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Abstract

It is clear that learning and attention interact, but it is an ongoing challenge to integrate their

psychological and neurophysiological descriptions. Here we introduce LAG-1, a dynamic

neural field model of learning, attention and gaze, that we fit to human learning and eye-

movement data from two category learning experiments. LAG-1 comprises three control

systems: one for visuospatial attention, one for saccadic timing and control, and one for cat-

egory learning. The model is able to extract a kind of information gain from pairwise differ-

ences in simple associations between visual features and categories. Providing this gain as

a reentrant signal with bottom-up visual information, and in top-down spatial priority, appro-

priately influences the initiation of saccades. LAG-1 provides a moment-by-moment simula-

tion of the interactions of learning and gaze, and thus simultaneously produces phenomena

on many timescales, from the duration of saccades and gaze fixations, to the response

times for trials, to the slow optimization of attention toward task relevant information across

a whole experiment. With only three free parameters (learning rate, trial impatience, and fix-

ation impatience) LAG-1 produces qualitatively correct fits for learning, behavioural timing

and eye movement measures, and also for previously unmodelled empirical phenomena

(e.g., fixation orders showing stimulus-specific attention, and decreasing fixation counts dur-

ing feedback). Because LAG-1 is built to capture attention and gaze generally, we demon-

strate how it can be applied to other phenomena of visual cognition such as the free viewing

of visual stimuli, visual search, and covert attention.

Introduction

An important part of learning is learning what’s important. Experts can be distinguished from

novices based on the sources of information they use to make classifications. For example,

expert bird watchers use subtle but predictive features of birdsong to distinguish between dif-

ferent bird species, identify birds using their specific names, and describe birds using beha-

vioural traits, whereas novices do not [1, 2]. Analogous findings about the features used by

experts and novices to make classifications have been found in biology [3, 4], physics [5], and

computer programming [6], among many other areas. Knowledge about what’s important
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guides where people look. In reading, for example, many indicators of a new, or struggling,

reader are obvious in their eye movements: excess fixations, fixations to previous words, or to

determiners like “the” [7]. Similarly, novice drivers tend to look more at the road ahead and

underutilize other important sources of information, relative to more experienced drivers [8].

Laboratory studies looking at eye movements during learning tend to show that the overall

number of gaze fixations, the fixations to irrelevant information, and the durations of fixations

decrease as skills are increased [9–11]. Learning influences the allocation of gaze and attention,

but the reverse is also true. Providing novices with attentional instruction can speedily close

their performance gap with experts; for example, in a classic study of chicken sexing—a notori-

ously difficult perceptual challenge—researchers were able to markedly improve novice perfor-

mance by training them how to prioritize the most informative parts [12].

One paradigm that is excellent for eliciting the interactions of learning and attention is cate-

gory learning [13–18]. Experiments with this paradigm are simple enough to be modelled, yet

constitute a full sweep through the cognitive system, including: perception, attention, memory,

and decision making, all packed into hundreds of incremental learning trials occurring over

cognitively distinguished time scales [19, 20]. In a typical category learning study, the stimulus

that is presented to the participant is a category exemplar composed of 3–4 visual features. Par-

ticipants then choose one of the possible categories (usually between 2–4 categories). At first,

participants are just guessing: they do not yet know which features are indicative of which cate-

gories. Each successive trial presents a new stimulus, solicits a response, and typically provides

corrective feedback, enabling participants, over hundreds of trials, to learn how to categorize

accurately. Usually, some of the features are more relevant than others for predicting the cor-

rect category, leading participants to eventually selectively attend to those features.

Category learning researchers have measured attention using both indirect methods—like

with knowledge transfer tasks, wherein a research participant is required to categorize unseen

exemplars after experience with a training set, and thus reveal what they deemed important

(e.g. [21])—and direct methods, that require participants to explicitly reveal stimulus informa-

tion using mouse movements or clicks for example [22–25]. Probably the most natural way of

capturing the deployment of attention during category learning, however, is using eye track-

ing. Many general eye tracking findings have now been documented (see [26] for a summary

of measures across 10 different experiments). Perhaps the simplest and most common finding

is that the number of eye movements to stimulus features in a categorization trial starts high

and drops over the course of an experiment. In most cases, it settles to just above the number

of features necessary to consistently generate a correct classification of the stimulus [10, 27,

28]. The duration of individual fixations to features has also been shown to decrease as partici-

pants learn [29]. Participants spend more of their time looking at relevant features than irrele-

vant ones [10, 11], and they fixate important features earlier in a trial [10, 11, 25, 29]. Finally,

the amount of time that participants spend viewing features during feedback drops as the par-

ticipants learn how to more efficiently attend in the task [30]. In all of these findings, beha-

vioural measures of attention are strongly related to behavioral measures of learning.

The full set of findings relating to learning and attention in category learning is challeng-

ingly diverse. Participants are choosing what features to look at and for how long, and in what

order. They are deciding when they know enough to choose a category and which category is

correct. They are then choosing if, when, and how long to look at the feedback and represented

stimulus features, and when to move on to the next trial. Participant’s sampling of information

is continuous, and intertwined with the learning process itself. Further, behaviour adapts at a

wide variety of timescales: saccades operate on the order of 100 ms, fixations about 200–400

ms, task length fixation ordering 1000–5000 ms, and learning-related changes reveal them-

selves over whole experiments lasting 180,000 ms. We know of no existing model which links
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learning with attention and gaze that can make quantitative predictions about the full set of

findings relating learning, and gaze in these tasks. This is in no small part because no one has

tried. Instead, researchers have chosen to carve off smaller portions of the problem, trading

generality for tractability. Some examples of findings and their corresponding models can be

found in Table 1. To us, these phenomena seem to naturally arise from the interaction of a

simple learning mechanism, a simple attentional priority map, and a simple saccade timing

system.

LAG-1

In the present paper, we introduce LAG-1, a computational model of learning, attention and

gaze designed to process common experimental manipulations in category learning tasks. The

name emphasizes the three cognitive components we are attempting to combine. It also

emphasizes the temporal nature of the integration of these processes: learning, attention and

gaze, moment by moment. In this section, we describe the model in detail. We start with a

high level description of its core theoretical commitments, and then explain how its structure

relates to both the theoretical claim and to its behavioural predictions by showing how activa-

tion flows through the various components of the model. Finally, for those looking for exact

implementational details and correspondences with neurophysiology, we provide some

description of the neurophysiological and behavioural studies relevant to each component of

the model and provide the equations for each component in the supplementary information.

At the heart of the model is a theoretical idea about how learning, attention, and gaze inter-

act: simple associative learning affords an additional source of information about the impor-

tance of features beyond just the base-rate driven weights: later in learning, the contrast of

these weights also tells you how diagnostic the features are. Measures of expected information

gain are commonly employed to model visual attention (e.g., [38]), where this sort of quantity

is integrated with bottom-up visual signals in an attentional priority map (e.g., [39]), that

strongly influences saccade initiation [40]. According to LAG-1, these linkages between learn-

ing and attention, and between attention and saccadic initiation are the primary cause of the

documented covariation between learning and gaze seen in the myriad measures of participant

behaviour in the category learning paradigm. Thus, implementing these ideas in a

Table 1. Eye tracking, timing and category learning findings.

Finding Empirical source Model

Reaction time

reduction

Homa and Fish (1975), McColeman et al. (2014) [26,

31].

Lamberts (1998), Logan (2002),

Nosofsky and Palmeri (1997) [32–34].

Fixation count

reduction

McColeman et al. (2014), Rehder and Hoffman

(2005) [10, 26].

Barnes, McColeman, Blair, and Walshe

(2014), Nelson and Cottrell (2007) [28,

35].

Fixation

duration

reduction

Blair, Watson, Walshe, and Maj (2009), McColeman

et al. (2014) [11, 26].

N/A

Fixation

ordering

Blair, Watson, Walshe, and Maj (2009), Chen, Meier,

Blair, Watson, and Wood (2013), Rehder and

Hoffman (2005) [10, 11, 29].

Rombouts, Bohte, Martinez-Trujillo,

and Roelfsema (2015) [36].

Reduced

feedback use

Bourne, Guy, Dodd, and Justesen (1965), Watson

and Blair (2008) [30, 37].

N/A

N/A indicates findings that are modelled for the first time here.

https://doi.org/10.1371/journal.pone.0259511.t001
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computational framework should allow us to predict, at least qualitatively, the changes to gaze

that correspond with the changes in participant performance.

To test LAG-1, we simulate two category learning experiments that also recorded eye gaze

[10, 25]. The empirical findings relevant to these simulations are listed in Table 1. Because the

central phenomenon of interest to LAG-1 is the interrelationship between attention and learn-

ing, we report learning performance, via category responses and stimulus generalization.

There are also a number of generic timing measures that can be fit, such as how long partici-

pants spend before making a categorization response, or how long they spend viewing feed-

back before continuing on to the next trial.

Implementing a model that is continuous in space and time and also neurally plausible—

one of our chief design considerations—requires a suitable modelling framework. We imple-

ment LAG-1 using ideas from Dynamic Neural Field Theory (DNFT). This framework has an

extensive track record of model-based explanations in developmental [41–44] and cognitive

psychology [45–47]. Neural fields are well-suited to modelling the brain’s numerous topo-

graphic maps, like those implicated in the making of eye movements [48, 49]. For example, the

characteristic properties of dynamic neural fields have been used to explain the critical dis-

tances inherent to averaging saccades by modelling the functional relationships of the superior

colliculus [46]. DNFT models have also provided important insights into the temporal dynam-

ics of cognitive processes like object recognition, by naturally reflecting the time needed to

resolve competition proportionate to the multidimensional metric confusability of object fea-

tures (the “Lyupanov time” [50]), e.g., distinguishing a lime from a lemon takes longer than

distinguishing a lime from banana) [51]. We note that, while the logic of modelling with

DNFT is compelling, there are alternatives, such as simplifying the lateral influences of spatial

configuration using discrete dynamical units that still preserve the temporal dynamics of inter-

est, e.g., [52]. By building LAG-1 using DNFT however, the underlying structure of the model

naturally accommodates any temporal and spatial aspects of cognitive processes in ways that

match the computational properties of real neural systems.

We designed LAG-1 primarily to process visual category learning experiments, but very

few changes were needed in order to have it process another important class of attention tasks:

visual search. The benchmark measures for visual search include very different kinds of phe-

nomena than in category learning, such as the distractor-heterogeneity effect, and the feature-

target similarity effect, as well as several other findings which have been well documented else-

where, e.g., [53]. It is noteworthy that temporal models of visual search are accounting for

benchmark phenomena by allowing knowledge of the critical features of a target to amplify

those particular feature dimensions as search items compete with one another for attention

[54, 55]: attention weights have a long history in category learning models, and this suggests

that progress in one domain may naturally complement the other.

As there are by now many dynamical cognitive process models of attention and learning, it

is encouraging to see models try to build on previous efforts, especially when it comes to iden-

tifying neural processes that collectively act as a functional subsystem untethered from a spe-

cific model. For example, [56] builds on the influential category learning model “COmpetition

between Verbal and Implicit Systems” (COVIS) [57], by replacing the original visual process-

ing methods of the model with more precise models of cortical and subcortical structures at

each level of the visual processing hierarchy. By exploiting the modularity of these visual pro-

cesses the extended model increased the category learning phenomena that could in principle

be accounted for, such as: the effect of feedback delays, or dimensional relevance shifts. LAG-1

similarly aims to be “plug-n-play”, at the level of neurophysiologically plausible subsystems,

where for example, the comparatively simple associative learning subsystem in LAG-1 could
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be swapped out or extended by a more complex feedback-driven learning system capable of

learning non-linear category structures.

LAG-1 is thus part of a wider group of dynamic models of cognition that are taking on the

challenge of capturing the temporal nature of cognitive processes by directly modelling neural

processes at the level of sensorimotor interactions between learning and attention.

The simplest illustration of the full LAG-1 model, and one that may be sufficient for readers

not interested in the mathematical aspects of the work, is shown in Fig 1. We embedded the

primary theoretical ideas in a model of how the three relevant subsystems (learning, attention,

and gaze) might interact. LAG-1 actively samples the visual field, forms associations between

categories and features values, and initiates actions influenced by both the sampling and the

learning. The labels and connections shown in the figure are meant to broadly conform to

what is known about the structure and function of the relevant aspects of the human brain.

Information flow through LAG-1

In the category learning experiments modelled, the task comprises several hundred learning

trials, each of which has two phases: a response phase and a feedback phase. In the response

phase, a fixation cross is first shown in order to center the participant’s gaze, after which a

stimulus is presented. The participant then views the features of the stimulus, and makes a

response by clicking a button associated with one of the categories. The category response

then initiates the feedback phase wherein both the same stimulus and the correct category are

Fig 1. Model structure. The major components of LAG-1 and the excitatory (solid) and inhibitory (dashed) connections between them. There are

three functional subsystems: Visuospatial Processing, Learning, and Saccade Timing. Labels in brackets refer to neuroanatomical regions that have

similar functions. Green ovals represent the free parameters we varied to fit individual subjects. Circles represent single model neurons, rectangles

denote fields, and circles within rectangles specify single neurons with some level of lateral interaction.

https://doi.org/10.1371/journal.pone.0259511.g001
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presented. When the participant is ready to start the next trial, they click a button, and the fixa-

tion cross for the next trial appears. Both of the phases of the trial are self-paced: the stimulus

and the correct category can be observed for as long as the subject (or the model) wishes.

The way that LAG-1 processes information during the experiment is depicted in Fig 1. At

the start of each trial a stimulus is presented to the model as input to the Visual Field. Stimulus

features have particular values, coupled to that particular location on the screen, and the

model, because it represents everything spatially, is sensitive to the locations associated with

particular combinations of feature values. As spatial competition for attention gets resolved by

the lateral dynamics of local-excitation and global-inhibition, gaze will shift to a saccade

threshold-crossing peripheral location of the Visual Field, and extract the value of the feature

there. This information then passes into the Learning System, activating the appropriate Fea-

ture Detectors whose self-sustaining activation acts as a kind of visual working memory. Fea-

ture Detectors then propagate their activation through a weight matrix and into the Category

Neurons. Recurrent connections from the Category Neurons (propagating backward through

a copy of the same weight matrix) pass activation to Feature Expectation Neurons that are

associated with those active categories. A critical feature of the system is that activation of

these neurons is modulated by a gain mechanism that gives additional boosts of activation to

features based on their expected information gain. The calculation of gain is explained in detail

in the “Category Neurons” section of the Learning System overview. This top-down informa-

tion is integrated with both bottom-up information propagating in from the Visual Field, and

directly on to the Spatial Attention Field, such that active categories are driving attentional

choices, and not just adapting what is salient [39]. Activity on the Spatial Attention Field passes

into the Saccade Motor Field, which, because of an inhibitory signal at the current fixation

location, can be thought of as a map of possible saccade targets. The pressure to initiate a sac-

cade (and thus target the peak location in the Saccade Motor Field) is controlled by a trio of

neurons, and builds up slowly from the beginning of a fixation. Strong activation at the loca-

tion currently activated can delay saccades, and strong activation at potential saccade target

locations can speed them up. Because correct categorization requires information about the

value of more than a single feature in these experiments, and because only one feature can be

fixated at a time, the model must make a series of eye movements, as humans must, in order to

gather the information necessary to make a correct classification. As the model views the fea-

tures of the stimulus, information is sustained by both the Feature Detectors and the Category

Neurons, until activation of a motor response crosses a fixed threshold (the Decision Click

Neuron); in the human experiments this would be like a mouse click or button press response.

Once a category response has been chosen, the feedback phase of the trial begins. The cor-

rect category enters the Visuospatial Processing system as a button that appears in the periph-

ery of the Visual Field. If viewed, a boosting signal excites the Category Neuron corresponding

to the correct category. LAG-1 may continue to look at features of the stimulus, boosting their

activation among the Feature Detectors, and countering any memory decay for those values

that may have occurred since having last looked at them. During the feedback phase the con-

nections between active features and active categories are strengthened according to simple

Hebbian learning. The longer LAG-1 studies the feedback, the more the synaptic weights con-

necting the active features and categories are strengthened. Once the Click Decision Neuron

has again exceeded threshold, the next trial is initiated.

As changes to the associative weights between the Feature Detector Neurons and the Cate-

gory Neurons accumulate over learning trials, the dynamics of the system begin to change.

The strength of an association, reflecting base rates, and the category selectivity of Feature

Detectors, reflecting information gain, work together to modify top-down attention. These

top-down signals decrease the chance that irrelevant information will be fixated, as well as
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decreasing fixation durations. Increased activation of the Category Neurons, and faster access-

ing of the useful information leads to faster reaction times. Increased activation of the Category

Neurons also leads to less time being spent during feedback. LAG-1 thus reflects the idea that

learning influences attention and attention influences gaze, as well as the inverse relation: what

is viewed, and for how long, changes what is learned.

LAG-1 has only three fitted individual subject parameters—shown in green in Fig 1: Learn-

ing Rate, Fixation Impatience, and Trial Impatience. The Learning Rate modulates how rap-

idly the connections between Feature Detectors and categories change per unit time. The

Fixation Impatience parameter modulates the growth rate of the pressure to initiate a saccade,

which is known to be dynamically adjusted to improve reward rate (c.f., [58, 59]), and the

Trial Impatience similarly controls the growth rate of the pressure to make a response (i.e.,

either by clicking with a category response, and thus initiating the feedback phase, or, during

the feedback phase, by clicking to initiate the next trial). These parameters have the effect of

preventing the model from perseverating on a difficult decision and ensuring a level of global

stability. These impatience parameters could be thought of similarly to “urgency signals”

found in the speeded choice literature (e.g., [60, 61]): the idea being to keep the system moving

by applying a strong compulsion to move the eye or make a decision after a consistent amount

of time has elapsed.

Detailed description of LAG-1 and neurophysiologial context

In this section we provide the formal description of the model, as well as identify research rele-

vant to its structure and functioning. The model structure, illustrated in Fig 1, can be a useful

map to the three subsystems, their component parts, and can even help one parse the various

model equations (e.g., it can help to compare the inputs in the equation to the inputs shown in

the figure). Readers that are less interested in the computational details may still wish to read

the overviews provided for the three subsystems to get a feel for how they work. For readers

who are interested in the technical details but may be unfamiliar with, or could benefit from a

refresher on, the differential equations that form the foundation of the model, we have pro-

duced a detailed primer that can be found in the supplementary information: “S1 Appendix: A

Primer to Dynamic Neural Field Theory”.

In the supplementary information titled “S2 Appendix: Companion equations for the for-

mal description of LAG-1and neurophysiologial context.”, we provide the equations for each

of the components described at a high-level here. Wherever possible we have attempted to give

model parameters intuitive labels—for example, the Fixation Neuron is labeled ux, the Gaze

Change Neuron is ug, and the Feature Detection Neurons are uftdet
ðj; tÞ. The output of each

neuron and field is bounded by a sigmoid function. Values having been transformed by a sig-

moid function f are indicated with a �, e.g., u� = f(u). More information about this is, provided

in the supplementary information S1 Appendix. Finally, references to structural components

of the model are capitalized, such as the Visual Field, as opposed to generically talking about

the visual field of view.

Modelling complex non-linear systems like LAG-1 requires that the correct balance be

found between the various forces affecting the activity of a neuron or field. In LAG-1 we use uc
to indicate a simple scaling parameter. There are many of these throughout the model equa-

tions as they are a convenient way to adjust the relative magnitudes between forces at play in

the equation. That being said, once fields/neurons were stabilized, these scaling parameters

were not changed. That is, uc parameters were not adjusted at all during the data fitting pro-

cess. We think of these parameters as a mathematical (and practical) necessity, but not critical

for understanding the work as a theory; for this reason they are not discussed in detail at each
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occurrence. Values for scaling parameters used in any model equations throughout this paper

can be found in the supplementary information titled “S5 Appendix: Parameter tables and best

fits.”

Visuospatial Processing system overview. Experiment input to LAG-1 is represented as

a stack of two dimensional layers having the same size as the Visual Field. The location of a red

feature, for example, is represented as a set of 1s among an array of zeros at the appropriate

spatial location in the layer that represent red input. LAG-1 extracts information from this

input in two places, the Visual Field, which codes the spatial location of all elements in the

stimulus regardless of color value, and the Feature Detection Neurons, which code the feature

values for any feature that is currently fixated. On the Visual Field, information about the stim-

ulus is coded in retinotopic coordinates, where the fovea centers the frame of reference. At this

early stage of processing the featural dimensions of a stimulus are not intrinsically bound with

location. Similar to the “what”/“where”, ventral/dorsal, processing streams observed in the

brain, LAG-1 must use “complementary processes” that have hierarchical and laminar compo-

nents to integrate different dimensions of the input into a sensible package [62, 63].

Spatial information from the Visual Field projects into the Spatial Attention Field of LAG-1

where spatial competition for attentional priority resolves. Priority maps in the parietal cortex

are known to predict movement behaviours given a wide range of considerations such as

goals, reward history, novelty, as well as category decisions and information gain [39]. Parietal

priority maps connect those ideas to actual choices to do things in the real world. Activity on

the Spatial Attention Field can be thought of as both selective and predictive of eye move-

ments. Where area LIP projects to the SC, and through a thalamic route receives input from

the SC, the Spatial Attention Field and Saccade Motor Field in LAG-1 also have bidirectional

relationships. In both the model and the brain, these structures are essential to relating overt

and covert attentional dynamics [64].

Converting representations between different frames of reference can be accomplished

with the aid of a movement shift operator or coupling fields that represent information in dif-

fering frames of reference. An earlier DNFT model of saccadic remapping during multiple-

object-tracking (MOT), offers a precise approach to the mechanics of reference frame transfor-

mations between neural fields [65]. In the present version of LAG-1 we simplify things by

directly coding a transformation operator between the spatiotopic frames of reference used by

the Spatial Attenion and Saccade Motor Fields, and the retinotopic coordinates of the Visual

Field.

Visual Field. The Visual Field in LAG-1 is a retinotopic map that represents the locations

of features relative to the fovea. The center of the Visual Field defined in Equation 11 is always

the fovea, while the activations of the Visual Field are translated in space to reflect their change

in distance from the center as the eye moves. Experiment stimulus inputs provided to the

Visual Field are transformed by Equation 12 The processes comprised by the Visual Field and

the input stimulus transformation are an abstraction of the kind of early visual processes that

begin at the retina and culminate at the psychologically interpretable visual categories repre-

sented by complex neurons in V4 and IT [66].

Spatial Attention Field. Turning knowledge into behaviour at the right place, and at the

right time, is a large part of the functions of the priority maps in the parietal cortex [39, 67].

The posterior parietal region of the parietal cortex coordinates a number of motor actions like

reaching, grabbing and saccade targeting [68]. Neurons in lateral intraparietal area (LIP) have

been shown to vary systematically with the location [69], category [70], reward [71], posterior

likelihood [38, 72] and task relevance [73, 74] of individual eye movements. This makes LIP a

very important source of attention related projections to more proximate motor control of the

eye like the superior colliculus [75, 76].
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The Spatial Attention Field in LAG-1 represents changes in attentional priority to locations

in a spatiotopic reference frame. The different frames of reference of the Spatial Attention

Field and the Visual Field are depicted in Fig 2. Notice that there is no change in the location

of features on the Spatial Attention Field between Fig 2A and 2B, despite the shifting of the

bottom feature onto the fovea of the Visual Field.

Changes in activation on the Spatial Attention Field are described by similar equations as

those used for the Visual Field, in Equation 13.

Saccade Motor Field. Candidate saccade target locations compete on the Saccade Motor

Field [48, 49]. Unlike the Spatial Attention Field which binds a retinue of competing atten-

tional priorities with spatial locations, the Saccade Motor Field resolves competition for atten-

tion at locations other than the current locus of fixation. The dynamics of this field resolves the

competition between locations to be the target of the next eye movement according to Equa-

tion 17.

Saccade Timing System overview. Under normal viewing conditions, humans make

about three saccades per second [77]. The period of relative spatial stability between saccades

is the fixation duration. The parameterizations used in the present simulations were chosen

for their rough correspondence with the normal range of saccade and fixation durations. In

the model, as in the brain, the timing of an eye movement is affected by previous experience.

In people, this includes factors like expected processing difficulty, but category learning experi-

ments are designed to minimize such effects, so changes in fixation duration exhibited by

LAG-1 are primarily the result of learning the relevance of different features. We have also

observed fixation duration differences in LAG-1 when using it for visual search where disorga-

nized inputs yield spatial interactions that speed or slow its saccade onset latency [40, 46, 58,

67, 78].

As the name suggests, the Saccade Timing System is the primary arbiter of decisions to

release fixation and foveate a new location. The trio of neurons controlling this system are: the

Gaze Change Neuron, the Fixation Neuron, and the Saccade Initiation Neuron. These model

neurons have a functional correspondence with brain stem neurons referred to as: “build-up

Fig 2. Information processing schema. Schematic of the relationships between experiment input, the Feature Detection Neurons,

Visual Field, and the Spatial Attention Field. A) The fovea is indicated by the dashed grey circle in the center of the Visual Field. B)

After an eye movement to the bottom middle feature, the green sensitive Feature Detector is activated and the Spatial Attention Field

is boosted at its associated location. The Visual Field is coding spatial information in retinotopic coordinates while the Spatial

Attention Field is coding information in spatiotopic coordinates.

https://doi.org/10.1371/journal.pone.0259511.g002
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neurons”, that increase their firing rate over the course of saccade preparation; “fixation neu-

rons”, that remain tonically active during a fixation; and “burst neurons”, that spike just prior

to a saccade [79–81]. Again, a saccade is initiated by LAG-1 when the Saccade Initiation Neu-

ron crosses a threshold. When the eye is at rest, the Fixation Neuron inhibits this Saccade Initi-

ation Neuron, and the Gaze Change Neuron increases the pressure to initiate a saccade as the

duration of a fixation goes grows.

The Saccade Timing System is influenced by three exogenous inputs. First, the Fixation

Impatience parameter influences how rapidly the activation of the Gaze Change Neuron

grows, and reflects stable individual differences in fixation durations. That such a parameter

could vary systematically between individuals is motivated by timing differences in gaze

behaviours between individuals. Individuals prone to making longer fixations will do so across

numerous kinds of tasks and this trait covaries with other gaze measures, such as the typical

length of their saccades [82, 83]. Second, the Fixation Neuron receives inputs from the Visual

Field when a feature is being fixated. Finally learning induced increases in activation for rele-

vant features on the Spatial Attention Field and Saccade Motor Fields push the Saccade Initia-

tion Neuron over threshold faster.

Gaze Change Neuron. The Gaze Change Neuron plays a critical role in compelling LAG-

1 to explore the visual environment. The behaviour of this neuron, defined by Equation 19,

has notable similarities with build-up neurons found in caudal regions of the intermediate lay-

ers of the superior colliculus [49]. The Fixation Impatience parameter, λP2, increases the influ-

ence of these requests with every time step when λP2 > 1. Putting the bulk of a saccade

initiation decision on to a preprogrammed timer makes these decisions more resilient to noise

and moment-to-moment attentional capture. In the real world people can dynamically adjust

such timers over the course of a few trials based on factors like the expected processing diffi-

culty or the inter-trial interval [58, 59].

Fixation Neuron. The Fixation Neuron, defined in Equation 20, suppresses the impetus

to move the eye. It accomplishes this by exciting the foveal location of the Spatial Attention

Field, thereby damping extrafoveal locations of the field by way of a stronger global inhibition

projection to regions other than the boosted fovea. The only input to this neuron is the sum of

featural information within the foveally masked location of the Visual Field. Anatomically, fix-

ation neurons are observed to project tonic inhibition to saccadic burst neurons in the time

between saccades, such that inhibiting them allows saccades to be programmed and executed

faster [84, 85].

Saccade Initiation Neuron. A saccade is initiated by LAG-1 when the Saccade Initiation

Neuron reaches threshold, according to Equation 21. This neuron has functional similarities

with saccadic burst neurons, which show phasic activity in the moments just prior to a saccade

[79].

Learning system overview

LAG-1 learns during the feedback phase of every trial by Hebbian modification of the weights

connecting active Feature Detection Neurons with Category Neurons activated by fixating a

correct category presented on the screen. If an incorrect guess was made, anti-Hebbian learn-

ing simultaneously decouples the active Feature Detection Neurons and Category Neurons.

For example, if a blue, yellow and green set of Feature Detection Neurons is co-active with cat-

egory A during the feedback phase, applying the learning rule will increase the particular

weight that connects the presynaptic Feature Detection Neuron and the correct Category Neu-

ron, proportionate to the current strength of the weight. If the correct category was not A in

this example, but B, then the blue, yellow, and green Feature Detection Neurons activated by
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fixating these features, would reduce their connection strength to A, and increase it to B during

the feedback phase.

Attending to feedback signals is an essential part of category learning [30, 37]. The category

learning experiments we simulate are self-paced: participants click a response button associ-

ated with a particular category which brings up the feedback display, and when they are ready

they click again to advance to the next trial. Participants can, if they choose, rapidly click to

advance to the next trial without spending time looking at the feedback or stimulus. Human

participants who have mastered the categories often choose to do this in order to finish faster

—LAG-1 too, has this option. The decision to click and advance the experiment to the next

phase is represented by a Click Decision Neuron having two thresholds. Crossing the first

threshold moves the trial from the response phase to the feedback phase, crossing the second

threshold ends the trial.

At the start of the experiment, when LAG-1 knows nothing about the category and feature

relationships, impatience and experiment feedback signals provide the bulk of the input

needed for the Click Decision Neuron to cross its thresholds. As knowledge about the category

structure develops, this knowledge will result in higher activation of particular Category Neu-

rons, which, when combined with experiment feedback signals, make for faster reaction times

in the feedback phase. When the category associations are very strong, feedback signals may be

unnecessary for crossing the second threshold, and thus, LAG-1, like the human participants,

can stop looking at feedback altogether when it has mastered the categories.

In addition to registering the physical attributes of the features being looked at, Feature

Detection Neurons act like a visual working memory in that they can sustain their activation

even after looking elsewhere. Each of these neurons is connected to the others, as well as to a

set of Category Neurons that do no themselves have a sensory connection to the experiment

stimulus except through the the Feature Detection Neurons.

Activity propagates from the Category Neurons into the Click Decision Neuron, as well as

feeding back through a mirror of the weights that connect the Feature Detection Neurons with

the Category Neurons, to activate the Feature Expectation Neurons. These neurons mirror the

Feature Detection Neurons in number but project back toward the spatial locations of the

Visual and Spatial Attention Fields where the feature values are known to be associated. This

is how LAG-1 allows feature-based attention to influence the selection of eye movements [86,

87].

At the top of the visual attention hierarchy in the brain are category sensitive neurons in

areas like inferotemporal (IT) and medial temporal lobe (MTL) which get activated by ongoing

sensory combinations of visual input and which have reentrant projections to successive layers

of the visual cortex, and categorical projections to LIP respectively. Neurons in these regions

effectively sensitize visual neurons according to category expectations [70, 88–92]. Neurons in

these regions are reported to have a number of attribute-invariant preferences for all kinds of

complex categories like cars and celebrities [93, 94]. When activated, neurons with these cate-

gorical preferences alter sensory expectancies across modalities and bias the spatial priority of

action competitions resolved in the parietal cortex [73, 95].

Because our primary theoretical interest was integrating learning, attention and gaze, and

not replicating a fully developed category learning model we chose to use a relatively simple

learning system (cf. [96]). The only weights that are adjusted within each experiment are those

between the Feature Detection Neurons and the Category Neurons. This means that LAG-1 is,

for now, only capable of linear association, limiting its general ability to test rules and learn

categories that are not linearly separable [21, 96, 97]. Implementing a one–level–more–detailed

category learning system for LAG-1 would require a richer version of visual feature-based cate-

gorization inspired by the functions of IT/MTL/hippocampus [93], reentrant relationships
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between temporal, visual, and parietal cortices [63, 72, 98], prefrontal cortex for choosing

among differing rules and strategies [57, 99], and reward modulated Hebbian plasticity for

more explicit temporal difference learning [100–102].

Feature Detection Neurons. The Feature Detection Neurons represent the non-spatial

attributes of a stimulus. Feature values are depicted in Fig 2 as color patches in different loca-

tions of the screen. In the experiments we simulate, the stimulus features are binary valued.

That is, each feature can have only one of two possible attributes for a given trial. LAG-1 repre-

sents this as two features connected to the same region of space in the Spatial Attention Field

and Visual Field, and with inhibitory connections between the two Feature Detection Neurons

tuned to each location.

The Feature Detection Neurons, defined by Equation 22, are agnostic to the property of the

stimulus they are representing. The color patches we use are a convenience and could be

thought of as representing any feature dimension of the stimulus. The color categories repre-

sented by the Feature Detection Neurons in our examples could be understood as explicit rep-

resentations in a psychological color space like that found in inferior temporal (IT) cortex, as

easily as any other physical property of the stimulus [66, 103].

Category Neurons. Categories in LAG-1 are represented by discrete neurons, as defined

in Equation 24, with one neuron for each category in the task. Importantly, the Category Neu-

rons do not have to be directly maintained by the excitatory projections of the Feature Detec-

tion Neurons: they can be completely self-sustaining once activated enough. The Category

Neurons also compete with one another via the same simple global inhibition as the Feature

Detection Neurons.

Activation propagating from Feature Detection Neurons to the Category Neurons is attenu-

ated by gain, defined by Equation 25. The total difference between the synaptic weights con-

necting the Feature Detector Neurons associated with a particular location, for each Category

Neuron can be used as an indicator of the information value of the feature dimension at that

location for that category. For example, if Feature 1 and Feature 1’ both have a connection to

Category Neuron A of strength 0.5 (thus a difference of zero), then Category A will be equally

active, regardless of the value of Feature 1. In contrast, if Feature 1 has a connection of.02 and

Feature 1’ has a connection of.98 with Category Neuron A (and thus the difference between

them is large) then this location is treated as very diagnostic of this category.

The purpose of gain in LAG-1 is to temper the effects of associative learning based on stim-

ulus base-rates, with a derived measure of information value. It is known that certain LIP neu-

rons represent a kind of gain as in the form of expected posterior log likelihood ratios of

reward and information that would be returned by saccades to each location of the field [38,

72, 101].

Feature to category association. The weight matrix connecting the Feature Detection

Neurons and the Category Neurons, changes as the model proceeds through the experiment.

The values W(i, j, t) store the strength of the association between Category Neuron i, and Fea-

ture Detection Neuron j, at time t. On each time step of trial feedback, these weights will

undergo at least two of the three types of associative learning as defined in Equation 26: 1)

increasing the weights between active Feature Detection Neurons and the above-threshold

Category Neuron, 2) decreasing all the weights proportionate to the average increase stimulus-

specific increase (homeostatic or normalizing “decay”), and 3) decreasing the weights connect-

ing the chosen Category Neuron and the active Feature Detector Neurons.

Feature Expectation Neurons. At the start of an experiment, LAG-1 has no information

about which features are relevant to the categorization task. As the experiment progresses, it

learns how the presence of a particular feature value at a particular location predicts particular

categories. The way these expectations are translated into changes in behaviour is through the
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selective activation of Feature Expectation Neurons by the Category Neurons, as well as inhibi-

tion projecting from the Feature Detection Neurons. Category Neurons are connected to the

Feature Expectation Neurons, defined in Equation 30, using a copy of the synaptic weight val-

ues as those that connect the Feature Detection Neurons with the Category Neurons. The

recurrent projections from the Feature Expectation Neurons into the Visual and Spatial Atten-

tion Fields change the salience/priority of competing saccade target locations.

Click Decision Neuron. The activity of the Click Decision Neuron gradually increases

over the course of the trial as LAG-1 looks around and activates categories, and as its decision

impatience grows. There are two critical threshold events signaled by this neuron. Crossing

the first threshold corresponds to the subject pressing a button to select a category, and transi-

tions the trial into the feedback phase, wherein information representing the correct answer

appears on the Visual and Spatial Attention Fields. When the Click Decision Neuron, defined

in Equation 31, crosses its second threshold, the trial ends. The amount of time it takes to cross

the gap from the first threshold to the second threshold is variable, such that high enough

impatience and/or category knowledge can push these neuron across threshold quickly

enough to count as a “double-click” that skips feedback entirely.

Simulations

The present work is based on two key ideas. The primary theoretical idea that LAG-1 instanti-

ates is that learning, attention, and gaze, connect in a way that allows category-feature associa-

tions and expected information gain to influence spatial attention which in turn influences the

selection of saccadic targets. This theoretical idea explains why the different subsystems of

LAG-1 are connected the way they are. The primary empirical idea behind the model, is that

the qualitative learning-related changes in behaviour, both gaze and choice, that have been

documented in the experiments that we simulate are largely the result of these linkages

between systems. Thus we have two key proposals; one is the functional connection between

systems, and one is the unified causal source of the variety of choice and gaze behaviours

shown in these tasks. If LAG-1, built on our key theoretical connections, produces the learn-

ing-related behaviour changes (e.g., that accuracy goes up throughout learning, that more

informative features are prioritised earlier within a trial, that irrelevant features are increas-

ingly ignored, that there is a reduction in fixation counts across learning, and so on) in both

category learning choices and in gaze behaviours found in human subjects, then we would

take that as evidence for both the theoretical and empirical ideas. If the model reproduces only

some of the findings, we will take that as evidence that either the theoretical or empirical ideas,

or both, require modification. If there are many findings that the model cannot qualitatively

reproduce, then we will take that as evidence that the idea is incorrect, or incomplete.

Breadth and precision of the modelling

It is important to recognize that our primary interest is in the breadth of LAG-1, rather than

its precision. That is, we are less concerned about the precise quantitative magnitiudes than we

are in seeing if LAG-1’s behaviours (both choice and oculomotor) change with learning the

way people’s behaviours do. Our core argument is that relatively simple connections between

learning and attention and gaze underlie a wide variety of findings. In an effort to assess this

idea in the simulations, we make several modelling decisions which undoubtedly makes get-

ting good quantitative fits more difficult, but which are truer to our project goals.

First we keep the model flexibility low so that we can unambiguously attribute successful

simulations to our core claims. The mathematics that allows the model to fixate in two spatial

dimensions and run continuously in time are obviously complex, requiring many equations
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and many fixed parameter values. However, parameters used in the fitting process—those that

can actually change the model’s behaviour to produce better quantitative fits—are very few.

Our three free parameters (Learning Rate; Trial Impatience; Fixation Impatience) are consid-

erably fewer than comparable models, e.g., [32].

Second, consistent with our claim that the myriad of behavioural phenomena shown in

these task are related, we fit a very broad range of findings. Yet, each additional measure we

include constrains the model further, and will impact the quantitative goodness of our fits. We

note the breadth of LAG-1’s predictions in this task are unparalleled to our knowledge. Quan-

titatively comparing models that do not fit the same phenomena is not common practice, and

there are clear problems to doing so. For example, we note that for data that a model does not

address, the likelihood of that data given the model is zero. Under this construal, the broad

model always wins, even if its fits are terrible. Obviously there is something unsatisfactory

here, in that a narrower model may still have value, even if it cannot address every finding that

a broad model can. Yet, it seems equally unsatisfactory to quantitatively compare overlapping

models only on the datasets to which they both apply: essentially placing zero value on fitting

more data.

Finally, we reserve a few measures, leaving them out of the fitting process entirely, so that

we can verify the accuracy of LAG-1’s natural predictions. In LAG-1, the connection between

attention and learning processes is relatively constrained: both the magnitude of the connec-

tion strength between features and categories, and the information value of those connections,

are quantities that derive purely from the knowledge contained in one set of associative

weights. We reasoned that if this account is correct, then, as long as we captured important

neurofunctional relationships, other complex phenomena might emerge from the basic con-

straints in the model without additional coaxing on our part. Demonstrating that LAG-1 can

make appropriate predictions about unfitted measures is an important way of further support-

ing our core argument.

Experimental data being fit

Testing LAG-1 requires an experiment in which both learning and gaze are simultaneously

measured, and in which changes in learning lead to changes in gaze. As we know of no other

process models that target the relationships between learning and attention and gaze found in

category learning in this particular way, instead of direct model comparisons, as is often done

when looking at very specific effects or representational difference between models, the

approach here is to try and match the human data for all the findings and effects listed in

Table 1.

In this section, we fit LAG-1 to data produced in two different studies: [10] and [25]. We

describe them in brief, here, with a fuller description of the methods available below. We chose

the [25] data as it uses a category structure that has been run many times in our lab with differ-

ent experimenters, stimuli, instructions, base-rate manipulations, information access costs,

and response types [11, 26, 27, 29, 30]. The structure elicits the theoretically important behav-

iour called stimulus-specific attention, wherein attention is allocated differently based on the

properties of the stimulus itself. This finding is important because many existing models have

one set of attention weights that change only during response feedback, and so cannot change

the allocation based on the features of present stimulus. Eliciting stimulus-specific patterns of

eye movements will be an important test of LAG-1.

The second data set is from the [10] study using the “5/4” categories of [17]. This eye track-

ing study was one of the earliest category learning experiments to use eye movements as a con-

firmational measure of attention weight predictions. The results suggested that prototype
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models underestimate attention to the least relevant stimulus dimension in the 5/4 categories

(e.g. [32, 104]). Though the 5/4 categories have a long, if contentious (e.g. [105]), history in the

study of categorization, using it here allows us to ensure that LAG-1 can model both the appro-

priate learning and generalization data as well as eye tracking measures. Simulating the [10]

experiment also requires that LAG-1 process variable-length experiments with different num-

bers of features, different arrangements of the features, and different numbers of categories

than the [25] study. The reaction time data for the response and feedback sections of the data

were not available, and so these measures were not fit in Simulation 2, even though LAG-1

automatically produces reaction times when fit to the remaining data.

In Simulation 1, four behavioural measures were fit: accuracy, fixation count, the probabil-

ity of fixating irrelevant information on a trial, and the average fixation durations, over the

experiment. The data on each of these measures was summarized by an initial intercept and a

slope of change in the measure over the experiment, yielding a target vector with eight ele-

ments for each human subject. In line with our breadth-focused modelling goals we leave sev-

eral aspects of the human behaviour to emerge organically from the model. Reaction times,

within-trial fixation probabilities, and time spent on features during feedback were left out of

the fit function, allowing the fits to these measures to emerge from the model organically.

In Simulation 2, we used the individual subject transfer probabilities (for all 16 stimuli),

their learning points (the trial number on which the participant began two consecutive error-

free blocks), and a measure of the changes in the allocation of attention to stimulus features of

high and low diagnosticity. We were unable to precisely reconstruct all of the individual sub-

ject data reported in [10] for the attentional allocation component of the fit measure, so we

instead used the reported averages in three measures of attentional allocation. The first two

numbers were the average starting and ending fixation counts to the individual features. The

third component was the difference between the least informative (Feature 2) and the most

informative features (Feature 1) on this measure (*0.3). The target vector for Simulation 2

thus had 19 elements. Again we allow the model to predict several aspects of the behavioural

data with Simulation 2: in particular the within-trial fixation probabilities and the overall fixa-

tion proportions.

The experiments record all of the participants’ various responses, when they occurred, and

the location of their gaze at all points in time. The simulations of the model are similarly data-

rich. Likewise, the attentional and gaze processes in LAG-1 are also spatial and the output of

LAG-1 is thus just like the raw data from humans. In fact, we use the same computer code for

both humans and simulations to convert the raw data to the aggregated and binned measures

presented below. This applies to gaze also: just as with humans, raw gaze location described in

x,y coordinates is recorded at a time scale set to approximate a 120hz eye tracker, and this is

aggregated into fixations using the same modified gaze dispersion algorithm [106] that was

used for the human participants in Simulation 1. Once the final best-fitting simulations are

produced (see the supplementary information “S3 Appendix: Fitting procedure” for a full

description of the fitting procedures, and supplementary information “S5 Appendix: Parame-

ter tables and best fits” for the best-fitting parameter values) the result is a simulation yoked to

each human subject: matching both the experimental situation, and, as well as possible, the

impatience and learning rate characteristics of that subject.

Free parameter relationships with model behaviour

Before we cover the results of the simulations, it might be helpful to the reader to get a sense of

how the model behaves under various values of the three free parameters. Model output at

varying levels of the Learning Rate, Fixation Impatience and Trial Impatience is shown in Fig
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3. Each parameter combination used to generate the plots is chosen from the storage table of

LAG-1 for Simulation 1 output according to the closest models to low, medium and high levels

of one of the parameters when the other two parameters are held to the overall medians

observed in the individuals. Fig 3A shows how Learning Rate modulates accuracy by

Fig 3. Isolated parameter influences on model. In each of the six figures a comparison of the model’s behaviour is presented at three different levels of

the parameters. Each set of parameters is chosen from the closest models available when restricted to the range set by the lowest and highest observed in

the best fits of individuals in Experiment 1. In each case, one free parameter is compared while the other two parameters are held to the overall medians

observed within that same range. A) Model accuracy over three levels, low, medium and high, of Learning Rate ([2.5 × 10−6, 1.1 × 10−5, 1.65 × 10−5]),

when Fixation Impatience is 1.7 and Trial Impatience is 1.8. B) Model fixation counts over three levels, low, medium and high, of Trial Impatience

([1.6, 1.8, 2.05]), when Learning Rate is 1.1 × 10−5 and Fixation Impatience is 1.5. C) Model fixation durations over three levels, low, medium and high,

of Fixation Impatience ([1.5, 1.7, 1.9]), when Learning Rate is 1.1 × 10−5 and Trial Impatience is 1.8. D) Model accuracy over three levels, low, medium

and high, of Trial Impatience ([1.6, 1.8, 2.05]), when Fixation Impatience is 1.7 and Learning Rate is 7 × 10−6. E) Model feature fixation probability over

three levels, low, medium and high, of Trial Impatience ([1.6, 1.8, 2.05]), Fixation Impatience is 1.7 and Learning Rate is 1.1 × 10−5. F) Model feature

fixation durations over three levels, low, medium and high, of Learning Rate ([2.5 × 10−6, 1.1 × 10−5, 1.65 × 10−5]), Fixation Impatience is 1.7 and Trial

Impatience is 1.8. Shading represents standard deviations of the model for that level of parameters.

https://doi.org/10.1371/journal.pone.0259511.g003
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simultaneously plotting LAG-1’s learning curves given low, medium, and high Learning Rates,

taken from the best fits of the 42 subjects of Simulation 1. The free parameters map onto

behaviour in relatively straightforward ways. As the Learning Rate increases, the connections

between the Feature Detection Neurons and Category Neurons change more rapidly, leading

to improved accuracy. In Fig 3B, as the Trial Impatience increases, the activation of the Click

Decision Neuron grows more rapidly, resulting in faster decisions, and therefore fewer fixa-

tions. Finally, as the Fixation Impatience parameter increases, as shown in Fig 3C, activation

of the gaze change neuron grows more quickly, resulting in shorter fixations.

However, complex interactions amongst the parameters are also important, and meaures of

accuracy, fixation duration, and fixation count, can be influenced by changes to the other

parameters as well. In Fig 3D, the Trial Impatience parameter strongly influences the learning

curve by scaling the amount of time spent on feedback. Fixation counts in Fig 3E are influ-

enced by Fixation Impatience because they change the number fixations that can occur within

a particular interval of time. Fixation durations may moderately shrink over the course of

experiment as learning increases the recurrent input to the Spatial Attention Field, eliciting the

onset of saccades more rapidly. But to underscore how complex the predictions owing to these

interactions can be, in the final plot, it is only when Fixation Impatience is high, that this

decline is noticeable in Fig 3F.

Simulation 1

The eye tracking and category learning data for the first set of simulations comes from the

publicly available data set originally reported in [25]. Participants in this experiment were

instructed to classify fictional microorganisms, defined as having three critical organelle fea-

tures (see Fig 4). Each feature could take on two possible values, yielding eight stimuli in total,

which were associated with four different categories (A1, A2, B1, B2). Features are arrayed in

one of three locations. As is typical for category learning studies, the assignment of image pairs

to feature dimensions (feature one, two, and three), and features to locations was roughly

counterbalanced across participants. For LAG-1, we simplify the stimuli from complex cell

organelles down to three colored features with two possible values, each with its own layer con-

tributing input to the Visual Field (see Fig 2). After making a decision, the participants were

given feedback presenting the stimulus again, their own response, and the correct response.

Only participants who had at least 70% of their gaze collected in total were included for fitting,

and only trials having more than 75% of gaze collected were included in the analyses. Partici-

pants had to meet a learning criterion of 24 trials in a row correct in order to be included, leav-

ing 42 individuals in the data set. Of the 480 trials of data available from each subject, we look

at only the first 360 in order to reduce simulation time; human behaviour changed very little

after that point. More comprehensive details of this experiment can be found in the original

paper and on the data repository website.

Stimulus-specific attention—the useful finding that emerges from this category structure—

occurs after the participants learn to classify the categories correctly. As can be seen in Table 2,

Feature one is always useful, in that it can tell the difference between categories A and B. Fea-

tures two and three are contingently useful: that is, if Feature one takes a 0 value, then Feature

two is important for telling the difference between A1 and A2, while Feature three is no help at

all. Likewise, if Feature one has a value of 1, then Feature three can say whether the stimulus is

a B1 or B2 but Feature three is irrelevant. Participants can, and do, learn this: the data of

within-trial fixation probabilities after learning this category structure show that Feature one is

the most likely to be fixated early in the trial and the second most relevant feature for that stim-

ulus, either Feature two or three, is most likely to be fixated later in the trial. Models using a
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single set of weights cannot shift attention depending on the currently viewed stimulus within

a trial, and so cannot account for this finding [11, 16, 107, 108], but some models can account

for this at an aggregate feature level [109–111].

Simulation 1 results—direct fits

We first look at model performance on measures that we fit directly—that is, some aspect of

the measure was a component of the fit function. These basic measures reflect the learning of

the categories, and the corresponding changes in the allocation of attention.

Learning curves. The first measure we look at is classification accuracy. Chance perfor-

mance in this task is 25%, setting a baseline from which a learner will increase over the course

Table 2. Category structure used in [25].

Feature 1 Feature 2 Feature 3 Category

0 0 0/1 A1

0 1 0/1 A2

1 0/1 0 B1

1 0/1 1 B2

The two values that each feature can take on are represented by 0s and 1s. If a feature is irrelevant for correct

classification of a category, it is represented in the table by virtue of being either 0 or 1, denoted as 0/1.

https://doi.org/10.1371/journal.pone.0259511.t002

Fig 4. Simulation 1: Experiment and model stimuli examples. A) An example stimulus from the response phase

(top) and feedback phase (bottom) from [25]. Each feature type subtends approximately 1.7˚ of visual angle, separated

by 10.6˚. B) The features as they look to LAG-1 during the response phase (top), and feedback phase (bottom) showing

the location of the feedback button. Features are represented as simple color patches (top right). The feedback button

provides the correct answer when foveated by the model. Also depicted by a solid black outline top the top right feature

is 1 standard deviation of LAG-1’s fovea, given a fixation to the top right hand feature, where the dashed line reflects 2

standard deviations from highest acuity. Stimuli are counterbalanced between subjects, such that features appear at

different locations and have differing relevance.

https://doi.org/10.1371/journal.pone.0259511.g004

PLOS ONE LAG-1: A model of learning, attention, and gaze

PLOS ONE | https://doi.org/10.1371/journal.pone.0259511 March 17, 2022 18 / 45

https://doi.org/10.1371/journal.pone.0259511.t002
https://doi.org/10.1371/journal.pone.0259511.g004
https://doi.org/10.1371/journal.pone.0259511


of the experiment. Fig 5A shows the averaged learning curve for both the model and the

human participants’ learning performance.

Fixation durations. Fixation durations reflect an important aspect of attentional optimi-

zation: look too fast, and crucial information can go unnoticed (e.g. [112]), look too slow and

you waste time, potentially slowing learning down at the trial level. The mean fixation dura-

tions for the human subjects, and the accompanying model fits seen in Fig 5B, are just above

300ms. These durations typically decrease over the course of the experiment. Similarly, LAG-1

produces fixation durations that decrease across the experiment.

Fixation counts. The total number of fixations on a trial is one of the more obvious indi-

cators of task efficiency. As seen in Fig 5C, the human data show a general trend to start 6 fixa-

tions per trial and finish between 3 and 4 fixations per trial. LAG-1 starts with roughly 7

fixations per trial, and by the end is indistinguishable from the human data.

Fixating irrelevant information. Another method of describing the optimization or effi-

ciency of attention is the probability of fixating an irrelevant feature over the course of an

experiment [10, 26]. The data in Fig 5D compares model and humans on this measure, the

measure of which is calculated by assigning a 1 or 0 to each trial based on whether or not the

irrelevant feature was fixated. Under our current best fitting parameters, LAG-1 has a bias to

look at the irrelevant feature more often at the start of the experiment than humans do. In fact,

at the start of the experiment, LAG-1 almost invariably looks at all features, and so is more

likely to fixate all features, not just the irrelevant one. The finding that people do not attend all

Fig 5. Simulation 1 model fits. Each measure is depicted over 360 trials averaged into 24 bins of 15 trials. Color

shading represents standard error of the mean accumulated from individuals and population. A) Trial accuracy means

and variability are fit well. B) Fixation duration variability is fit well but the final late reduction means are diverge. C)

Fixation count means, variability and change are qualitatively fit well. D) Probability of fixating the irrelevant shows

roughly the same change and variability over the experiment, however the scale is off by about 25% at all points. E)

Reaction time means, variability and change are qualitatively fit well. F) Total time looking at features during feedback

has roughly the right change and variability but the scale is off by 50% at all points.

https://doi.org/10.1371/journal.pone.0259511.g005
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features at the beginning of learning is not unique to this study: many previous studies have

reported similar findings, though typically not as extreme, showing that some features are not

being fixated even when the fixation count is high [10, 25, 26]. There could be a number of

explanations for this. One possibility is that participants are engaging in rule testing strategies

such that they fixate only one or two features. Previous research has observed a tendency for

participants to start by using simple, unidimensional rules in similar tasks [113, 114]. Regard-

less of the real cause, it is clear that participants in the experiments here just do not look at all

the features the way that LAG-1 does, and some adjustment to the model will eventually be

needed to better fit this human data.

Simulation 1 results—indirect/predictive fits

In this section we look at three additional measures which were not in the fit function at all.

These measures vary from being moderately constrained by the basic attentional behaviours

(reaction time is related to fixation durations and fixation counts, for example), to being

mostly unconstrained in its fit to fixation durations and counts (e.g., within-trial fixation prob-

abilities, including the important stimulus-specific attention finding).

Reaction times. Reaction time measures can give some insight about attention in category

learning (e.g. [31, 115]), and have been modelled before using a variety of methods (see [32–

34]). The reaction time data in Fig 5E looks like what one would expect: the responses of both

the human participants and LAG-1 speed up with experience. In LAG-1, learning increases

the input from the Category Neurons that drive the Click Decision Neuron. The model repro-

duces the general trend of decreasing reaction times across the experiment, and the model, like

the humans, begins at about 4 seconds. The model is slightly too fast by the end, and generally

has less variability than the human participants. In humans there are of course additional pro-

cesses that will affect reaction time that are not captured in LAG-1, such as mind wandering

and exogenous distractions, limiting the variability that can be fit on this measure.

Within-trial fixation probabilities. Within-trial feature fixation probabilities have previ-

ously been reported as another way of quantifying attentional priority [10, 11]. This measure,

used in Fig 6, reveals the general order in which the features are fixated. Note that this measure

describes within-trial behaviour, whereas all of the data used in the fitting procedure are at the

level of the changes across the experiment; there is nothing in the fitting procedure that

rewards approximating this within-trial data. The category structure is designed to elicit differ-

ent optimal fixation orders for the A categories (see Fig 6A for the human data and Fig 6B for

LAG-1), differently than the B categories (Fig 6C for the human data and Fig 6D for LAG-1).

The trends observed in the participants when looking at just the features of interest (where at

any given point in the trial the total probability sums to unity—fixations outside AOIs are

excluded from these data for both humans and simulations), show that for the A categories,

there is a Feature one precedence, followed by Feature two, and the irrelevant Feature three

dropping in probability over the trial. For the B categories Features two and three are flipped

as a result of the change in feature relevance. These same trends are present in LAG-1. As

before, the model fixates irrelevant information a bit too often, and thus the differences are

less dramatic.

Time spent on features during feedback. Fig 5F reports the average time spent looking at

features of the stimulus during the feedback phase of each trial over the course of the experi-

ment. LAG-1 captures the qualitative trend after this initial large decline. Studies of feedback

during category learning are rare [30, 37] and we do not yet know enough about the processes

involved, or how they change as knowledge about the task grows, to make strong empirically
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derived recommendations, but it would appear that LAG-1 offers a straightforward way to

account for some of the variance of this measure.

Individual fits. The fits shown thus far have been averages across many individual partici-

pants and simulations. To give the reader a better sense of how LAG-1 addresses differences

across individual participants, we show fits to three individual subjects chosen for their differ-

ences in behaviour. Amongst these three participants, there is fast and slow learning, short and

long fixaton durations, and many and few fixations per trial. Fig 7 shows data for three human

participants and for the several model simulations run for each participant. The individual fits

for the remaining participants can be found in the supplementary information beginning at

Fig 21, in “S6 Appendix: Individual fit visualizations.”. Overall LAG-1 seems responsive to

individual differences, and produces large and small numbers for counts, durations, and accu-

racy. As far as individual fits, there are no obvious peculiarities, though, for some participants,

LAG-1 fails to fit the magnitude of a measure, or its slope. As in the aggregated data, it is clear

that LAG-1 is not capturing the variability of human data, though it seems better for accuracy

than for the other measures. We kept noise relatively constrained for these processes, but addi-

tional noise, for Trial Impatience in particular, seems warranted. We note, though, that some

of this variability is extreme and seems more likely to be strategic, or to be related to phenom-

ena like mind-wandering [116] than to be a matter of simple noise.

Simulation 2

The second simulation is of response data and eye movement data from [10]. Participants in

this experiment were instructed to classify fictional schematic drawings of insects, defined as

Fig 6. Within-trial feature fixation probabilities. Within-trial feature fixation probabilities averaged across all post

criterion point trials and scaled to 100 data points for each trial and averaged into five bins. A) Human data for A

categories and with LAG-1’s comparable performance in B. C) Human data for the B categories with LAG-1 again

beside it in D. The three important features of the data are: the primacy of Feature one through most of the trial; the

primacy of the alternative feature at the end of the trial; and the change in the identity of the second feature across

categories (For Category A stimuli it is Feature two, and for Category B stimuli it is Feature three). LAG-1 qualitatively

captures all three findings.

https://doi.org/10.1371/journal.pone.0259511.g006
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having four diagnostic features (see Fig 8). Two of these features were highly diagnostic (and

equivalently so) of the category, one was of medium diagnosticity, and one of low diagnosti-

city. Each feature could take one of two possible values, yielding sixteen stimuli in total. Nine

stimuli were shown during training and were associated with two categories, leaving seven for

classification during a feedback-free transfer phase (see Table 3). After choosing a category,

the participants would get feedback, and see the stimulus again. After 189 trials or 18 correct

trials in a row, whichever came sooner, a transfer phase would begin that twice tested all of the

stimuli, including the seven previously unseen stimuli. There were 64 participants that met the

learning criterion with minimal loss of gaze data. Further details of this experiment can be

found in the original paper.

The best fitting models in Simulation 2 were found by comparing individuals with LAG-1

on 2 subject-level measures and 2 population-level measures. Where Simulation 1 had 8 com-

ponents to the error function, Simulation 2 uses the 16 transfer responses of each individual,

as well as their individual learning speeds, and the average fixation counts at the start and end

of the experiment, for a total of 19 components as the objective function (weights listed in

Table 8 S5 Appendix). Because we did not have individual data for all measures, we do not

show fits to individual subjects as we did in Simulation 1.

Simulation 2 results—direct fits

Again, we first look at model performance on measures that we fit directly—that is, some

aspect of the measure was a component of the fit function.

Transfer probabilities. The first measure we look at is transfer behaviour. Fig 9 shows the

transfer responses for both human participants and our LAG-1 simululations. These responses

Fig 7. Fits to individuals. Data from three individual participants for fixation count, fixation duration, and accuracy.

Below each participant are LAG-1’s fits to that participant’s data. Though the fits are not perfect in all cases, the model

is showing both more and fewer fixations (counts), shorter and longer fixations (in milliseconds), and slower and faster

learning (proportion correct) in accordance with individual differences.

https://doi.org/10.1371/journal.pone.0259511.g007
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Fig 8. Simulation 2: Experiment and model stimuli examples. A) Example stimulus used by [10]. The four features of interest were reported to

subtend approximately 4˚ of visual angle each, with the stimulus height and width being 12˚. B The four color features, spaced 24 spatial units

horizontally and vertically and 34 spatial units diagonally, presented to the model.

https://doi.org/10.1371/journal.pone.0259511.g008
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are to both trained A and B category stimuli, as well as the seven transfer stimuli not presented

during training.

Fixation probabilities and counts. Trial-level fixation measures reported in [10], are pre-

sented in Fig 10 along with the comparable output from the best fitting LAG-1 models. It is

clear that by the end of the experiment human participants are fixating the least diagnostic

Table 3. Category structure used in [10].

Feature 1 Feature 2 Feature 3 Feature 4 Category

1 0 1 1 A1

0 0 1 1 A2

0 1 1 1 A3

1 1 1 0 A4

1 1 0 1 A5

1 0 1 0 B1

1 0 0 1 B2

0 1 0 0 B3

0 0 0 0 B4

0 1 1 0 T1

0 0 1 0 T2

1 1 1 1 T3

0 0 0 1 T4

1 1 0 1 T5

0 1 0 1 T6

1 0 0 0 T7

Feature values of 0 and 1 represent the two values of each feature can take on. Comparing the feature values to the categories will reveal that Feature one is of low

diagnosticity, Feature two is of medium diagnosticity, and features three and four are of high diagnosticity, relatively speaking.

https://doi.org/10.1371/journal.pone.0259511.t003

Fig 9. Simulation 2: Model fits to transfer responses. Average categorizations on the 16 transfer stimuli, over all

models/subjects. Error bars represent standard error of the mean.

https://doi.org/10.1371/journal.pone.0259511.g009
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dimension, Feature 2, less often and for less overall time than the other features. The fixation

probabilities to each feature are generally higher in LAG-1, just as they were in Simulation 1

(as indicated by the probability of fixating the irrelevant feature measure over the course of the

experiment). However, LAG-1 does show analogous reductions in fixation probability and fix-

ation counts, to the least-diagnostic feature.

Simulation 2 results—indirect/predictive fits

Fixation proportions. As the purpose of [10] was to use an overt empirical measure of

attentional optimization to test model predictions, one of the measures they reported was the

proportion of time spent on each feature in the transfer phase of the experiment (see Fig 11).

Most category learning models are fit with a capacity-constrained level of attention, meaning

that on any trial the weights to each dimension are normalized in some way; this means that

Fig 10. Simulation 2 model fits. A) The probability of fixating a particular feature reported for each of feature observed in human subjects. B) The

probability of fixating a particular feature reported for each of feature observed in the best fits of LAG-1. C) The fixation counts to each feature averaged

over all trials observed in human subjects. D) The fixation counts to each feature averaged over all trials observed in the best fits of LAG-1.

https://doi.org/10.1371/journal.pone.0259511.g010
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the total time on each feature has to be represented as a proportion. In our simulations, LAG-

1, like the human participants, reproduces the rank ordering of the features by diagnosticity,

with high diagnosticity features receiving the most observations, then medium, then low.

Within-trial fixation probabilities. The last measure we report here is similar to the

within-trial fixation probability measure that we reported in Simulation 1. In Fig 12 the first

four seconds of LAG-1’s average within-trial fixation probability to each feature is reported

alongside the human data presented in [10]. LAG-1 reproduces the approximate ordering of

peak fixations to features of differing diagnosticity: the higher diagnosticity features have peak

fixation probabilities earlier than less diagnostic features. The lowest diagnosticity feature is

fixated much less often in the first few seconds of the trial for both humans and the model. As

in Simulation 1, we do not use within-trial information as part of the fitting function; that and,

the largely arbitrary relationship between fixation orders and the overall category structure,

make these data difficult to fit precisely.

Discussion

Our goal in developing LAG-1 is to provide an account of the integration of learning, attention

and gaze. In this model, as in the brain, knowledge about where to look emerges from a hierar-

chy of reentrant visual and categorical processes [88, 90, 117]. LAG-1, as a theory, proposes

that the expected information gain can be derived from simple learned associations and used

to guide attention. This information is integrated with bottom-up visual signals in a priority

map, from which the entire space of saccade target locations is considered simultaneously. The

competitive dynamics of this field change both the saccade location choices and saccade onset

latencies, thus illustrating an actual mechanism for changes in gaze patterns and changes in

fixation durations over learning. Using the model’s three free parameters (Fixation Impa-

tience, Trial Impatience and Learning Rate) we fit LAG-1 to human data [10, 25] from two

Fig 11. Simulation 2: Fixation proportion fits. The fixation proportions aggregated across just the transfer trials of

the experiment. LAG-1 data is on the left, while the data from [10] are re-represented on the right.

https://doi.org/10.1371/journal.pone.0259511.g011
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well established and replicable category learning tasks [11, 17]. We fit classic learning measures

(i.e., learning curves, transfer probabilities, reaction time), as well as indicators of attention

(i.e., feature fixation proportions, fixation count, fixation duration, fixation orders, feedback

processing time), many of which have never before been modelled. The aim of our simulations

was to test the idea that the diverse learning-related phenomena found in participant behav-

iour emerged from interactions such as those that LAG-1 embodies. If the model’s behaviour

changes across learning in the same qualitative ways that human participants’ behaviour does,

across all the measures, it would provide support for our hypothesis.

Simulation 1 used data from [25] based on the category structure first used in [11] to dem-

onstrate stimulus-responsive attention. This structure is important because the relevance of

the features depends on the category to which the stimulus belongs, meaning that using a sin-

gle attentional strategy for all stimuli is inefficient. Participants have been shown, via eye

Fig 12. Simulation 2: Within-trial fixation probabilities fits. A) Human within-trial fixation probabilities averaged over the first four seconds all

transfer trials reported in Rehder and Hoffman (2005). B) Comparable within trial fixation probabilities for LAG-1. High (relevance) 1 refers to Feature

1 in Table 3, Low is Feature 2, High 2 is Feature 3, and Medium is Feature 4.

https://doi.org/10.1371/journal.pone.0259511.g012
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tracking, to increasingly ignore the stimulus features that are, for that stimulus, irrelevant.

LAG-1 ably captures learning curves and reaction times across the experiment. Further, it sim-

ulates all the qualitative eye tracking findings previously reviewed in Table 1. Fixation dura-

tions, fixation counts, and probability of fixating irrelevant features all decrease as the model

learns. The model naturally predicts the correct relative within-trial fixation probabilities, and,

importantly, shows different fixation probabilities for different categories, thus displaying

stimulus-responsive attention [11]. Finally, the model correctly predicts a reduction in the

time spent viewing stimulus features during the feedback phase [30].

In Simulation 2, we worked with data published by [10] using the 5/4 categories of [17].

This structure is important because of its broad use in the field, and one of the key contribu-

tions of Rehder and Hoffman’s paper is confirmation, via eye tracking, that, as predicted by

the generalized context model even the least discriminative dimension still receives a moderate

attention weight [10, 18]. In this simulation, LAG-1 qualitatively matched the transfer

responses that have been replicated many times. Further, the model qualitatively captured the

eye movement data: more fixations for features that were more diagnostic, and predicts similar

within-trial feature fixation probabilities. Importantly, the model also predicts [118]’ key find-

ing, that the least diagnostic information nonetheless receives a moderate amount of attention.

Support for our claim that human learning and gaze behaviours in category learning tasks

arise from a system similar to LAG-1 derives from our ability to fit the participants data with

the model. Our claim is strongest if we: a) use fewer rather than greater numbers of free

parameters, because then our fits flow from the structure of the model and not mathematical

flexibility provided by additional parameters; b) fit more findings rather than fewer findings,

because it strengthens our argument that all gaze related behaviours at multiple timescales

flow from these core principles, and c) fit some aspects of the data indirectly, without using

them as part of the fit function, because it speaks to the inevitability of these effects given a sys-

tem of the kind we proposed, and guarantees that the findings are not due to the fitting pro-

cess, but are instead endemic to the model. We interpret our results as strong support for our

claims because learning influences gaze in the way the model predicts in all cases. But, while

these three modelling decisions are appropriate to make the strongest possible claim, they also

undoubtedly hinder our ability to get the magnitudes exactly right. We believe our choice to

focus on modelling breadth rather that precision was the appropriate way to evaluate our

claims. Overall, we view the present findings as a remarkably successful first step toward an

integrative model.

Opportunities for improvement

While LAG-1 does a fine job fitting the important qualitative findings, which are summarized

in Table 4, there is significant room for improvement in getting the magnitudes correct. While

many of the findings might be improved by tweaking one or more of the numerous fixed

parameters that influence model timings, there are two major areas in particular where LAG-1

diverges from the human data in ways that seem more fundamental. First, the model does not

show enough feature neglect (i.e., inattention to critical features), and second, the variability

on many measures, like fixation duration and probability of fixating an irrelevant feature, is

too small.

Feature neglect is most obvious in Fig 10: LAG-1 fixates too many features. At the start of

the experiment, humans ignore a stimulus feature about 25% of the time. Intuitively, this

seems strange. After all, how can one learn which features are predictive of the category if they

are not viewed? In addition to causing difficulty for LAG-1, this finding also contradicts the

assumptions made by models such as ALCOVE, which spreads attention evenly across all
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features at the beginning of an experiment [16]. It is not only in the [10] data that we find this

pattern however, we also see this in the [25] data which had a different number of stimulus fea-

tures. Indeed, [26] reports the probability of ignoring irrelevant information from 10 experi-

ments, and the range of feature neglect seen in the first block of the experiment was between

10% and 40%. One possibility is that this is a function of missing fixations due to eye tracker

error; but two facts mitigate against this idea. First, we ran simulations using LAG-1’s gaze

data wherein we dropped gaze points (because we used LAG-1’s data, there were no naturally

missing values) in the same proportion, and with the same sequence length, as in humans, to

see if the missing data would cause reduced fixations, and thus feature neglect. It did not. In

fact, the overall number of fixations in the experiment increased. Second, we reanalysed the

human data from the [25] study, using only trials in which we had 100% of the gaze data and

found there was still significant feature neglect. [10] did note that this may be indicative of par-

ticipants using rule-based strategies initially, but they ultimately conclude that there’s likely a

mixture of strategies at work. Without further study, it is difficult to say for sure, but we note

that there is at least some feature neglect even in the case of mouse driven interfaces such as

used in the second experiment of [25]. Regardless, LAG-1 does not show significant feature

neglect, and this fact influences the model’s fit to several other measures. For instance, the

within-trial fixation probabilities do not quite match the human data (Fig 6), primarily because

it looks too often at irrelevant features. Overall, LAG-1 does well with the learning-related

changes in fixation probabilities, but does not capture all of their overall levels.

The other area where LAG-1 could provide better fits is in predicting the variability across,

and within, individuals. This is most noticeable in our attempt to account for fixation dura-

tions (Fig 5B), but can also be seen to a lesser extent in measures like the probability of fixating

an irrelevant feature (Fig 5D). Given the fact that almost every equation in the model has a

noise parameter, it is sensible to ask if we might achieve the appropriate variability by simply

increasing the noise on some of these. Possibly. Changing the variability, by increasing noise

in one of the components of the model, can have a large impact—one that reverberates

throughout all the dynamics of the system. In Fig 13 one can see that the neurons of the

Table 4. Summary of simulation results.

Measure Simulation 1 Simulation 2

Learning curves Appropriate scale and reductions (overall). N/A

Learning transfer N/A Appropriate generalization patterns.

Fixation counts Appropriate scale and reductions (overall). Appropriate scale and reductions (by feature).

Fixation durations Appropriate average intercept/change,

within-individual variability needs

improvement.

N/A

Fixation orders Appropriate average intercept/change,

within-individual variability needs

improvement.

N/A

Feature fixation

proportions

N/A Appropriate average intercept/change, within-

individual variability needs improvement.

Reaction times Appropriate average intercept/change,

within-individual variability needs

improvement.

Appropriate average intercept/change, within-

individual variability needs improvement.

Feedback

processing time

Appropriate average intercept/change,

within-individual variability needs

improvement.

N/A

N/A specifies findings not modelled for that simulation.

https://doi.org/10.1371/journal.pone.0259511.t004
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Saccade Timing System have very little noise. As an example, imagine that noise was added to

the neurons of this system. This could increase the variability in fixation durations, but it

would also influence ongoing Hebbian learning between features and categories; a fixation

that lasts 800ms would end up having 4 times greater category association than would a 200ms

fixation, and that, in turn can increase the variability in the speed of learning. Time sensitive

activity is known to modify fundamental motor control over the eye [59]: a fact that causes

additional challenges for modelling efforts. We felt it was more important, as a first step, to

reproduce the primary attentional learning findings shown in Table 1, than to capture the var-

iablity more generally, though we strongly agree with the idea that variabilty is important to fit

[119].

Application of LAG-1 to other category learning situations

There are many variations of basic category learning experiments, and we have fit only a small

subset of them. The studies we fit had binary valued stimuli, spatial separation of the stimulus

features, self-paced responses, self-paced feedback viewing, and the re-presentation of the

stimulus during feedback. But, what if they did not? Can LAG-1 handle task variants?

LAG-1 can easily handle any temporal manipulations—for example, adding a specific stim-

ulus presentation duration rather than the self-paced presentation—with no modifications.

Manipulations like changing the feedback presentation duration, presenting each stimulus fea-

ture for a different amount of time, presenting stimulus features in different orders can also be

easily be implemented. Note that many of these experimental manipulations seem likely to

influence the performance of the model, and are thus predictions; in LAG-1, as a theory, time

matters for many things. For example, if one were to run LAG-1 through two conditions, one

with a short feedback phase, and one with a long feedback phase, LAG-1 would predict that

the long feedback phase would lead to stronger associations between active features and

Fig 13. Saccadic timing neurons. Two examples of the contemporaneous activity of the three neurons of the Saccade

Timing System, at two different points in learning. A) Before the model has made any strong feature-category

associations, different stimulus features are equally interesting to it. Because there is little preference for particular

features at this point, competition to determine the next saccade target takes longer to resolve than later in the

experiment, extending the fixation duration in time. In these cases, the Gaze Change Neuron (blue) eventually

surpasses the Fixation Neuron (red), just prior to the phasic spike in activity of the Saccade Initiation Neuron (black)

which initiates a saccade. B) After the model has established stronger associations between features and categories, the

knowledge that particular feature locations contain useful information, speeds targeting by boosting priority at these

locations in the Spatial Attention Field. This is reflected in the modified timing relationships of the three neurons,

where the Gaze Change Neuron does not reach the same level as the Fixation Neuron before the Saccade Initiation

Neuron spikes. As a result, fixation durations are 30–40 ms faster than at the start of the experiment.

https://doi.org/10.1371/journal.pone.0259511.g013
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categories because of the time dependence of Hebbian learning. We note that this prediction

about a temporal manipulation falls outside the scope of what extant category learning models

can address because they are generally not modelling cognitive processes in time, and we also

note that this prediction has some empirical support [30, 37].

LAG-1 can also deal with spatial manipulations with little to no modifications to the core

model. LAG-1 can accommodate different spatial configurations, and make predictions about

how this will influence measures like fixation order, reaction time, and even learning. Again,

the configuration of the stimulus seems very likely to influence patterns of attention and gaze,

and in turn, performance and learning. Imagine an experiment in which, in one condition the

features are spread out in a triangle shape, and another condition in which two features are

near each other on the left, and the other feature is on the right. This spatial configuration

would likely lead to faster reaction times, because they require less time to inspect the features.

The activation of two features next to each other (if they are sufficiently close) could join to

create a larger peak on the visual field, and thus be more likely to attract attention. What if we

compared a situation where the two features on the left were relevant for the correct classifica-

tion of the stimulus and the feature on the right was irrelevant to one in which the relevant fea-

tures were separated? It seems plausible that having the relevant features next to each other

(and fixated first) might lead to a bit faster learning in that condition, which is to say that the

interaction of learning and attention is influenced by the spatial factors that LAG-1

incorporates.

Other kinds of changes to the experiment can be implemented with varying difficulty.

Removing the visual feedback indicator (to simulate a sound indicating accuracy, for instance)

would be very simple to implement. We would omit the feedback button as input to the Visual

Field. The correct category node can still be activated by feedback and the associations between

features and categories can change as usual. This requires a change to the experiment (chang-

ing what is displayed to the model) but no change to the core model. More substantial changes

would be required for something like comparing information sampling using eye movements

to information sampling using hand movements. Manual information sampling (e.g., using a

computer mouse to click on features to reveal them) is less variable, and more efficient, though

slower, and shows similar changes throughout learning [25]. To the extent that we think of

information sampling and the allocation of attention using the eyes to be broader phenomena

(e.g. “active sampling”, [120]), additional mechanisms that implement manual selection of

information—such as clicking of menus in a computer program—would be needed. Accepting

stimuli with continuous dimensions rather than binary valued features is something LAG-1 is

already coded to do, but were not used in the eye tracking experiments we simulate and added

unnecessary complexity for the current purposes, so we omitted it here. Having more complex

visual processing sufficient to categorize natural images would require more extensive modifi-

cation. Work by [51] is a good example of how a DNFT-based model might approach this

challenge.

Application of LAG-1 to a broader range of experimental situations

Our goal in creating LAG-1 was to build and test a model that can capture the interactions

between learning, attention, and gaze. Category learning is a useful task in which to test this

integration: participants learn categories and attend to features of varying relevance; further,

both response behaviours and gaze behaviours change in concert throughout the experiment.

Only a model that specifies how learning is related to the allocation of gaze, and vice versa, can

illuminate this co-evolution. A wide range of experimental paradigms within the broader

realm of visual cognition depend on these systems, however, and in this section we will provide
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a rough sketch of how LAG-1 might be expanded in a variety of ways to address to such

situations.

Bottom-up salience. In category learning tasks there is a clear goal: participants are

choosing to fixate particular locations to get information that helps them choose the correct

category. The emphasis of the task is on learning to direct top-down attention toward task rele-

vant features, the locations of which are well known. The free-viewing of scenes, in contrast, is

a function of bottom-up salience. Though LAG-1 does not include many aspects of bottom-up

attention–in category learning experiments stimulus differences in bottom-up salience are

controlled for by the choice of features and counterbalancing—nevertheless, adding the influ-

ence of bottom-up salience into the model is straightforward.

To demonstrate this we added an additional input to the Visual Field (implemented as an

additional layer) that acts as a preprocessed salience map. To handle the wider range of field

inputs, we also changed the function that chooses saccadic targets from a greedy, maximum

activation based selection, to a probabilistic choice, like was used for the category decision.

This allowed the model to fixate a broader range of locations. These small changes to the

model allowed us to use an image as a stimulus. To do this, the image must be converted to a

salience map that, when input to the Visual Field, can drive fixations to the most salient (in the

bottom-up sense) areas of the image. Though we left the category learning system in place,

there is no input to the Feature Detection Neurons, and so no top-down attention is generated.

Fig 14 shows the original image (Roy Lichtenstein’s 1973 painting: “Things on the Wall”), the

salience map it produced, a heat map of a typical human free-viewing the painting, and a heat

map of LAG-1 fixations viewing the image. Note that this implementation of the model pre-

dicts bottom-up salience influences the Visual Field earlier than top-down forces because the

recurrent loop through the whole system takes extra time. Indeed, short latency saccades are

associated with bottom-up salience and longer latency saccades are more influenced by beha-

vioural goals [121].

For expediency, in this demonstration we created the salience map with a common Matlab

package [122]. For example, we could implement the components of the salience map (i.e.,

color, orientation, intensity) as layers of the Visual Field, and calculate the salience from that

activation. Abrupt onset and motion are also known to act as a source of salience (e.g., [123,

124]). Both of these factors might be implemented using large changes in activation at a partic-

ular location of the Visual Field to boost attention (see [45] for a DFNT-based approach to

change detection). It is intriguing to consider that a system with robust, top-down attention

may actually require a strong abrupt onset salience mechanism to function effectively because

significant top-down attentional boosting of known, or expected features and locations, might

otherwise make fixating new, unanticipated stimuli too improbable and slow.

Uncertainty in feature location. In category learning the main focus is on the learning

the connection between features and categories. In other situations the location of the infor-

mation sought is unknown. One of the most iconic visual cognition tasks is visual search

[125]. In visual search the categories used in the task (target and distractor) are simple and

explained from the beginning; no learning is necessary, or in most experiments helpful or

desired. Another difference is that while feature locations are static and known to learners in

category learning tasks, feature locations are unknown in visual search. While the specifics of

what is known and what needs to be learned differ between visual search and category learn-

ing, there is a general level at which the tasks are similar: one is presented an image, then one

looks around for information in the image, and then makes a response. LAG-1 performs

search in a guided fashion (e.g., [126]). It has a selective processing stream—the Learning sys-

tem which only processes information about features that are fixated—but, it also has a non-

selective one: the Visuospatial System, which processes information about basic visual
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properties (e.g. color) and their locations. Scene statistics and other bottom-up influences on

salience are not currently part of the model, but could be incorporated in the same way as a

saliency map is used in the free-viewing section above.

The most straightforward way of doing visual search in LAG-1 is to take “target” and “dis-

tractor” to be categorical designations (in place of category A and B). Features that indicate tar-

get and distractor categories are set in advance (i.e., hard coding the difference into the

information gain matrix in this demonstration). In the model there are two recurrent pathways

from the category level back into the Visuospatial System. One goes to the locations of particu-

lar features on the Spatial Attention Field. In category learning, this linkage between features

and their location in space makes sense because participants know the feature locations—

which do not move—from the instructions. In a visual search task, however, using this to

guide search seems unrealistic because the participant has no knowledge of how particular fea-

tures connect to particular locations on the Spatial Attention Field. To address this LAG-1 has

Fig 14. Salience map representation of model during free-viewing. Top left) “Things on the Wall” by Roy Lichtenstein. Top right) a salience map

generated by three boundary detection iterations at different spatial scales, integrated across the dimensions of: color, orientation, and intensity. Bottom

left) Fixation heat map from a typical human subject. Bottom right) Fixation heatmap from one trial of LAG-1.

https://doi.org/10.1371/journal.pone.0259511.g014
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a second connection: this one links back to the various layers of the Visual Field and can thus

produce low-level feature-based attention [86]. Search in LAG-1 is thus guided using this sec-

ond recurrent pathway. Knowledge about the target one is looking for recurrently boosts acti-

vation in the corresponding layers in the Visual Field via gain on the appropriate Feature

Expectation Neurons. This second pathway raises the activation of the locations of those fea-

tures and thus the chance that they will be selected as a visual target from the resultant boost

on the Saccade Motor Field, in other words, guided search.

Consider a task in which participants are searching for a vertical line amongst lines of 15˚.

In simulating such a task, as we have done with LAG-1 and shown in Fig 15, the feature-spe-

cific layers of LAG-1’s Visual Field would code orientations of differing degrees (instead of the

six different colors we used in the category learning simulations, the six layers used in Simula-

tion 1 can code six different orientations. Top-down signals boost the Feature Expectation

Neurons (or field, in this case) associated with the target orientation, leading to increased acti-

vation on the corresponding slice of the 3D Visual Field. This boost causes an increased likeli-

hood of an eye movement to that location, relative to unboosted locations, and thus more

efficient search. In this implementation of visual search, LAG-1 will look around from item to

item, and when an item is fixated the Feature Detection Neurons are activated, which in turn

activates the associated category nodes (target or distractor). The model will only stop when

the model fixates the target pushing the Category Neuron for target to its threshold, or until

the Trial Impatience has driven a click decision (e.g. on target absent trials). LAG-1 does not

search in parallel (though again, its choice of target locations is biased toward the boosted loca-

tion): it must confirm that a particular object is the target by fixating the target. This simple

version of visual search, again, implemented with only minor changes from the category learn-

ing implementation, undoubtedly will produce the common findings of serial search slopes

and RT differences between target present and target absent displays. Search will also be less

efficient in the case of search for a conjunction of features: distractor locations that share prop-

erties with the target would also receive a boost, decreasing the relative advantage of target

over distractor locations, and thus decreasing the target’s advantage. Overall, what LAG-1

Fig 15. LAG-1 applied to an example visual search problem. A) Visual Field input array recreated from [53]. B) An

example trial of LAG-1’s visual search scan path. Each frame is centered at the successive fixation location until the

target is foveated.

https://doi.org/10.1371/journal.pone.0259511.g015
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would predict is that search is more or less efficient depending on the degree of overlap

between target and distractor properties [127].

Foundational findings in visual search include accuracy and response time differences as

the items of the search array differ by category, such as letters and colours, how they flank one

another, and their variability. Several of these seem amenable to simulation by a visual search

version of LAG-1. Knowledge effects, such as the influence of target and distractor similarity,

fall out of the category learning system [128] as described above, as presumably would category

effects [129]. Flanking, wherein search is slowed if distractor orientations are on both sides of

the target orientation, also seems to have a relatively straightforward explanation that derives

from the spatial dynamics of neural fields. In a more generalized version of our visual search

extension, input from a small line length of 15˚ could more strongly activate neurons tuned to

that orientation and weakly activate ones of nearby frequencies leading to a center surround

bump on the field leading to a flanking effect. In LAG-1, this finding would make sense in that

activation of a target could slightly activate orientations that are associated with distractors due

to overlap (again, we are imagining a 3d visual field—with x and y as spatial dimensions and z
is orientation—and a Feature Detection Field that codes orientation continuously). If distrac-

tors flank both sides, there is more overlap, and therefore more competition between target

and distractor nodes. This competition would straightforwardly weaken the relative advantage

of the target within the recurrent channel. This account makes the assumption that the orien-

tations are close enough that there is some overlap in the activation bumps on the field. The

model thus makes the prediction that the flanker effect would be strong in cases where the dif-

ferences between targets and distractors are small, but may be weak, or non-existent if distrac-

tors are very different than targets, and thus have no overlap on the field (see Fig 19 in S1

Appendix).

Some findings do not seem to have a natural explanation given the current structure of

LAG-1. The finding that search is slowed if there is more variation in distractors, even if that

variation is farther from the target, (a 30˚ target among 15˚ distractors is found faster than a

30˚ target among both 15˚ and 0˚ distractors) has no obvious explanation for example [53,

130]. We can also see no easy method of accounting for search asymmetries such as the result

that a 0˚ target among 15˚ distractors is easier to find than the reverse. More substantial modi-

fications to the model seem necessary to account for such phenomena. By design, in most ver-

sions of visual search, learning mechanisms do not aid performance. However, in contextual

cueing a display in a visual search task is repeated multiple times, and participants in these

experiments show improved search times for these repeated displays [131]. LAG-1 has no

method of producing this effect in its present form; learning in the model associates features

with categories, but the location of the features is presumed to be known (consistent with the

category learning tasks to which it is applied in the current work). [132] simulated contextual

cueing using a simple two layer network in which distractor locations are associated with the

target location upon each presentation of the display. This model restricts learning to those

distractors that are nearby the target. Adding a similar mechanism to LAG-1 would be rela-

tively straightforward. An additional field—a Visual Memory Field—could be linked via con-

nections to the Visual Field, such that when the target is found (or more broadly, when

reinforcement is presented), connections are strengthened between the Visual Field, and the

Visual Memory Field around the area of fixation. Such a modification would more or less

embed the [132] model into the larger LAG-1 framework.

Adding broader feature extraction to address covert attending. In the current work,

one focus of ours has been on modeling overt attention using eye tracking data. To account for

these human behavioural phenomena we have proposed, in simple terms, the processes that

lead the eyes to orient toward features for category learning, and in doing so, we have also
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specified how features and feature locations receive processing advantages which give them

more influence in the complex, interactive processes enabled by the system as a whole. These

processing advantages, because they are not directly noticeable, would count as one form of

covert attention.

Though the distinction between, and indeed the relationship between, overt and covert

attention is captured in the model, there is room for extensions that might account for a larger

set of data, but which would not (likely) hamper the performance of the model in category

learning tasks. In the current work, we have assumed that eye movements result from a shift of

attention, and the uptake of the new information, centered on the Visual Field, is passed on

with full clarity to the Learning System. This assumption does not hold for the broader world

of visual cognition, and likely not even for some aspects of simple category learning tasks. For

example, visual search tasks can be created that allow people to perform them while maintain-

ing fixation to a central point, that is, without eye movements [133]. Further, even in some cat-

egory learning studies conducted in our lab, we have noticed that certain participants, after

hundreds of training trials, continue to perform perfectly, but without fixating their gaze all

the features necessary for correct classification. This suggests two things: that information in

peripheral vision may be used in object recognition, and that learning seems to influence, or is

at least related to, people’s ability to do this. The current implementation of LAG-1 cannot

account for these findings.

One way of augmenting LAG-1 that might better accord with these findings is to include a

separate eye movement field coding a distinct force component [81]. Normally, eye movement

signals center the fovea over the target, providing high acuity information to the category

learning system. But what happens if an eye movement is suppressed? Top-down signals could

prevent the gaze shift by inhibition of the field coding force, yet still allow the Saccade Motor

Field to indicate a target, and for the Spatial Attention Field to shift to another location on the

Visual Field. This would produce covert attentional shifts, as the eye would be centered on one

location, while attention—in the form of the Spatial Attention and Saccade Motor Fields—

would be focused somewhere else. In cases where the Spatial Attention Field and the fovea

were not over the same location, the information released to the category learning system

would depend on the visual acuity at the focus of attention. This extension would describe

overt and covert attentional systems in distinct terms, and allow the model to be applied to

tasks for which covert and overt systems are strongly dissociated. In the case of covert atten-

tion during category learning, experience increases the ability of features to activate categories,

eventually allowing even weak peripheral feature values to be strong enough to lead to a classi-

fication, and thus, no need for an additional fixation.

One limitation of the current version of LAG-1 is that it requires some calibration to handle

different experimental situations. To some extent this is true for most models—in that chang-

ing the number of categories, or the number of features requires a new structure—but because

of the dynamics in LAG-1, additional calibration is required. In Simulation 2, for example, the

input comprised four stimulus dimensions rather than the three used in Simulation 1. This dif-

ference changes the competitive dynamics on the Spatial Attention Field, in that the height of

a typical bump on the field is lower when there are more features, due to their being more

global inhibition on the field. Smaller peaks change the time to reach saccadic thresholds, and

influence the highly interactive model components in many other ways. Also, there were only

two categories in Simulation 2 whereas there were four categories in Simulation 1. This change

modifies the total energy of the Feature Detection, Category, and Feature Expectation layers,

and, in turn, leads to different behaviours. It would be better if LAG-1 did not require this

kind of tuning as clearly human learners do not. The issue is complex, however, and while it

may be easy to take a negative view of LAG-1 on this matter, it is useful to remember that
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there are many examples of sensitivity adjustments in humans that take noticeable amounts of

time to resolve. The visual system, for instance, cannot process extremely bright light, such as

the noonday sun, and adaptation to low light conditions takes time: full dark-adaptation can

take 30 minutes, and depends on complex adjustments, not just in the visual cortex, but even

in the chemistry of the retina [134]. Also, the adult human visual system has already under-

gone a long process of self-organization in tuning appropriate expectations based on the

demands of the physical environment [135]. We have no such developmental process in LAG-

1. We have however, tried to take some tentative steps in thinking about suitable homeostatic

processes (e.g., [136]). Developing more general mechanisms for self-calibration will be an

important target for future research.

In summary, LAG-1 has broad applicability to the diverse tasks and phenomena within

visual cognition. We have taken some first steps here, having implemented a few changes that

allow for application of LAG-1 to free-viewing and simple visual search tasks, but more work

needs to be done to broaden the model’s account to include contextual cueing and covert

attention. That such effects can be considered modelling targets gives credence to the idea

that integrating attentional, fixational, and associative processes in a single model is an impor-

tant goal.

Contributions and conclusion

While we have discussed at length the details of the model, the methods used in the simula-

tions and the fits to the data, it is important to emphasize that, at the broadest level, the theme

of the present work is integration. It proposes connections between different neurofunctional

systems, and between different empirical phenomena operating at different timescales. Alan

Newell identified four timescales of cognition, emphasizing that biological, cognitive, rational,

and social phenomena, are not just different classes of phenomena, but that they occur at dif-

ferent speeds [19]. One important aim, then, is to understand how biological phenomena that

are rapid, give rise to slower cognitive phenomena (such as a classification decision), and in

turn give rise to still slower phenomena (such as category learning). LAG-1 gives just such an

account; one that spans most of Newell’s temporal bands of cognition. At the finest scale the

model resolves changes in neural activation with short timesteps (*10−2 seconds). These neu-

ral changes build over time to drive saccadic eye movements (*10−1 seconds), which are in

turn ordered according to the expected information gain derived from Hebbian learning at the

trial level (*100 seconds), shaping the perception of abstract categories learned on the order

of *101 seconds. Finally, as associations strengthen and decline over trials, the model

describes a continuous relationship between average learning curves and average attentional

learning (*103 seconds).

LAG-1 is not an attempt to be a better model of category learning, or of oculomotor con-

trol, or of attention. Instead, it is a step toward building bridges between established work in

these areas by providing a theory of how they might interact. As a result of the integrative

approach to the construction of the model, LAG-1 can be applied to more than just category

learning performance (e.g. accuracy, transfer probabilities). LAG-1 can simultaneously

account for measures that have only occasionally been modelled (e.g. reaction time, probability

of fixating features), and further, to measures that have never been directly modelled (e.g. time

spent viewing feedback). We fit learning phenomena, and we fit attention phenomena, but

most importantly, we account for their interactions (e.g. learning-related changes in fixation
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durations). We know of no related model that has shown good qualitative fits to as many dif-

ferent empirical findings as LAG-1.

Even just the existence of a dynamic theory of attention, learning and gaze provides theoret-

ical motivation for novel experiments with temporal and spatial manipulations that could

reveal a whole host of psychologically interesting phenomena related to learning and attention.

Not only can it motivate new kinds of thinking and research about attention and learning in

action, but it can also be constrained by, and improved based on, findings from a wide variety

of investigations in the cognitive sciences.
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