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Data‑driven studies of magnetic 
two‑dimensional materials
Trevor David Rhone  1*, Wei Chen1, Shaan Desai1, Steven B. Torrisi1, Daniel T. Larson  1, 
Amir Yacoby1 & Efthimios Kaxiras1,2

We use a data-driven approach to study the magnetic and thermodynamic properties of van der 
Waals (vdW) layered materials. We investigate monolayers of the form A

2
B
2
X
6
 , based on the known 

material Cr
2
Ge

2
Te

6
 , using density functional theory (DFT) calculations and machine learning methods 

to determine their magnetic properties, such as magnetic order and magnetic moment. We also 
examine formation energies and use them as a proxy for chemical stability. We show that machine 
learning tools, combined with DFT calculations, can provide a computationally efficient means to 
predict properties of such two-dimensional (2D) magnetic materials. Our data analytics approach 
provides insights into the microscopic origins of magnetic ordering in these systems. For instance, we 
find that the X site strongly affects the magnetic coupling between neighboring A sites, which drives 
the magnetic ordering. Our approach opens new ways for rapid discovery of chemically stable vdW 
materials that exhibit magnetic behavior.

The discovery of graphene ushered in a new era of studies of materials properties in the two-dimensional (2D) 
limit1. For many years after this discovery only a handful of van der Waals (vdW) materials were extensively stud-
ied. Recently, over a thousand new 2D crystals have been proposed2–5. The explosion in the number of known 2D 
materials increases demands for probing them for exciting new physics and potential applications6,7. Several 2D 
materials have already been shown to exhibit a range of exotic properties including superconductivity, topologi-
cal insulating behavior and half-metallicity8–11. Consequently, there is a need to develop tools to quickly screen 
a large number of 2D materials for targeted properties. Traditional approaches, based on sequential quantum 
mechanical calculations or experiments are usually slow and costly. Furthermore, a generic approach to design a 
crystal structure with any desired property, although an active area of research12–15 and of practical significance, 
does not exist yet. Research towards building structure-property relationships of crystals is in its infancy16–19.

Long-range ferromagnetism and anti-ferromagnetism in 2D crystals has recently been discovered20–24, spark-
ing a push to understand the properties of these 2D magnetic materials and to discover new ones with improved 
behavior5,19,25–32. 2D crystals provide a unique platform for exploring the microscopic origins of magnetic order-
ing in reduced dimensions. Long-range magnetic order is strongly suppressed in 2D according to the Mermin-
Wagner theorem33, but magnetocrystalline anisotropy can stabilize magnetic ordering34. This magnetic anisotropy 
is driven by spin-orbit coupling which depends on the relative positions of atoms and their identities. As a result, 
the magnetic order should be strongly affected by changes in the structural arrangements of atoms and chemical 
composition of the crystal.

Chemical instability presents a crucial limitation to the fabrication and use of 2D magnetic materials. For 
instance, black phosphorous degrades upon exposure to air and thus needs to be handled and stored in vacuum or 
under inert atmosphere35. Structural stability is a necessary ingredient for industrial scale application of magnetic 
vdW materials, such as CrI3 and Cr2Ge2Te623,24. In addition to designing 2D materials for desirable magnetic 
properties, it is important to screen for materials that are chemically stable. In our approach, we employ the cal-
culated formation energy as a proxy for the chemical stability36. A recent data-driven study found that formation 
energy was one of the most important predictors of 2D MXene stability37, lining up with heuristics identified in 
the 2D Materials community5,38. To calculate the formation energy, we obtain the total energies of systems at zero 
temperature, and obtain the difference in total energy between the crystal and its constituent elements in their 
respective crystal phases. This quantity determines whether the structure is thermodynamically stable or would 
decompose. This formulation ignores the effects of zero-point vibrational energy and entropy on the stability.

While the formation energy provides evidence for thermodynamic stability, dynamic stability can also be 
assessed. By computing the phonon spectrum of the 0K structure, the presence of negative phonon frequencies 
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demonstrates dynamic instability. All-positive frequencies demonstrate a structure stable against small perturba-
tions, suggesting that a freestanding monolayer may be stable and experimentally accessible5.

The magnetic properties at finite temperatures are also important. There is growing interest in identifying 2D 
materials with magnetic order above room temperature for fundamental research and device applications29,39. 
Consequently, it is desirable to build a tool to screen for 2D materials which are ferromagnetic at elevated tem-
peratures. In our study, we analyze the magnetic excitation energy, along with the magnetic anisotropy to estimate 
the magnetic properties at finite temperatures.

Recently, machine learning (ML) has been combined with traditional methods (experiments and ab initio 
calculations) to advance rapid materials discovery2,3,36,40–45. ML models trained on a number of structures can 
predict the properties of a much larger set of materials. In particular, there is presently a growing interest in 
exploiting ML for discovery of magnetic materials27,46. ML studies of ferromagnetism in transition metal alloys 
have highlighted the importance of data analytics techniques to tackle problems in condensed matter physics46. 
In addition, the computational study of layered transition metal carbides and nitrides, known as MXenes, using 
high-throughput DFT relies on tuning the atomic composition of known MXenes to identify new ferromagnetic 
phases32,47. Further to this, recent work uses ML models to optimize the chemical composition of magnetic mate-
rials with three-dimensional crystal structures27. Therefore, it is conceivable that tuning the atomic composition 
could provide an additional degree of freedom in the search for stable 2D materials with interesting magnetic 
properties48. Even more compelling is the prospect of ML tools to assist in uncovering the physics underlying the 
stability and magnetism of 2D materials49,50. Specifically, ML methods can identify patterns in a high-dimensional 
space revealing relationships that could be otherwise missed51,52.

Methodology
In order to develop a path towards discovering 2D magnetic materials, we generate a database of structures 
based on monolayer Cr2Ge2Te6 (Fig. 1a) using density functional theory (DFT) calculations with non-collinear 
spin and spin-orbit interactions included. The possible structures amount to a combinatorially large number of 
type A2B2X6 ( ∼ 104 ) with different elements occupying the A, B and X sites. We select an initial subset of 198 
structures due to computational constraints (and calculate additional structures at a later stage). We obtain the 
total energy, magnetic order, and magnetic moment of each structure. The ground-state properties were deter-
mined by examining the energies of the fully optimized structure with several spin configurations, including 
non-spin-polarized, parallel, and anti-parallel spin orientations at the A sites (Fig. 1b). The energy difference 
between parallel and anti-parallel spin configurations estimates an excited state property, the magnetic excitation 
energy. This is linked to the stability of magnetic order at finite temperatures. Using the Heisenberg model on a 
honeycomb lattice we extract the effective exchange energies J for the set of structures from their correspond-
ing magnetic excitation energies53. The Curie temperatures can be estimated using analytical methods which 
involve J as well as the magneto-crystalline anisotropy (MCA)5,54. MCA is estimated by calculating the magnetic 
anisotropy energy5,55 (see Supplementary Information S1).

We then employ a set of materials descriptors which comprise easily attainable atomic properties, and are 
suitable for describing magnetic phenomena. We employ additional descriptors which are related to the forma-
tion energy56. The performance of descriptors in predicting the magnetic properties or thermodynamic stability 
sheds some light into the origin of these properties.

To create the database we use DFT calculations with the VASP code57. We used the GGA-PBE for the 
exchange-correlation functional58. The plane-wave energy cutoff was 300 eV for the initial set of calculations; this 
was increased to 450 eV at a later stage. The vacuum region was thicker than 20 Å. The atoms were fully relaxed 
until the force on each atom was smaller than 0.01 eV/Å. A Ŵ-centered 10× 10× 1 k-point mesh was utilized.

We create the different structures by substituting one of two Cr atoms (A site) in the unit cell with a transition 
metal atom from the list: Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Y, Nb, and Ru. In the two B sites we place combinations of 
Ge, Si, and P atoms, namely Ge2 , GeSi, GeP, Si2 , SiP, and P2 . The atoms at X sites were either S, Se, or Te, that is, 
S6 , Se6 , or Te6 . Figure 1c shows the choice of substitution atoms in the Periodic Table. An example of a structure 
created through this process is (CrTi)(SiGe)Te6.

The careful choice of descriptors is essential for the success of any ML approach59,60. We use atomic properties 
data from the python mendeleev package 0.4.161 to build descriptors for our ML models. We performed super-
vised learning with atomic properties data as inputs, with target properties the magnetic moment, the magnetic 

Figure 1.   (a) Crystal structure of the A2B2X6 lattice. (b) Magnetic orders considered in the A plane, labelled 
parallel and anti-parallel. (c) Elements used for substitution of A (blue), B (red) and X (magenta) sites.
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excitation energy and the formation energy. The choice of the set of descriptors for the magnetic properties was 
motivated by the Pauli exclusion principle, which gives rise to the exchange and super-exchange interactions. 
We also consider the magneto-crystalline anisotropy62 by building inter-atomic distances and electronic orbital 
information into our descriptors. With respect to the formation energy, the choice of descriptors was motivated, 
in part, by the extended Born-Haber model56, and include the dipole polarizability, the ionization energy and 
the atomic radius (see Supplementary Information S1 for a full list of atomic properties and descriptors used).

The data were randomly divided into a training set, a cross-validation set and a test set. Training data and 
cross-validation were typically 60% of the total data while test data comprised 40% of all the data. We employed 
the following ML models: kernel ridge regression, extra trees regression, support vector classification, and neural 
networks. Kernel ridge regression with a Gaussian kernel has been shown to be successful in several materials 
informatics studies. Extra trees regression allows us to determine the relative importance of features used in a 
successful model63. A support vector classifier was used to predict the low-energy magnetic order64. An analysis 
of hidden layers of the deep neural networks could allow us to identify patterns in 2D materials properties data, 
thereby guiding theoretical studies50,52.

Results and discussion
Magnetic properties.  We find that the non-spin-polarized configuration has the highest energy for all the 
structures considered. That is, all structures prefer either parallel or anti-parallel ordering in the A plane. Fig-
ure 2a shows the energy difference of parallel and anti-parallel spin configurations. Negative (positive) energy 
difference means the parallel (anti-parallel) is more stable. We note that, because of the supercell size limit, we do 
not consider more complex spin configurations in this study. For example, the lowest-energy spin configuration 
of Cr2Si2Te6 was reported to be zigzag anti-ferromagnetic type53. We find that for some structures, spin con-
figurations initialized to one class may switch to the other during the calculation. That is, the higher energy spin 
configuration may not be readily constrained, causing difficulty in obtaining its energy. In this case, we expect 
a large magnitude for the magnetic excitation energy, although its value is unknown. In Fig. 2a we highlight the 
presence of spin flip in the calculations, where purple (black) color presents a spin flip to the anti-parallel (paral-
lel) configuration during the DFT calculation.

This energy difference between parallel and anti-parallel spin configurations, namely, the magnetic excitation 
energy, is not only used to determine the magnetic order of a structure, it is also used to estimate the effective 
magnetic coupling strength J by the Heisenberg model with nearest-neighbor couplings. The magnetic excita-
tion energy, together with the magnetic anisotropy energy, a key component of magnetism in two-dimensions54, 
are used to estimate the Curie temperature. We list a few examples of structures with Curie temperature higher 
than that of Cr2Ge2Te6 in Table 1.

Figure 2.   (a) Energy difference between parallel and anti-parallel spin configurations ( Eparallel − Eanti-parallel 
in eV/unit cell ) of A2B2X6 structures. Purple (black) represents a spin flip to the anti-parallel (parallel) 
configuration during DFT calculations, which makes the magnetic excitation energy unaccessible. (b) Magnetic 
moment per unit cell (in µB ) for each A2B2X6 structure at the lowest energy spin configuration. The occupation 
of the two B sites is shown on the horizontal axis while that of one of the A site is shown on the vertical axis.
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Total magnetic moments for the lowest energy spin configuration of each structure are presented in Fig. 2b. 
There are 14 structures that have magnetic moments higher than that of Cr2Ge2Te6 . Examples of these struc-
tures include (CrMn)Si2Te6 , (CrFe)(SiP)Se6 , and (CrFe)(GeP)S6 , which exhibit magnetic moments up to 7µB 
per unit cell. We find that only atoms in the A sites show finite magnetic moments, while the moments in the B 
and X sites are small. Distinct patterns for regions of high and low magnetic moments are observed for X = Te, 
Se and S in Fig. 2b. Structures created by substituting non-magnetic atoms at the A site, such as Cu, have small 
variations in their relatively small magnetic moments, as seen in the rows of Fig. 2b. However, substitutions of 
magnetic atoms, such as Mn, result in a set of structures with a large variation in the magnetic moment, with a 
much larger upper limit to the range of values observed.

Both the magnetic order and magnetic moment are sensitive to the occupancy of B and X sites, even though 
the atoms in these sites have negligible contribution to the overall magnetic moment. Atoms in the X sites strongly 
mediate the magnetic coupling between neighboring A sites53. Atoms at the B sites can affect the relative positions 
of A and X sites. Direct exchange between first nearest neighbor A sites competes with super-exchange interac-
tions mediated by the p-orbitals at the X sites. The ground state magnetic order is determined by the interplay 
between first, second and third nearest neighbor interactions. Changing the identity of one of the A, B or X sites 
affects the interplay between the direct exchange and super-exchange interactions. Recent work has shown that 
applying strain to the Cr2Si2Te6 lattice tunes the first nearest neighbor interaction, resulting in a change in the 
magnetic ground state from zig-zag antiferromagnetic to ferromagnetic53. Our work demonstrates that tuning the 
composition of the A2B2X6 lattice can have an equivalent effect. For instance, whereas X=Te structures show more 
parallel ( ¯̄P ) than anti-parallel (anti- ¯̄P ) spin-configurations with lower energy, there is a clear change when X = 
Se or S. As X moves up the periodic table, there are increasingly more regions of anti-parallel spin configuration, 
as well as regions in which ¯̄P and anti- ¯̄P are degenerate. In particular, we find that the distance between nearest 
neighbor A and X sites, as well as two adjacent X sites is linked to the magnitude of the magnetic moment (see 
Supplementary Information S1 for details).

We use extra trees regression63 to approximate the relationship between the total magnetic moment and a set 
of descriptors designed for magnetic property prediction (see Supplementary information S1). Training and test 
data are considered for the X = Te, Se, and S structures individually. The model performance for X = Te, using a 
data set with size N = 262 (see Supplementary Information S1), is shown in Fig. 3a. We find reasonable predic-
tion performance for X = Te that deteriorates for X = Se and is even worse for X = S. This suggests that our model, 
along with the set of descriptors used to predict X = Te structures, is not easily optimized to include X=Se and S 
structures. This could arise due to the fact that there are more structures that have degenerate ¯̄P and anti- ¯̄P spin 
configurations for X = Se and S than for X = Te. Furthermore, the magnetic moment for X = Se and S structures 
have larger variations across B sites when compared to X = Te structures. These variations likely pose a learning 
challenge for statistical models. Subgroup discovery65 implies that the identity of the X site strongly affects the 
magnetic properties of the structures. We included a modified Bag of Bonds descriptor66 to capture the orbital 
overlap between adjacent sites. The model performs poorly for X = Se and S, perhaps because of missing second 
and third nearest-neighbor interactions in the descriptor that are important in determining magnetic couplings.

Determining which descriptors are most important for making good predictions of a property can be 
exploited for knowledge discovery, especially when a large number of descriptors are available but their rela-
tionships with the target property are not known67. Figure 3b shows the descriptor importances64 as derived 
from extra trees regression. It shows that the following are among the top six descriptors in the set examined: 
(i) the ‘average number and variance of spin up electrons’ (“Nup avg” and “Nup var” in Fig. 3b), which are linked 
to the atomic magnetic moments, (ii) the ‘chemical space value’ (“cs BoB”, a modified Bag of Bonds descriptor66, 
see Supplementary Information S1), (iii) the ‘maximum difference and variance of valence electron number’ 
(“nvalence max dif ” and “nvalence var”), and (iv) the ‘average dipole polarizability’ (“dipole avg”). The magnetic 
moment per unit cell is a function of the magnetic moments of the individual atoms in the unit cell. However, 
determining the exact value and the orientation of the µ localized at each site is not trivial. We examine the local 
magnetic moments at the A sites to determine how the magnetic moment per unit cell is constructed. The local 
magnetic moment at the A sites ( ACr and ATM ) can be different from the atomic dipole magnetic moment of 
the corresponding element. For instance, while the atomic magnetic moment of Cr3+ is 3 µB , the local magnetic 
moment at ACr fluctuates from 2.7 to 3.2 µB . Fig. 4a shows the local magnetic moment at ATM . The atomic 

Table 1.   Formation energy, magnetic moment per unit cell, magnetic excitation energy, and Curie 
temperature Tc for monolayer Cr2Ge2Te6 and structures with Tc greater than that of Cr2Ge2Te6. aThe Curie 
temperature was estimated using the procedure in Ref. 54.

Formula Ef [eV] µ [ µB] �E [eV] Tc [K]
a

Cr2Ge2Te6 − 1.74 6.19 − 0.08 84

Cr2PGeTe6 − 1.47 5.90 − 0.16 131

Cr2SiPTe6 − 1.72 5.92 − 0.14 126

CrFeSiGeSe6 − 2.90 4.26 − 0.22 159

Cr2SiPSe6 − 3.95 5.73 − 0.13 237

CrCoSiPS6 − 3.98 3.82 − 0.23 129

CrFeP2S6 − 2.94 5.63 − 0.28 167

CrFeSiPS6 − 3.97 6.28 − 0.06 142
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magnetic moment can be roughly considered as an upper limit of the magnetic moment of the corresponding 
lattice site in a compound. It is also linked to the magnetic moment per unit cell. The model prediction error for 
the magnetic moment per unit cell is increased by only 1% when the atomic magnetic moments are excluded 
from the set of descriptors. This suggests that there exists redundancy in the descriptor space. For predicting 
properties in which the physics involved is sophisticated, such redundancy seems inevitable.

Figure 3.   ML predictions of magnetic moments of A2B2X6 structures. (a) Extra trees model performance 
for the magnetic moment (in µB ) prediction. A subset of structures for X = Te are displayed. The red squares 
indicate the test data, the green circles show the training data. (b) Top six descriptors for the extra trees 
prediction of the magnetic moment. The size of the bar indicates relative descriptor importance (see text for 
details).

Figure 4.   (a) Local magnetic moment of the transition metal A site, ATM (in µB ). (b) Formation energy (in eV/
cell) for A2B2X6 structures at the lowest energy spin configuration. Conventions are the same as in Fig. 2.
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Furthermore, we use the magnetic excitation energy data in Fig. 2a to train a support vector classification 
model, to predict the ground-state magnetic order of A2B2X6 structures. The ground state is FM (AFM) if the 
magnetic excitation energy is negative (positive). We achieve an 82% success rate for the prediction of ferro-
magnetic order. Antiferromagnetic order prediction has an 80% success rate (see Supplementary Information 
S1). Attempts to use a regression model to predict the amplitude of the magnetic excitation energy are not suc-
cessful, perhaps due to missing physics in the descriptor space or insufficient quantities of training data to learn 
the sophisticated physics.

Formation energy.  In addition to identifying structures with specific magnetic properties, the ability to 
screen for chemical stability is also important. DFT-calculated formation energies (for the lowest energy spin 
configuration) are shown in Fig. 4b. We note that the formation energy in this work is referenced to the corre-
sponding elemental phases. Since the errors from DFT are usually inconsistent between pure elemental phases 
and compounds, there are potential errors in the absolute values of formation energy. This can be improved in a 
future work by utilizing fitted elemental-phase reference energies68. Presently, we do not use the energies of the 
competing compound phases to calculate formation energies, due to lack of information about the competing 
phases in the synthesis (see Supplementary information S1) .

Structures comprising certain elements, such as Y, decrease the formation energy considerably in comparison 
to those without it. Certain transition metals, such as Cu, tend to destabilize the (CrA)B2X6 structures. The for-
mation energy, Ef  becomes less negative as the substituted atom at the A site goes from the left to the right of the 
first and second row of transition metal elements in the Periodic Table. This is linked to the filling of the d-orbital, 
where elements with a filled d-orbital do not form chemical bonds with other elements. Varying the composition 
at the B site does not appear to have a strong impact on the formation energy (see Supplementary Information, 
Fig. S1). Changing the X site from Te to Se and then S results in the overall trend of decreasing formation energy.

To exploit the trends in the formation energy data, we use statistical models to predict the formation energy 
and to infer structure-property relationships. We find that some descriptors, such as the atomic dipole polariz-
ability, are strongly correlated with the formation energy, and are therefore important in generating good ML 
predictions. Since useful descriptors are not always revealed in an analysis of the Pearson correlation coefficient67, 
we consider other methods to learn descriptor importances such as the extra trees model64. Using the ML models 
to predict the formation energy of A2B2X6 structures permits the quick calculation of the formation energy for 
a large set of compounds. Whereas DFT calculations of 104 structures could require much more than 1 million 
CPU hours, the ML prediction takes a few seconds. Figure 5a shows the prediction performance for kernel ridge 
regression using a Gaussian kernel. Figure 5b shows the performance of a neural network (The neural network 
is implemented by tensorflow69. It is comprised of 3 hidden layers with sizes 10, 30 and 10 units) while Fig. 5c 
shows the performance of the extra forests regression. Both training set and test set results are displayed, as well 
as the test scores for kernel ridge regression, extra trees regression, and neural network regression.

Further analysis (see Supplementary Information S1) shows that the ‘variance in the ionization energy of 
atoms’ and the ‘average number of valence electrons’ are the two most important descriptors in the set examined. 
This demonstrates a link between the formation energy and the atomic ionization energy, emanating from the 

Figure 5.   Formation energy prediction performance of (a) kernel ridge regression, (b) deep neural network 
regression and (c) extra trees regression. Red squares are test data and green circles training data. (d) 
Performance of the extra trees regression model on the test data as the training set size increases, in terms of the 
R2 and mean absolute error (MAE) scores.
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increased atomic ionizability which produces stronger chemical bonding. In addition, the number of valence 
electrons is linked to the number of electrons available for bonding. For instance, substitutions by atoms with a 
filled outer orbital shell will create less stable bonds, leading to chemical instability. The ability of our models to 
generalize is demonstrated by the high scores on the test data. We further examined how the test set performance 
varies with the training set size. Figure 5d shows test scores as a function of training set size using extra trees 
regression. The test score reaches a plateau at about a training set size of 40%, with test score ( R2 ) as high as 0.91.

High‑throughput screening using ML models.  We can use our trained ML models to make predic-
tions on a wide range of structures not included in the original DFT data set. Thus far, we have used our ML 
models to estimate the formation energy for an additional 4,223 A2B2X6 structures, constructed as follows: (i) 
For A site substitutions, we considered transition metals not used in the DFT dataset. (ii) We included Al, Sn 
and Pb in the set of atomic substitutions for B sites (not shown). (iii) For the X sites, we added O to our previous 
choice of S, Se and Te. The resulting predictions, partly shown in Fig. 6a, provide a means to quickly screen a 
large data set of structures for chemical stability. For instance, our ML predictions suggest that structures based 
on Er, Ta, Hf, Mo, Zr, and Sc in the A site and Al in the B site are likely to be stable and thus good candidates for 
further exploration.

We use a two-step process to find materials with high magnetic moments. In the first stage, a regression model 
trained with a small data set size ( N = 66 ) was used to estimate the magnetic moment. The magnetic moment 
predictions are shown in Fig. 6b. From the results of the ML predictions we select structures with formation ener-
gies below −1.0 eV and magnetic moments above 5 µB (for X=Te only). From the 4223 predictions, we obtained 
40 that satisfied our constraints. 15 of these were randomly selected for DFT verification. The 15 structures have 
relatively low formation energies and high magnetic moments, but only 5 of them fulfill the criteria with hard 
cutoffs (formation energy lower than −1.0 eV and magnetic moment higher than 4.5µB).

The second round of model training included the additional 15 structures calculated by DFT. This improved 
model was then used to predict the magnetic moment. Surprisingly, all the candidate structures predicted by 
the new model were verified to meet the criteria by DFT. They are (CrMo)Si2Te6 ( Ef = −1.32 eV , µ = 6.00µB ), 
(CrW)Si2Te6 ( Ef = −1.11 eV , µ = 5.89µB ), and (CrMo)(SiP)Te6 ( Ef = −1.10 eV , µ = 5.01µB ). This shows 
that the model can be substantially improved by feeding accurate DFT data from structures that are close to the 
phase space linked to desirable properties. The first step narrows down the target region where candidate sys-
tems are more likely to appear. By sampling the target region using DFT and feeding data to the training in the 
second step, the resulting model learns to distinguish the desirable structures more accurately. This two-step or 
iterative method, analogous to active learning70, is capable of building accurate models for materials discovery 
using limited quantities of training data.

We computed phonon spectra for some of the above promising structures using the open-source software 
package phonopy71 in the frozen phonon method. We relaxed our unit cell to very high precision (within 0.0001 
eV/A) with cutoff energies ranging from 400 to 500 eV with a substantially finer mesh to model the augmenta-
tion charges around ions, with an augmentation energy cutoff (ENAUG in VASP) of 2000 eV. We found that 

Figure 6.   (a) ML predicted formation energies (in eV/cell) for a wide range of substitutions that were not 
included in the DFT data set covering 4223 new structures (570 are shown here). (b) The first-step ML predicted 
magnetic moments (in µB ) for a wide range of substitutions that were not included in the DFT data set covering 
4223 new structures (190 are shown here for X=Te). Conventions same as in Fig. 2.
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the candidate compounds CrMoSi2Te6 , CrWSi2Te6 , and CrMnSi2Te6 evidenced dynamical stability (see Sup-
plementary information S1 for phonon spectra and further discussion).

Discussions and conclusion
We presented evidence that the magnetic properties of A2B2X6 monolayer structures can be tuned by making 
atomic substitutions at A, B, and X sites. This provides a non-traditional framework for investigating the micro-
scopic origin of magnetic order of 2D layered materials and could lead to insights into magnetism in systems 
of reduced dimension23,24. Our work represents a path toward tailoring magnetic properties of materials for 
applications in spintronics and data storage72. We showed that ML methods are promising tools for predicting 
the magnetic properties of 2D magnetic materials. In particular, our data-driven approach highlights the impor-
tance of the X site in determining the magnetic order of the structure. Changing the composition of the A2B2X6 
structure alters the inter-atomic distances and the identity of electronic orbitals. This impacts the interplay 
between first, second and third nearest neighbor exchange interactions, which determines the magnetic order.

One goal of this work was to find magnetic 2D materials that are also thermodynamically stable. ML models 
were trained to predict chemical stability that allow the rapid screening of a large number of possible structures. 
We showed that the chemical stability of A2B2X6 structures based on Cr2Ge2Te6 can be tuned by making atomic 
substitutions. Examples of structures that satisfy both magnetic moment and formation energy requirements 
include the following: (CrMo)Si2Te6 , (CrW)Si2Te6 , and (CrMo)(SiP)Te6 , which are not included in our original 
DFT database. In addition, we found structures in our set of DFT calculations that also satisfied our requirements:

(CrMn)Si2Te6 ( Ef = −1.77 eV , µ = 7.02 µB ), (CrMn)Ge2Se6 ( Ef = −3.24 eV , µ = 7.00µB ), (CrFe)(SiP)S6 
( Ef = −3.97 eV , µ = 6.99µB ), (CrFe)(GeP)Se6 ( Ef = −2.28 eV , µ = 6.99µB ), and Cr2Ge2Se6 ( Ef = −3.67 eV , 
µ = 6.02µB ). Furthermore, we included temperature effects by exploiting the magnetic excitation energy and 
the magnetic anisotropy energy to estimate the Curie temperature. We identified several structures with mag-
netic excitation energy much greater than that of Cr2Ge2Te6 , which corresponds to a higher Curie temperature. 
In Table 1 we show seven A2B2X6 structures which may have Curie temperatures above that of Cr2Ge2Te6 . 
(CrTc)(SiSn)Te6 and (CrTc)Sn2Te6 were also ML recommended structures which we excluded because of the 
radioactive elements they contain. The recommendations we generated can then be subjected to additional 
screening with more computationally expensive tests for chemical stability73,74, such as calculations of the 
dynamic stability75,76. The most promising results will serve as viable options for materials synthesis and experi-
mental verification.

Subsequent to generating ML predictions of vdW magnets of the form A2B2X6 , we sought to verify the 
chemical stability and magnetic properties of our candidate structures by performing a literature search of each 
candidate. Our ML guided literature review revealed that many materials of the type A2B2X6 have been syn-
thesized and their magnetic properties characterized77,78. Reference77 presents a review of experimental studies 
done on bulk crystals of transition metal phosphorous trisulfides. There are over 10 structures reported to have 
been synthesized which overlap with those predicted in this study. Since our study is restricted to monolayers, 
we cannot directly compare our results with experiments described in Ref.77. However, the review highlights 
that many structures of the form A2B2X6 exist in nature.

A second review article78 highlights experimental studies of bulk layered metal thio(seleno) phosphates, APX3 . 
A is a transition metal and X = (S, Se). For instance, CuAP2Se6 (A=In, Cr) compounds have been synthesized 
and studied. CuCrP2Se6 is one of the structures studied in our work. To the best of our knowledge none of the 
layered materials reported in Ref.78 have been thinned down to the monolayer. Nevertheless, these findings 
suggest that our approach provides a successful framework for the targeted investigation of monolayers of this 
class of material.

This work provides the impetus for further exploration of structures with other architectures not considered 
here, that is, with more complex atomic substitutions beyond 1 in 2 replacement of Cr atoms at the A site. We 
estimate a total number of at least 3× 104 structures of the A2B2X6 type described in Fig. 1. A computationally 
efficient estimation of the magnetic properties and formation energy is required to quickly explore this vast 
chemical space. We have already transferred our materials informatics framework to a study of a different fam-
ily of crystal structures, the transition metal dichalcogenides (TMDs). We successfully predicted the formation 
energies of TMDs using machine learning models trained on a database of DFT calculations36. The detailed 
results will be presented in a separate work. We expect the ML methods explored here, with proper modifica-
tion, to allow an efficient exploration of other families of 2D magnets, such as CrI3 , CrOCl and Fe3GeTe223,28,79.

During the review process we came across a similar study which also uses machine learning to predict the 
properties of 2D magnetic materials80. This work exploited data from the C2DB5 database and used different 
descriptors from those presented in this study.

Data availability
The results of these DFT calculations will be used to build a database of monolayer 2D materials which will be 
publicly available to the scientific community. See the Supplementary Information for details.
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