energy
surface that is obtained by integrating the torque curves. We show
the energy surface contours associated with the (001) and the
(1�10) rotation planes in Supplementary Fig. 3, with (2:2)X
residing on a sharp maximum in the (001) plane and on a local
minimum in the (1�10) plane. Thus, the (2:2)X phase resides on a
saddle point in the energy landscape. While it is quite robust
against misalignment of the field in the (1�10) plane, in the (001)
plane the (2:2)X is not stable, and the system favors the (2:2)0
states (i.e., a domain state with m̂ k ½100� and m̂ k ½010�). The
experimental observation of the (2:2)X phase is extremely
sensitive to field misalignment, the high sensitivity of the CTM
technique and the <1∘ accuracy of the polished crystal faces
proved critical for our measurements.

Within the (1�10) plane, the (2:2)0⇔ (3:1) transition occurs
when the field rotates across the [112] (and [11�2]) direction,
when B is parallel to the [112] direction, one α-spin per
tetrahedron (Fig. 2a, c) becomes decoupled from the applied
field12,22,29. The spins that are decoupled from the field maintain
their spin-ice configuration due to the presence of the local
internal field that is set by their spin environment. At a critical
angle (i.e., a critical field) away from the [112] direction towards
[111], the external field compensates the local internal field acting
on the aforementioned spin sublattice allowing them to flip. From
these critical angles at which (2:2)⇔ (3:1) transitions occur, we
determine the MCP (i.e., the energy) associated with (3:1) state
formation. Similarly, for the (2:2)X⇔ (3:1) transition, when the
applied field is aligned along the [110] (or equivalent) direction,
there exist two β-spins per tetrahedron, which are decoupled
from the field. The unit cell still maintains the spin-ice
configuration, however that configuration is not unique, which
leads to domains of degenerate magnetic phases. Theoretical and
experimental evidence demonstrate the importance of second and
third neighbor exchange couplings in addition to dipolar
interactions11,12,14,28, but evidence linking these correlations to
the antiferromagnetic alignment of the decoupled β-chains is still
lacking. In other words, these beyond-NN exchange interactions
that are reportedly needed to stabilize the predicted low
temperature ordered phase14 involving alternating (single and
double) spin chains, also play a role in stabilizing the (2:2)X phase
at intermediate temperatures. We find ourselves well positioned
to investigate the presence of these additional correlations
because CTM allows us to extract the MCP of spin flip excitations
for each of the sublattices separately.

Monopole MCP extraction from CTM data. The extracted cri-
tical angles are shown in the phase diagram in Fig. 4a for both
transitions. By identifying the field-decoupled spin sublattice for

each transition, we fit the extracted angles as a function of applied
field and extract the MCP associated with (3:1) monopole creation/
annihilation. For the (2:2)0⇔ (3:1) phase transition, a value of
Jαeff = 1.61(5) K is determined from the experiment (details on the
analysis are provided in the Methods section). In addition, if
one extrapolates the fitted curves to the nearby 111h i directions,
a crossing point occurs at Bc = 1.44 T in each case. These crossing
points match well with theoretical predictions30,31, Bc ¼
6Jαeff =ðgμB Jz

� �Þ and with experimental results (Bm ≈ 1.5 T23) of the
critical field required for the Kagome ice→ (3:1) phase transition,
which occurs as a function of increasing field when B is perfectly
aligned along any of the 111h i directions.

Strikingly, the same analysis for the (2:2)X⇔ (3:1) transitions,
yields a larger value of Jβeff = 2.2(1) K. We confirm this larger
effective spin-pair coupling strength for the (2:2)X⇔ (3:1) phase
transition via field sweep measurements, with the field purpose-
fully misaligned away from the [111] direction (see Fig. 4b).
Surprisingly, the small misalignment of 5∘ away from the [111]
direction (towards the [110] direction) stabilizes a low field (2:2)X
phase (rather than a Kagome ice, expected when the field is
perfectly aligned with any of the 111h i directions), which
transitions into the high field (3:1) monopole phase above a
critical field26. We extract a critical field of 2 T for this transition,
i.e., Jβeff = 2.1 K, in line with the results from angular sweep
torque data. While, the agreement between Jαeff = 1.61(5) K and
the predicted Js-DSI1;eff with long-range dipolar interactions (see
Table 1 and ref. 1) is remarkable, the s-DSI model does not
describe the (2:2)X⇔ (3:1) transitions very well. As we will show
below, the inclusion of higher order exchange terms affects the
phase boundary and the stability of the spin-ice phases associated
with both transitions.

Identical measurements were performed at T = 1.7 K, above
the spin-freezing temperature23 (see Supplementary Note 5). We
find that beyond thermal smearing, the (2:2)X state is the only
phase that changes significantly. This is evident from the change
in slope of the torque curve around the [110] direction. This
indicates deviation from a “clean” (2:2)X state due to thermal
defects in the spin lattice at T = 1.7 K, which further supports the
conclusion that the stable phase observed in CTM around the
[110] direction is indeed the (2:2)X state.

Monte Carlo simulated torque curves. MC simulations were
performed for a pyrochlore cluster with 16 × 43= 1024 spins and
periodic boundary conditions. Simulated torque curves are
compared to the experiments. The results for a strictly nearest-
neighbor model (NN, blue curve) and for the s-DSI model
(including Ewald summation, loop moves, and demagnetization
effects2, red curve) are shown in Fig. 5a (see Supplementary
Note 6 for more details). While the data are well described within
either model at high field, it is clear that the experimental
observations at low field are not fully described by either of these
models. In low fields, the s-DSI model does well in approximating
the critical angle associated with the transitions, but it over-
estimates the angular stability of the (3:1) phase. In contrast, the
NN model better approximates the (3:1) stability, but does less
well with the critical angles. Most noticeable at higher fields, is
that the stability of the (2:2)X phase is underestimated in both
models.

We apply the same procedure for the extraction of the (3:1)
MCP for each transition from the torque curves obtained from
the MC simulations. The phase diagram based on the s-DSI
model (with J2 = 0) is presented in Fig. 5b. We obtain Jα;MC

eff =
1.4(2) K and Jβ;MC

eff = 1.8(1) K for the (2: 2)0⇔ (3: 1) and
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(2: 2)X⇔ (3: 1) transitions, respectively. The errors are based on
the angular resolution (1∘) of the simulations. While the
qualitative trend is correct, these Jeff values differ from results
shown in Fig. 4a. The value for the (2: 2)0⇔ (3: 1) transition is
only slightly smaller than the Jαeff extracted from the measure-
ments. That said, we note that there is a spread in reported values
for the NN exchange and the dipolar interactions for spin-ice
systems in existing literature5,10,12,28, which could cause such a
discrepancy. Similar to our experimental findings, the simulated
curves show that the (3:1) MCP is not the same, depending on the
sublattice that the monopoles nucleate on during the transition.
However, the Jβ;MC

eff extracted from the MC simulations for the
(2: 2)X⇔ (3: 1) transition is significantly smaller (1.8 K, Fig. 5b)
compared to our experimentally observed value of Jβeff = 2.2 K
(see Fig. 4a).

In Fig. 5c, a snapshot of the spin texture in a 2 × 2 × 2 unit cell
structure is shown as a two-dimensional projection projected
down the z-axis, illustrating the spin texture as extracted from the
MC simulation at T = 0.5 K with B= 4 T ∥[110] in the (1�10)
plane. Under these conditions the ground state of the system is
represented by a (2:2)X phase with no evidence of defects in the
spin lattice. While the model does predict the correct ground
state, it does not capture the entire extent of the angular stability
of the (2:2)X phase.

To extend the DSI model beyond just the nearest-neighbor and
dipolar terms, the minimal way is to add a next nearest-neighbor
J2 interaction. The presence of J2 does not change the energetics
of the (3:1) phase, but for J2 > 0 (see Methods) an additional Ising
antiferromagnetic interaction is introduced. We have simulated
curves for various J2 values up to 0.04 meV (~0.464 K). In Fig. 5
we plot the simulated torque curve associated with the s-DSI
model with J2 ~ 0.35 K added to it. This term improves the
agreement between the data and the MC simulations for the
transition involving the α-spins, now accurately approximating
the (3:1) stability at low fields, providing an estimate for the size
of J2 for HTO. The value of ∣J2/J1∣ found in this work is similar to
(but higher than) the reported value for the sister compound
Dy2Ti2O7

11,28. However, while the angular stability of the (2:2)X
phase did appear to marginally increase, the quantitative value of

the angular extent (see inset) is not explained by adding the J2
term, indicating that interactions such as J3, are necessary for a
precise characterization of the Hamiltonian.

We support our findings with a short-range phenomenological
model, which we use to evaluate the interaction energy for each
spin-ice phase (see Supplementary Note 7 for more details). From
this analysis, one can see what effect each of the interaction terms
in the Hamiltonian has on the phase boundary of the field-
induced magnetic phase transitions in HTO. In short, for the
(2:2)0⇔ (3:1) transitions, the introduction of a J2-term affects
the interaction energy of the (2:2)0 state, but does not impact the
energetics of the (3:1) state. Effectively, J2 partially negates the
effects of long-range dipolar interactions. Note, adding J3-terms
affects both the (2:2)0 and (3:1) states in the same way, thus this
effect cancels out when evaluating the location of the phase
boundary associated with this transition. (These J3 terms
correspond to two different kinds of third nearest neighbors,
their couplings are referred to as Ja3 and Jb3, see Supplementary
Note 7). For the (2:2)X⇔ (3:1) transitions, the introduction of J2
also does not affect the energetics of the (2:2)X phase, as the
interaction energy associated with this term sums to zero (i.e.,
similar to the (3:1) phase). Hence, the phase boundaries of the
(2: 2)X⇔ (3: 1) transitions are unaffected by the J2 term, a finding
broadly consistent with the MC simulations. However, the J3
terms affect the (2:2)X and (3:1) phases differently, and are
therefore important in determining the location of the phase
boundary for this transition. Thus, this simple short-range model
allows us to constrain the value for ðJa3 þ Jb3Þ to a ball-park value
of ~−0.014 meV (−0.16 K). The sign and the order of magnitude
for ðJa3 þ Jb3Þ are consistent with previously reported values for
DTO11.

While this work provides estimates for the interaction terms
for HTO, owing to the strongly correlated nature of the system, a
full re-optimization of all exchange parameters may be needed.
An accurate determination of the individual values for Ja3
and Jb3 requires further extensive MC simulations, which we
leave to future work.

In conclusion, we have shown that CTM can be used to
evaluate the phase boundaries of magnetic phase transitions in

Fig. 4 Monopole MCP extraction from experimental torque data. a Critical angles extracted from the experimental data in Fig. 3, which define the
transitions between the observed spin-ice magnetic phases, as a function of applied field (for the (1�10) plane rotations). The plotted error bars on the data
points are a visualization of the residuals of the fits. Fits are shown for transitions between (2:2)0⇔ (3:1) (blue curves) as well as (2:2)X⇔ (3:1) (red
curves). The errors on the extracted Jeff values are uncertainties obtained from the fits. The black dotted lines represent the extrapolation of the fit curves
to the nearby 111h i directions. The horizontal purple line represents the location of the critical field required to transition between the Kagome ice and the
(3:1) phases. Crystallographic directions are indicated by vertical dashed lines. b Capacitance change as a function of applied field at T = 0.5 K with
B applied≈ 5∘ away from the [111] direction, the black arrows indicate the sweep direction. The solid lines are volume-scaled calculated torque curves for
the (3:1) (green) and the (2:2)X phase (blue) (see Supplementary Note 4 for more details). The dashed vertical lines indicate the critical field of the (2:2)x
to (3:1) transition associated with a Jβeff = 2.1 K.
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spin-ice systems. The unique nature of the pyrochlore lattice and
the spin-ice interactions allows us to evaluate the effects of J2 and
J3 terms of the Hamiltonian separately, i.e., by investigating
different phase transitions. We believe that CTM may serve as a
natural complement to neutron scattering, specific heat, and
magnetization measurements, which can be compared with
careful numerics32,33, as it can put stringent bounds on effective
Hamiltonians and theories of magnetic materials, thereby aiding
to complete the understanding of their low-energy properties and
response to magnetic fields.

Methods
Single crystal growth. Single crystal samples of HTO were grown using the optical
floating-zone method. Ho2O3 and TiO2 powders were mixed in a stoichiometric
ratio and then annealed in air at 1450 ∘C for 40 h before growth in an optical zone
furnace. The growth was achieved by zone melting with a pulling speed of 6 mm/h
under 5 atm oxygen pressure. Single crystal x-ray diffraction experiments, taken on
an Oxford-Diffraction Xcalibur-2 CCD diffractometer equipped with a graphite-
monochromated MoKα source, confirm the symmetry (Fd-3m) and lattice para-
meter of 10.0839(1) Å at 293 K, consistent with previous reports3 (see Supple-
mentary Note 8 for more details).

Crystallographic orientation and specific axis alignment was performed using
an Enraf Nonius CAD4 4-circle single crystal x-ray diffractometer equipped with
graphite-monochromated MoKα radiation. Single crystals used for torque
magnetometry measurements were prepared as cubes with 1 mm edge length.
Crystallographic axis alignment to within 1∘ of the vector normal for each of the 6
polished faces was then confirmed, using single crystal x-ray diffraction, as a final
check for each sample.

Capacitive torque magnetometry. Capacitive torque magnetometry measure-
ments were performed at the National High Magnetic Field Laboratory in an 18 T
vertical-bore superconducting magnet with a 3He insert allowing for an operating
temperature range between 250 mK and 70 K. A calibrated Cernox resistance
temperature sensor was used throughout our measurements to determine the
sample temperature. Each single crystal sample was mounted onto a flexible BeCu
cantilever, constituting the top plate of the parallel plate capacitor in our setup, and
placed in an externally applied magnetic field while at low temperature (a sche-
matic of the torque setup is provided in Supplementary Fig. 1). The applied
magnetic field induces a torque, τ=m × B, on the magnetic sample causing the
cantilever to deflect. This deflection yields a change in measured capacitance
ΔC= C− C0 that is collected experimentally, where C0 is the capacitance value
collected in zero applied magnetic field. Here the magnitude of the induced torque
∣τ∣ is proportional to the change in capacitance (∣τ∣ ∝ ΔC) with a proportionality
constant that is dictated by the elastic properties of the BeCu cantilever. An
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Fig. 5 Monopole MCP extraction from MC-simulated torque curves. a Simulated torque response as a function of angle, obtained from MC simulations
using the nearest-neighbor model (NN, blue curves), s-DSI model (red curves) and the generalized DSI model (s-DSI with J2 = 0.35 K, green curves);
measured CTM data (black curves) are taken at T = 0.5 K in applied fields of 2 T (top panel) and 11 T (bottom panel). The inset highlights the angular
region near the [110] direction (orange square). The panels on the right highlight the region around the [11�2] direction. Crystallographic directions are
indicated with vertical dashed lines. b Critical angles extracted from the torque curves obtained from the MC simulations (s-DSI, with long-range dipolar D
and with J2 = 0) for the transitions between the observed spin-ice magnetic phases, as a function of applied field ([1�10] plane rotations). Error bars are
based on the angular resolution (1∘) of the simulations and are smaller than the symbol size. Fits are shown for transitions between (2: 2)0⇔ (3: 1) (blue
curves) as well as (2: 2)X⇔ (3: 1) (red curves). The uncertainties in the extracted Jα;MC

eff and Jβ;MC
eff values are errors determined from the fits. c A 2D

snapshot of the spin texture (2x2x2 unit cells projected down the z-axis) taken during the MC simulation using B = 4 T, at θ = 50∘, and with T = 0.5 K. The
blue and red arrows indicate the α- and β-spin sublattices, respectively. The +/−signs indicate the spin directions along the z-axis. Under these conditions
the ground state of the system is represented by a (2:2)X phase with no evidence of defects in the spin lattice.
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Andeen-Harling AH2700A Capacitance Bridge operating at frequencies between
1000 and 7000 Hz was used to collect the capacitance data during each mea-
surement. The measurement probe used allowed for rotation of the sample over a
range of ~200∘ and a Hall Sensor was used to calibrate the sample rotation with
respect to the applied magnetic field. Schematics of the (001) and (1�10) planes and
the high symmetry axes that lie on these planes are provided in Supplementary
Fig. 1.

Phenomenological model. In this study, we have employed a simple unit cell
model to calculate the expected torque response as a function of angle for each of
the stable spin textures (see Fig. 2) (2:2)0, (2:2)X and (3:1), and for the intermediate
phases hosting an appropriate volume fraction of these spin textures. During each
of the phase transitions, as the field is rotated within the (1�10) plane, the field-
decoupled spins will flip to form intermediate domain states eventually leading to a
(3:1) monopole phase on all tetrahedra. Depending on the transition, these are
either only α or only β spins. When rotating within the (001) plane, the measured
magnetic torque component is given as,

τn ¼ n̂ � τ ¼ ½0; 0; �1� � ðm ´BÞ; B ¼ B½cos θ; sin θ; 0� ð1Þ
When rotating within the (1�10) plane, these torque curves were calculated in

the following way:

τn ¼ n̂ � τ ¼ ½�1; 1; 0�ffiffiffi
2

p � ðm ´BÞ; B ¼ B½cos θ ĵ0 þ sin θ k̂
0 � ð2aÞ

î
0 ¼ ½1; �1; 0�ffiffiffi

2
p ; ĵ

0 ¼ ½1; 1; �2�ffiffiffi
6

p ; k̂
0 ¼ ½1; 1; 1�ffiffiffi

3
p ð̂i0 ´ ĵ0 ¼ k̂

0Þ ð2bÞ

Supplementary Tables 1 and 2 list all the moment vectors and the functional forms
of the angular dependence of the torque curves for both rotational planes.

Determination of Jαeff and Jβeff . We examined the critical angles associated with
each of the phase transitions observed in our torque vs. angle measurements. We
define the critical angle to be marked by the location where half of all tetrahedra
have a (3:1) configuration. This angular position is extracted by finding the
crossing point between the data and the associated model curve. Next, we identify
which specific spin sublattice(s) decouple from the field and would be expected to
flip when transitioning between the phases (see Figs. 1, 2). While one may expect
that the α- and β-spin sublattices decouple exactly at 112h i and 110h i field direc-
tions, respectively, the internal field produced by the mean field will shift that
transition to a critical angle away from these crystallographic directions. Thus, the
Zeeman energy (EZ) associated with this critical angle is a direct measure of this
internal field. We calculate the analytic form of the Zeeman energy of the field-
decoupled spins as the field rotates across the [112] and [110] crystallographic
directions, respectively. Expressing EZ in terms of applied field (B) and field
direction (θ), and realizing that EZ = 2Jeff, allows us to determine a fitting function

for the field vs. critical angle data from which the change in MCP (Jαeff and Jβeff )
associated with the proliferation of (3:1) tetrahedra can be determined. The results
of the fitting are presented in Fig. 4a as the blue and red curves. For each type of

spin sublattice, the MCP (Jαeff and Jβeff ) takes the form

EZ ¼ Δμ ¼ �m �B ¼ �10μBŜ �B ð3Þ

where Ŝ represents the unit vector associated with the given spin sublattice of
interest for the transition. This procedure allows the derivation of a functional form
for B(θ), which is used to fit the extracted values for the critical angles as a function
of external applied fields (see Fig. 4a). For the transition between the (2:2)0 and
(3:1) phase near the [112] direction,

Δμ ¼ 2Jαeff ¼
10μBBffiffiffiffiffi

18
p ½4 cosðθÞ þ

ffiffiffi
2

p
sinðθÞ� ð4Þ

The fitting function describing the transition near the symmetry-related [11�2]
direction, can be derived in the same way. For the transition between the (2:2)X and
(3:1) phase near the [110] direction,

Δμ ¼ 2Jβeff ¼
10μBBffiffiffiffiffi

18
p ½�2 cosðθÞ þ

ffiffiffi
2

p
sinðθÞ� ð5Þ

For the field sweep torque measurement in Fig. 4b, the applied field was
misaligned by ~5∘ away from the [111] direction (towards the [110] direction),
which stabilizes a low-field (2:2)X phase (rather than a Kagome ice, which is formed
when the field is perfectly aligned with the 111h i directions). The field sweep shows
two markedly linear regimes when the field is swept from high field to zero. These
linear regimes correspond to constant saturated magnetization values, the ratio
between the slopes describing these linear regimes (high field: green curve; low
field: blue curve) are in great agreement with the ratio of saturated magnetization
expected for the (3:1) (5 μB/Ho) and (2:2)X (4.1 μB/Ho) phase, respectively (see
Supplementary Note 4). The field sweep also shows hysteresis around zero field,
indicating a glassy response to a change in polarity of the applied field (i.e., the
reversal of the α spins).

Monte Carlo simulations. We have simulated torque responses using the gen-
eralized DSI model whose Hamiltonian is given by

H ¼ �J1 ∑
i;jh i

~Si � ~Sj � J2 ∑
i;jh ih i

~Si � ~Sj þ Dr3nn ∑
i>j

~Si � ~Sj
jrijj3

� 3ð~Si � rijÞð~Sj � rijÞ
jrijj5

 !
� gμB ∑

i
B � ~Si

ð6Þ
where ~Si are classical spin vectors with j~Sij ¼ 1. The tilde is used to indicate that
the spins are constrained to point along the local 111h i axis of the tetrahedra they
belong to. ri is the real-space location of site i, rij≡ ri− rj, i; j

� �
( i; j
� �� �

) refers to
nearest-neighbor (next nearest-neighbor) bonds, rnn is the nearest-neighbor bond
distance, J1 (J2) is the nearest-neighbor (next-nearest neighbor) interaction
strength, and D is the strength of the long-range dipolar term. The i > j notation
guarantees each of pair of spins is only counted once. gμB is the size of the magnetic
moment and B is the applied magnetic field.

Our calculations were performed for finite-size pyrochlore clusters (16 atoms per
simple-cubic unit cell) with Nspins= 16 × 43= 1024 lattice sites, and with periodic
boundary conditions. For the nearest-neighbor model, we set J1=+5.40 K and
D= 0. To deal with long-range magnetic dipolar interactions, the Ewald summation
technique was employed to convert the real-space sum in the Hamiltonian into two
rapidly convergent series, one in real space and the other in momentum space. This
Hamiltonian was then simulated with the Metropolis Monte Carlo algorithm, using
a combination of single spin flip and loop moves2 (which allows a ring of spins to
flip at one time, while maintaining the ice rule constraint). For the s-DSI simulation
(with long-range dipolar interaction D, red curve in Fig. 5a), the parameters were set
to J1 = −1.56 K, D = 1.41 K and g = 105,10. J2 was varied to investigate its effect
on the critical angles associated with both transitions. To produce the green curves
in Fig. 5, J2 = 0.35 K was used, additional simulations using different values for J2
are presented in Supplementary Fig. 6. Demagnetization effects (assuming a
spherical sample) were taken into account2 for the presented simulated torque
curves. More details of our simulations can be found in Supplementary Note 6.

Data availability
The authors declare that the main data supporting the findings of this study are available
within the paper and its Supplementary Information. The crystallographic data have
been deposited with the joint CCDC/FIZ Karlsruhe online deposition service under no.
CSD-217226934. Other data that support the findings of this study are available from the
corresponding author upon reasonable request.

Code availability
The code used to generate the Monte Carlo simulation results shown in the paper is
publicly available at https://github.com/hiteshjc/Ising_Ice_dipolar Additional scripts and
files for the numerical calculations are available from H.J.C. upon reasonable request.
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