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Abstract
Background Due to high mortality rate and limited treatments in gastric cancer (GC), call for deeper exploration of M2 
macrophages as biomarkers is needed.
Methods The data for this study were obtained from the Gene Expression Omnibus (GEO) and Genomic Data Commons 
(GDC). The Seurat package was utilized for single-cell RNA sequencing (scRNA-seq) analysis. FindAllMarkers was used 
to identify genes highly expressed among different cell subsets. DESeq2 package was leveraged to screen differentially 
expressed genes (DEGs), while limma package was utilized for identifying differentially expressed proteins (DEPs). Enrich-
ment analyses of the genes were conducted using KOBAS-i database. MultipleROC was applied to evaluate the diagnostic 
potential of biomarkers, and rms package was utilized to construct diagnostic models. hTFtarget database was utilized 
to predict potential transcription factors (TFs). Finally, cell-based assays were performed to validate the expression and 
potential biological functions of the screened key markers.
Results This study found that M2 macrophages were enriched in protein, endoplasmic reticulum, and virus-related path-
ways. A total of 4146 DEGs and 1946 DEPs were obtained through screening, with 254 common DEGs/DEPs. The results 
of gene function enrichment analysis suggested that it may affect the occurrence and development of GC through DNA 
replication and cell cycle. This study identified three biomarkers, HSPH1, HSPD1, and IFI30, and constructed a diagnostic 
model based on these three genes. The AUC value greater than 0.8 proved the reliability of the model. Through screening 
TFs, SPI1 and KLF5 were found to be the common TFs for the three biomarkers. The expression of the three genes IFI30, 
HSPD1 and HSPH1 was up-regulated in GC cells, and IFI30 may play a facilitating role in the migration and invasion of 
GC cells.
Conclusion This study identified three biomarkers and constructed a diagnostic model, providing a new perspective for 
the research and treatment of GC.
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GDC  Genomic data commons
TCGA   The Cancer Genome Atlas
PCA  Principal component analysis
UMAP  Uniform manifold approximation and projection
KNN  K-nearest neighbor
DEG  Differentially expressed gene
DEP  Differentially expressed proteins
GO  Gene ontology
KEGG  Kyoto Encyclopedia of Genes and Genomes
BP  Biological process
CC  Cellular component
MF  Molecular function
ROC  Receiver operating characteristic
DCA  Decision curve analysis
TF  Transcriptional factors
TME  Tumor microenvironment
NF-κB  Nuclear factor-κB
HSP  Heat shock protein
mtDNA  Mitochondrial DNA

1 Introduction

Gastric cancer (GC) is a common malignancy, ranking fifth in both global cancer incidence and related mortality causes 
[1, 2]. East Asia and South America are hotspots for the incidence and mortality of GC, and Helicobacter pylori is the 
primary cause of GC [3]. Due to the fact that GC is usually diagnosed at an advanced stage, its mortality rate is high [4]. 
Systemic chemotherapy, radiotherapy, and surgery are common treatment methods for GC; howbeit, the heterogeneity 
of the tumor has led to the poor prognosis [5]. In recent years, the development of immunotherapy and targeted therapy 
has provided new directions for the treatment of GC, but its research is still limited [6]. In summary, GC remains a fatal 
disease, and current treatment options or early detection strategies cannot control it in a meaningful way, requiring 
further research.

Macrophages, originating from bone marrow cells, are vital members of the innate immune response [7]. They are 
a type of white blood cell distributed in tissues and originate from monocytes [8]. Macrophages are characterized by 
plasticity and versatility, playing crucial roles in tissue development and homeostasis, clearing cellular debris, eliminating 
pathogens, and regulating inflammatory responses [9, 10]. Macrophages existing in different tissues polarize accord-
ing to their environmental changes, forming distinct macrophage subtypes [11]. Based on their activation status and 
functions, macrophages can be categorized into M1 (classically activated macrophages) and M2 (alternatively activated 
macrophages) [12, 13]. M1 macrophages initiate pro-inflammatory responses and produce pro-inflammatory cytokines 
such as IL-6, IL-12, and tumor necrosis factor (TNF) to induce Th1 (Type 1 helper T cells) immune responses [14]. Although 
tumor-associated macrophages do not strictly adhere to the M1 and M2 classifications, they predominantly exhibit 
M2-like characteristics and promote tumor proliferation by fostering immune suppression [15]. M2 macrophages pre-
dominantly secrete anti-inflammatory cytokines like Arginase-I, IL-10, and TGF-β, suppressing Th1 immune responses, 
promoting Th2 (Type 2 helper T cells) immunity, and participating in wound healing and tissue remodeling [16]. In the 
research of Chen et al., macrophage secreted proteins were characterised and their results showed that M2 macrophages 
were recruited by tumour cells. It was also found that CHI3L1 secreted by M2 can promote breast cancer cell metastasis 
by activating the MAPK signalling pathway, which in turn promotes breast cancer cell metastasis [17]. However, there 
is limited research on M2 macrophages in relation to cancer, and their potential as biomarkers in cancer remains to be 
further explored.

The development of single-cell RNA sequencing (scRNA-seq) technology has significantly enhanced our understand-
ing of biological systems [18, 19]. By isolating individual cells, capturing their transcripts, and generating sequencing 
libraries at the single-cell level, scRNA-seq can reveal the states and functions of single cells [20]. In recent years, scRNA-
seq technology has been widely applied in cancer research [21–23]. Based on this, the current study aims to identify M2 
macrophage-related genes through single-cell sequencing, and jointly employ transcriptome sequencing and proteomics 
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sequencing to search for M2 macrophage-associated biomarkers that play a role in GC, ultimately establishing a diag-
nostic model to provide new insights into the subsequent research and treatment of GC.

2  Material and methods

2.1  Data acquisition

The GC single-cell sequencing dataset GSE163558 was downloaded from Gene Expression Omnibus (GEO) https:// 
www. ncbi. nlm. nih. gov/ geo/). This dataset comprises single-cell transcriptomic data from three primary GC cases. The 
The Cancer Genome Atlas (TCGA) GC dataset was retrieved from the Genomic Data Commons (GDC) database (https:// 
portal. gdc. cancer. gov/). Through rigorous screening, only high-quality (class A) samples were retained, ultimately yield-
ing 377 cancer samples and 34 matched adjacent normal tissue control samples. Furthermore, we integrated proteomic 
expression data from previous research [24], encompassing 84 GC tumor samples and 84 adjacent normal tissue control 
samples. Additionally, data on 15 pro-inflammatory factor genes were obtained from prior studies [25].

2.2  Filtering, dimension reduction, and clustering of scRNA‑seq data

The Seurat package [26] was utilized to process scRNA-seq data. Initially, the data were first read and subjected to a series 
of filtering steps aimed at excluding cells that did not meet specific quality criteria. These criteria included the number 
of genes expressed in the cells, which was required to be between 200 and 10,000, as well as a limitation on the pro-
portion of mitochondrial gene expression, which was not allowed to exceed 10% [18]. Through this rigorous screening 
process, 9446 high-quality cells were successfully retained from the original dataset for subsequent in-depth analysis. 
Subsequently, the SCTransform function was applied to normalize the data, effectively reducing technical variability 
while preserving important biological differences. Following normalization, principal component analysis (PCA) was 
performed to reduce the dimensionality of the data, making it more manageable for subsequent analyses. To address 
potential batch effects across samples, the PCA results were corrected using the harmony package [27], ensuring the 
accuracy and reliability of our analytical outcomes. Next, the uniform manifold approximation and projection (UMAP) 
algorithm [28] was employed for further dimension reduction, enabling the visualization of cellular similarities and dif-
ferences in a two-dimensional space. Based on the top 20 principal components, a K-nearest neighbor (KNN) graph was 
constructed using the FindNeighbors function [26], which leverages Euclidean distance. With the KNN graph established, 
clustering analysis was conducted on the cells using the FindClusters function [26]. The overall cell population, a resolu-
tion parameter of 0.05 was set for clustering. For the clustering of macrophages, the resolution parameter was adjusted 
to 0.1. Finally, the clustered cells were annotated by leveraging the Cellmarker2.0 database [29].

2.3  Differential expression analysis among cell subpopulations

During the differential expression analysis among cell subpopulations, the FindAllMarkers function [26] was utilized 
to identify specifically highly expressed genes between different subpopulations. For the comparison among general 
subpopulations, the parameters were set as follows: logfc.threshold = 0.10, min.pct = 0.25, and only.pos = T. For the iden-
tification of highly expressed genes in macrophages, the parameters were adjusted slightly to accommodate the char-
acteristics of macrophages: logfc.threshold remains at 0.10, min.pct was lowered to 0.20, and only.pos was set to T [30].

2.4  Differentially expressed genes (DEGs) analysis

The 411 samples, consisting of 377 cancer samples and 34 adjacent tissue control samples obtained previously, were 
subjected to differential gene expression analysis between the cancer group and the control group using the DESeq2 
package [31]. Significant DEGs were selected based on the criteria of |log2FC|≥ 1 and p.adj < 0.01.

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
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2.5  Differentially expressed proteins (DEPs) analysis

A total of 168 samples, including 84 GC tumor samples and 84 adjacent non-tumor control samples, were distinguished 
into tumor and control groups. The limma package was employed to calculate the differences in protein expression levels 
between the cancer group and the control group [30]. Subsequently, significantly differentially expressed proteins (DEPs) 
were screened based on the criteria of |log2FC|≥ 0.585 (Foldchange = 1.5) and p.adj < 0.01.

2.6  Functional enrichment analysis

The gene set was uploaded to the KOBAS-i database (http:// bioin fo. org/ kobas) for Gene Ontology (GO) and Kyoto Ency-
clopedia of Genes and Genomes (KEGG) functional enrichment analyses, with the objective of identifying significantly 
enriched (p < 0.05) functional pathways. GO enrichment analysis included Biological Process (BP), Cellular Component 
(CC) and Molecular Function (MF) analysis.

2.7  Construction of diagnostic model

Firstly, the diagnostic potential of individual biomarkers was evaluated using the multipleROC package [32]. Subse-
quently, the rms package [33] was employed to construct the diagnostic model, and a visual nomogram was generated 
to present the model’s predictive outcomes. To further validate the model’s performance, the corresponding receiver 
operating characteristic (ROC) curve of the nomogram, as well as the calibration curve and decision curve analysis (DCA), 
were plotted to evaluate the predictive capability and reliability of the model.

2.8  Construction of the transcriptional factor (TF) regulatory network for biomarkers

To explore the potential regulatory mechanisms of biomarkers within gastric tissue, the hTFtarget database (https:// 
guolab. wchscu. cn/ hTFta rget/#!/) was utilized to predict the potential TFs associated with these biomarkers in gastric tis-
sue. Subsequently, to gain a deeper understanding of the molecular regulatory network surrounding these biomarkers, 
the ENCORI database (https:// rnasy su. com/ encori/) was employed to predict the miRNAs targeted by these biomarkers. 
A rigorous selection process was implemented to retain those predictions with experimental validation counts of no 
less than 5 only, thereby ensuring the reliability and accuracy of the predictions. Ultimately, to visually represent these 
intricate regulatory relationships, the aforementioned predictions were imported into Cytoscape 3.8.0 [34], constructing 
of a comprehensive TF regulatory network.

2.9  Cell acquisition, culture and transfection

Human gastric epithelial cells (GES-1) and the gastric cancer cell line (AGS) were obtained from Cobioer Company in Nan-
jing, China. These cells were cultured in DMEM medium (GIBCO) which was supplemented with 10% fetal bovine serum 
(FBS) and 1% L-glutamic acid and were maintained in a 5%  CO2 atmosphere at 37℃. The IFI30-specific small interfering 
RNA (sense strand: 5ʹ-GGA GAG AGG ACA GAC GAG AGTT-3’, antisense strand: 5ʹ-CUC UCG UCU GUC CUC UCU CCTT-3’) was 
purchased from Sangon company (Shanghai, China) and used for the transfection assay based on the manufacturer’s 
instructions, the Lipofectamine 3000 (ThermoFisher) was used for the lentivirus infection based on the previous trans-
fection protocols. Total RNA extraction was performed utilizing the TRIzol Reagent (Invitrogen), and cDNA synthesis was 
achieved with the ReverTra qPCR RT Master Mix kit (TOYOBO). Subsequently, qPCR was carried out on the LightCycler 96 
(Roche) using the SYBR Green PCR Master Mix (Invitrogen), following the provided protocols along with specific primers 

Table 1  The sequence of 
specific primers

Name forward (5ʹ—3ʹ) Reversed (5ʹ—3ʹ)

HSPH1 GCT GGT CAA CTT GGT GGT G CTT GGG TCT CCT TGG GTT G
HSPD1 GGC TGA TGC CGA GAT CAA G CGA GTT GAT GGT GTT GGA GG
IFI30 GAG GAC TAC AGG CAG GAC G TGG TAC AGG GTG AGG TGT TG
GAPDH GGT GGT CTC CTC TGA CTT CAACA GTT GCT GTA GCC AAA TTC GTTGT 

http://bioinfo.org/kobas
https://guolab.wchscu.cn/hTFtarget/
https://guolab.wchscu.cn/hTFtarget/
https://rnasysu.com/encori/
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(Table 1). The expression levels were calculated using the  2–ΔΔCT method, with GAPDH serving as a reference. Each group 
comprised three samples and technical replicates.

2.10  Wound healing and transwell assay

In this research, we investigated cell migration capacity through a wound healing assay. 4 ×  105 resuspended AGS cells in 
10 ml of medium and transfer them into a 10 cm dish. When cell confluence reaches 95%, utilize the tip of a 100 μl pipette 
to create scratches in the cell layer, ensuring all wounds are of uniform width. Subsequently, rinse the scratches with PBS, 
and place the samples in a complete medium supplemented with 1% fetal bovine serum, incubating them at 37 °C with 
5%  CO2. The width of the cell wounds was assessed using an inverted microscope at both 0 and 48 h post-scratching.

For conducting invasion assays, AGS cells were resuspended to a concentration of 2 ×  104 cells/ml. A 200 μl aliquot 
of this cell suspension was then placed in the upper chamber of a Matrigel-coated transwell, which was serum-free. 
Meanwhile, the lower chamber was filled with 500 μl of complete medium supplemented with 10% fetal bovine serum. 
The Transwell apparatus was incubated at 37 °C in a 5%  CO2 environment for 48 h. Subsequently, the cells that migrated 
to the lower chamber were stained with a 0.1% crystal violet solution for a duration of 15 min and were then counted 
using an optical microscope [35].

2.11  Statistical analysis

All statistical evaluations were executed utilizing the R programming language (version 3.6.0). For comparing differences 
between two groups of continuous variables, the Wilcoxon rank-sum test was applied. And statistical significance set 
at p < 0.05. Sangerbox (http:// sange rbox. com/) was leveraged as a supportive resource, offering valuable assistance in 
conducting the analysis [36].

3  Results

3.1  Single‑cell atlas of GC

After cellular filtering, normalization, batch effect removal across samples, dimensionality reduction, and clustering, we 
identified eight major cell subsets (Fig. 1A–B), namely, T cell, neutrophil, epithelial cell, fibroblast, B cell, plasma cell, mast 
cell, and the focus of this study, macrophage. We marked T cells with CCL5, CD2, and NKG7, neutrophils with S100A9 and 
S100A8, epithelial cells with KRT8, KRT18, and KRT19, macrophages with LYZ, C1QB, and C1QA, fibroblasts with DCN and 
LUM, B cells with CD79B and CD79A, plasma cells with IGHG1, IGHG3, and IGHG4, as well as mast cells with KIT and TPSB2. 
We further plotted a bubble chart of biomarker expression levels (Fig. 1C), and the results revealed that these marker 
genes are predominantly expressed in their respective major cell subsets.

Fig. 1  Single-cell atlas of GC and expression of marker genes A Distribution of different samples after batch effect removal. B UMAP visuali-
zation of the distribution of 8 major cell subpopulations. C Expression levels of different cell marker genes.

http://sangerbox.com/


Vol:.(1234567890)

Analysis Discover Oncology          (2024) 15:738  | https://doi.org/10.1007/s12672-024-01623-8

3.2  Differentiation of macrophage subtypes

We extracted macrophages from the results of single-cell analyses and classified macrophages into two major cell sub-
populations, cluster_0 and cluster_1, based on the Seurat package (Fig. 2A). Due to the dynamic conversion between M1 
and M2 macrophages, it is difficult to distinguish them through markers alone. Therefore, we scored pro-inflammatory 
factors in the two groups using AddModuleScore (Fig. 2B). The results showed that the pro-inflammatory score of clus-
ter_1 was significantly higher than that of cluster_0. Based on this, we labeled cluster_0 as M2 macrophages and cluster_1 
as M1 macrophages (Fig. 2C). Subsequently, we conducted GO enrichment analysis on the specifically highly expressed 
genes in these two subtypes of macrophages. The results showed that M2 macrophages were mainly involved in entries 
such as protein targeting to endoplasmic reticulum (ER), establishment of protein localization to endoplasmic reticulum, 
andviral transcription, most of which are related to proteins, endoplasmic reticulum, and viruses (Fig. 2D). On the other 
hand, M1 macrophages were primarily involved in entries like neutrophil mediated immunity, neutrophil activation, and 
antigen processing and presentation, all of which are related to immunity (Fig. 2E). The enrichment results of M1 and M2 
macrophages demonstrated their functional differences.

Fig. 2  Differentiation of macrophage subtypes and enrichment analysis of specifically highly expressed genes A UMAP visualization of the 
distribution of macrophage subtypes across different samples. B Violin plot of pro-inflammatory factor scores for cluster_0 and cluster_1. 
C UMAP visualization of the distribution of M2 and M1 macrophages. D Bar chart showing the top 10 enriched terms from the enrichment 
analysis of specifically highly expressed genes in M2 macrophages. E Bar chart showing the top 10 enriched terms from the enrichment 
analysis of specifically highly expressed genes in M1 macrophages.
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3.3  Screening of DEGs and DEPs

Through screening, a total of 4146 DEGs were obtained, including 1963 up-regulated genes and 2183 down-regulated 
genes. The volcano plot of gene differential expression is shown in Fig. 3A. We selected the top 20 genes with the 
most significant up- and down-regulation to plot a heatmap of expression levels (Fig. 3B). Similarly, 1946 DEPs were 
identified through screening, comprising 1,306 up-regulated proteins and 640 down-regulated proteins. The volcano 
plot of protein differential expression is presented in Fig. 3C. We chose the top 20 proteins with the most significant 
up- and down-regulation to illustrate the heatmap of expression levels (Fig. 3D). Subsequently, the results from 
transcriptomics were integrated with those from proteomics to generate a nine-quadrant plot (Fig. 3E). The results 
revealed that there were 118 commonly up-regulated DEGs/DEPs and 136 commonly down-regulated DEGs/DEPs 
shared between the two datasets.

3.4  Gene function enrichment analysis

We conducted a functional enrichment analysis on the aforementioned total of 254 DEGs. The results indicated significant 
enrichment in GO terms such as DNA replication, DNA strand elongation involved in DNA replication, and DNA replication 
origin binding (Fig. 4A–C). Meanwhile, in KEGG enrichment analysis, the genes were primarily implicated in pathways 
like DNA replication and cell cycle (Fig. 4D). These findings suggested that the genes may influence the initiation and 
progression of tumors through mechanisms involving DNA replication and the cell cycle.

3.5  Construction of a diagnostic model based on M2 macrophage‑related biomarkers

To establish a diagnostic model, we intersected the genes specifically overexpressed in M2 macrophages with those 
differentially upregulated in both transcriptomic and proteomic analyses, yielding three biomarkers associated with M2 
macrophages in GC: HSPH1, HSPD1, and IFI30 (Fig. 5A). To evaluate the diagnostic efficacy of these three biomarkers in GC, 
ROC curves were plotted for each biomarker, as shown in Fig. 5B. The AUC values for all three biomarkers exceeded 0.8, 
indicating excellent diagnostic performance. Furthermore, to quantify the risk assessment for GC patients, we developed 
a nomogram incorporating the expression levels of these three biomarkers (Fig. 5C). Initially, the ROC curve was utilized 
to assess the model’s performance, revealing an AUC of 0.982 (Fig. 5D), suggesting a highly reliable model. Subsequently, 
the calibration curve was employed to evaluate the predictive accuracy of the model, demonstrating close alignment 
with the ideal curve, indicating good predictive performance of the nomogram (Fig. 5E). Additionally, the DCA was uti-
lized to assess the model’s reliability, revealing that the benefit of the nomogram was significantly higher than that of 
any individual gene, underscoring the robust predictive capability of our model (Fig. 5F).

3.6  TF regulatory network

We predicted and screened for TFs that regulate the expression of the three biomarkers in gastric tissues. For HSPH1, four 
TFs were identified; for HSPD1, three TFs were selected; and for IFI30, two TFs were found. Notably, SPI1 and KLF5 were 
common TFs for all three genes, GATA4 was shared by HSPD1 and HSPH1, and GATA6 was unique to HSPH1. Subsequently, 
we predicted the miRNAs that target these biomarkers. The results showed that HSPH1 had 19 experimentally validated 
target miRNAs with more than five occurrences, HSPD1 had 16, and IFI30 had 7. The detailed TF regulatory network is 
presented in Fig. 6.

3.7  Validation of in vitro cellular assays for key markers

To further validate our screened key markers, we first validated the mRNA expression levels of the three genes based on 
qRT-PCR. As shown in Fig. 7A, the mRNA expression levels of IFI30, HSPD1 and HSPH1 were significantly up-regulated in 
AGS cells relative to controls. Due to the significantly high expression level of IFI30 in AGS cells, we evaluated its possible 
role in affecting cancer cells (P < 0.0001). As shown in Fig. 7B, we observed that silencing of IFI30 significantly inhibited 
the migratory ability of AGS cells. In addition, IFI30 silencing also significantly reduced the invasive ability of AGS cells 
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relative to the control group (Fig. 7C). These results IFI30 may play a promotional role in the invasion and migration of 
GC cells, suggesting its potential oncogenic role in GC progression.

4  Discussion

As a highly prevalent malignant tumor, GC has an annual increase of over one million new cases worldwide, with a notably 
high mortality rate [37]. M2 macrophages are capable of conducting anti-inflammatory responses [38]. Recent studies 
have indicated that M2 macrophages can promote cancer progression by inhibiting anti-tumor immune responses 
[39]. This research has identified three biomarkers related to M2 macrophages, namely HSPH1, HSPD1, and IFI30, and 
has established a diagnostic model with good predictive performance. It provides potential intervention targets and 
therapeutic strategies, offering new possibilities for the treatment of GC.

The enrichment analysis of this study revealed that M2 macrophages are primarily involved in pathways related to 
proteins, endoplasmic reticulum, and viruses, while M1 macrophages mainly participate in immune-related pathways. 
Generally, M1 macrophages exert immune protection by secreting proinflammatory cytokines, whereas M2 macrophages, 
characterized by their anti-inflammatory properties, contribute to tissue remodeling and tumor progression [40]. During 
the early stages of repair, approximately 85% of macrophages in the wound exhibit the M1 proinflammatory phenotype, 
which shifts to approximately 80–85% of anti-inflammatory M2 macrophages by day 5–7 [41]. In TME, macrophage polari-
zation is a continuous process spanning the two extremes from M1 to M2 macrophages [42]. The transition between M1 
and M2 is closely related to the timing of inflammation, and the M2 macrophage-associated biomarkers discovered in 
this study offer a novel perspective for diagnosis of GC.

This study has identified three biomarkers: HSPH1, HSPD1, and IFI30. HSPH1 is a pivotal member of the HSP70 super-
family, not only serves as a crucial component of the β-catenin degradation complex but also exhibits unique functions 
as a molecular chaperone in cancer contexts [43, 44]. It possesses anti-aggregation capabilities and collaborates with 
HSP70’s protein refolding activity, jointly safeguarding intracellular protein homeostasis [45]. Prior studies have dem-
onstrated that HSPH1 exhibits a notable upregulation trend in various malignancies, including head and neck cancer 
[46] and breast cancer [47]. In the tumor microenvironment (TME), HSPH1 plays intricate regulatory roles, implicating 
multiple signaling pathways intimately linked to inflammation [48]. Specifically, HSPH1 directly interacts with STAT3, 
facilitating its phosphorylation and activation, thereby influencing the expression of downstream genes [49]. Addition-
ally, HSPH1 participates in regulating the hyperactivation of Wnt signaling and maintaining the persistent activation of 
the nuclear factor-κB (NF-κB) signaling pathway [50]. Notably, HSPH1 can be actively secreted by cancer cells into the 
extracellular space, further promoting the polarization of macrophages towards a precancerous phenotype conducive 
to tumor growth [51].

HSPD1 also known as HSP60, belongs to the heat shock protein (HSP) family along with HSPH1 [52]. This family of 
proteins plays a pivotal role in maintaining the cellular internal environment homeostasis. Notably, cancer cells cleverly 
harness the natural protective mechanisms of HSPs during malignant transformation to promote their survival and pro-
liferation [53]. HSPD1, primarily localized in the mitochondrial matrix, functions as a crucial molecular chaperone that 
is indispensable for the integrity of mitochondrial function. It is responsible for ensuring the folding and refolding of 
nuclear-encoded proteins as well as peptides encoded by mitochondrial DNA (mtDNA) [54]. Additionally, HSPD1 dem-
onstrates a unique role in immune system activation by actively driving the activation processes of T cells and B cells 
and regulating the production of various interferons and interleukins, thereby participating in immune responses [55]. 
Research has shown that downregulation of HSPD1 can trigger apoptosis in cancer cells across multiple cancer types, 
including oral cancer [56] and non-small cell lung cancer [57]. Furthermore, studies have also revealed that the HSP fam-
ily, including HSP60, is involved in the process which macrophages impact cancer [58].

IFI30 is a reductase located in endosomes, lysosomes, and phagosomes [59]. In the exploration of the biological mecha-
nisms of malignant tumors, IFI30 plays an important role in malignant diseases such as melanoma [60] and prostate cancer 
[61]. Particularly noteworthy is the finding that IFI30 exhibits highly expressed characteristics in malignant glioma subtypes, 

Fig. 3  Screening and expression analysis of DEGs and DEPs A Volcano plot of DEGs, where red represents up-regulated DEGs, blue repre-
sents down-regulated DEGs, and gray represents non-differentially expressed genes. B Heatmap of gene expression levels, with blue indi-
cating low expression and red indicating high expression. C Volcano plot of DEPs. D Heatmap of protein expression levels. E Nine-quadrant 
plot, where red indicates genes and their corresponding proteins that are differentially up-regulated in both transcriptomics and proteom-
ics, and blue indicates genes and their corresponding proteins that are differentially down-regulated in both datasets.

▸
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and this phenomenon of high expression is closely related to the significant infiltration of M2 macrophages [62]. In summary, 
the expression of these three genes, namely HSPH1, HSPD1, and IFI30, may exert an influence on the development of cancers 
such as GC, potentially through modulating the infiltration of M2 macrophages.

This study successfully identified SPI1 and KLF5 as two TFs that serve as core regulatory elements for three key biomarkers. 
SPI1, also known as PU.1, emerged from groundbreaking research on Friend’s hemoglobinopathy [63]. In macrophages, SPI1 
demonstrates its potent regulatory capacity by engaging with closed chromatin to activate the transcription of its target 
genes [64, 65]. Notably, SPI1 plays a pivotal oncogenic role in various cancers, including breast, lung, colon, and cervical 
cancers [66–68], and its elevated expression has been firmly linked to poor prognosis and disease progression in GC [69]. 
On the other hand, KLF5, a prominent member of the KLF transcription factor family, extensively participates in regulating 
critical biological processes such as cell proliferation, cell cycle control, apoptosis, and cell differentiation [70]. In the field 
of oncology, KLF5 has garnered significant attention due to its potential roles in multiple cancer types, particularly in gas-
trointestinal tumors like GC and colon cancers [71, 72]. In conclusion, the revelation of SPI1 and KLF5 in this study not only 
strengthens the tight correlation between the selected biomarkers and GC but also sheds light on their potential impact on 
GC progression through mechanisms involving the regulation of M2 immune cell infiltration.

Fig. 4  Gene function enrichment analysis A Bar plot of GO enrichment analysis for BP. The x-axis represents the number of genes included in 
each term, and the color represents the significance p-value, ranging from blue (least significant) to red (most significant). B Bar plot of GO 
enrichment analysis for CC. C Bar plot of GO enrichment analysis for MF. D Bar plot of KEGG enrichment analysis.
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Fig. 5  Construction and reliability validation of the diagnostic model for M2 macrophage-related biomarkers A Upset plot of M2 mac-
rophage-specific highly expressed genes and common significantly highly expressed genes/proteins in transcriptomics and proteomics. 
The left bar chart shows the number of genes in each subset, and the upper bar chart indicates the number of genes in each intersection. B 
ROC curves for HSPH1, HSPD1, and IFI30. C Nomogram for biomarkers, with the expression levels of HSPH1, HSPD1, and IFI30 in the middle, 
the corresponding scores at the top, and the risk probability compared with the total score at the bottom. D ROC curve of the nomogram. E 
Calibration curve of the nomogram. F DCA of the nomogram.



Vol:.(1234567890)

Analysis Discover Oncology          (2024) 15:738  | https://doi.org/10.1007/s12672-024-01623-8

5  Conclusion

This study explored the role of M2 macrophages in the progression of GC and identified three biomarkers: HSPH1, 
HSPD1, and IFI30. Furthermore, a diagnostic model with good predictive capabilities was established based on these 
biomarkers. This discovery not only enriches our understanding of GC but also provides new potential targets for 
early diagnosis and disease assessment of GC.

Fig. 6  TF regulatory network diagram Red diamonds represent biomarkers, blue circles represent TFs, and green triangles represent miRNAs

Fig. 7  In-vitro validation assay. A The mRNA level of the screened three markers (IFI30, HSPD1, and HSPH1) in GES-1 and AGS cells via qRT-
PCR. B Wound healing assay to assess the effect of silencing IFI30 expression on the migratory capacity of AGS cells. C Transwell assay to 
assess the effect of silencing IFI30 expression on the invasive capacity of AGS cells.
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6  Limitation

This study has achieved preliminary results in exploring the role of M2 macrophages in GC progression and its related 
biomarkers, yet it also possesses non-negligible limitations. Firstly, constrained by the limited sample size and scarcity of 
single-cell sequencing data, the broad applicability of the research findings requires further validation. In the future, we 
plan to integrate data from a wider range of public databases and studies to expand the sample size, thereby enhanc-
ing the credibility and universality of our conclusions. Furthermore, although this study has verified the diagnostic 
efficacy of the biomarkers through ROC analysis, direct evidence from in vivo experiments is crucial for comprehensively 
assessing their application potential. Therefore, we anticipate conducting in-depth in vivo and in vitro experiments in 
future research to further validate and optimize the practical application value of these biomarkers in GC diagnosis and 
treatment.
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