
Seasonal Variation in Human Gut Microbiome
Composition
Emily R. Davenport, Orna Mizrahi-Man, Katelyn Michelini, Luis B. Barreiro¤, Carole Ober*, Yoav Gilad*

Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America

Abstract

The composition of the human gut microbiome is influenced by many environmental factors. Diet is thought to be one of
the most important determinants, though we have limited understanding of the extent to which dietary fluctuations alter
variation in the gut microbiome between individuals. In this study, we examined variation in gut microbiome composition
between winter and summer over the course of one year in 60 members of a founder population, the Hutterites. Because of
their communal lifestyle, Hutterite diets are similar across individuals and remarkably stable throughout the year, with the
exception that fresh produce is primarily served during the summer and autumn months. Our data indicate that despite
overall gut microbiome stability within individuals over time, there are consistent and significant population-wide shifts in
microbiome composition across seasons. We found seasonal differences in both (i) the abundance of particular taxa (false
discovery rate ,0.05), including highly abundant phyla Bacteroidetes and Firmicutes, and (ii) overall gut microbiome
diversity (by Shannon diversity; P = 0.001). It is likely that the dietary fluctuations between seasons with respect to produce
availability explain, at least in part, these differences in microbiome composition. For example, high levels of produce
containing complex carbohydrates consumed during the summer months might explain increased abundance of
Bacteroidetes, which contain complex carbohydrate digesters, and decreased levels of Actinobacteria, which have been
negatively correlated to fiber content in food questionnaires. Our observations demonstrate the plastic nature of the human
gut microbiome in response to variation in diet.
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Introduction

The human gut microbiome varies greatly in content across

individuals, both within and between populations [1,2], and is

believed to be influenced by many factors such as method of

delivery at birth [3,4], antibiotic usage [5,6], and disease status [7–

9]. Nonetheless, diet is intuitively considered one of the most

important determinants of the gut microbiome composition both

in infants [10,11] and in adults [12–14].

Despite this clear intuition, our understanding of how diet

affects microbial abundance and to what extent is still limited.

More generally, we do not yet know how stable or plastic the gut

microbiome is in humans in response to diet. Work in humanized,

gnotobiotic mouse models has provided insight into the effects of

variation in diet on microbiome composition by mimicking human

diets in mice, and has revealed the disease-inducing potential and

metabolic capabilities of the microbiome [15–18]. Yet, for a

number of reasons, it is difficult to infer the extent of dietary effects

on the human microbiome from studies in model organisms. First,

mouse models usually derive their ‘‘human’’ microbiome from a

small number of sources and thus are not typically reflective of the

variation found in a natural human population. Second, the low

genetic diversity, strict diets, and extremely homogenous environ-

ments of laboratory mice throughout the course of experimenta-

tion (usually an advantage of working with model systems) are not

representative of typical environmental and dietary exposures in

humans. As a result, surveys of the human microbiome both

within and across populations are necessary to complement results

from studies in mouse.

Human studies, however, are challenging because it is

impractical to control the subject’s environment for long periods

of time and hence difficult to test the effect of only one variable,

such as diet. Several studies performed in humans have attributed

alterations in the gut microbiome to diet [19–21], but in many

cases other variables known to affect the microbiome were not

accounted for or were confounded with diet. For instance, inter-

population comparisons, such as between Italian and Burkino

Fasan children or between Americans, Malawians, and Amerin-

dians, measured gut microbiome differences that are likely

associated with differences in climates, genetic background, access

to medical care, sanitary practices, and pathogen exposure across

populations, in addition to differences in diet [2,22,23]. One of the

most well controlled within-population studies that examined

dietary affects on gut microbiome was done in the elderly;

however, diet was still confounded with residency status (living in

the community or long-term stay facility; [24]. Recently, the gut

microbiomes were examined in individuals who were either put on

a regimen of strictly plant-based diets or animal diets for several

days, preceded by a baseline measurement and followed by a
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washout period [25]. There were significant shifts in microbiome

composition and function during these interventions, however, it is

unclear how generalizable these results are given that the diets

were very strict and the study included only 11 individuals.

In an attempt to circumvent concerns regarding confounding

variables, other studies controlled environmental influences

through dietary interventions or short, sequestered hospitals stays

[12,26–29]. Although these approaches minimize environmental

variation for the duration of the study (typically no longer than two

weeks for sequestration or several months for dietary interven-

tions), lifetime exposures prior to intervention may still have lasting

effects through the study.

Perhaps the strongest evidence that natural dietary differences

between individuals are directly associated with variation in adult

microbial composition was provided by a study that used food

questionnaires to examine how the microbial content of the gut

was associated with the intake of specific nutrients [12]. Although

the major conclusion was that long-term dietary habits were

correlated with changes in enterotypes [30], the three divisions of

individuals based on their gut microbiota, specific significant

associations between nutrient intake and variation in the

abundance of individual taxa were also observed. For instance,

the abundance of certain microbial taxa showed inverse associa-

tions with fat intake and positive associations with plant-derived

nutrients. This study provided one of the first detailed insights into

how specific bacteria might interact with components of the diet.

The optimal study of the effects of diet on the gut microbiome

would include proper long-term control of environmental varia-

tion on the one hand, and direct manipulation of diet on the other

hand. While it is probably impossible to design an optimal study in

humans, we found that we can sidestep many of the obvious

limitations by studying the gut microbiome in an isolated,

communal-living population: The Hutterites. The Hutterites in

North America descended from a small, founder population from

Europe who emigrated between 1874 and 1879, and have grown

to a community with .30,000 members living on communal

farms across the northern U.S. plains states and western provinces

of Canada [31]. This population presents several key advantages

for microbiome research. First, unlike some other isolated groups,

the Hutterites use technology (exposed to medical care, electricity,

cars, etc.), making them a reasonable proxy for populations from

developed countries. In addition, the genetic variation between

Hutterite individuals is lower compared to the general American

or European population because they descended from a small

number of founders and gene flow into the population has been

limited. Also, because of their residential stability and limited

exposure to the outside, environmental exposures are less

heterogeneous both within individuals over time and across

individuals at any one time.

Most importantly in the context of a gut microbiome study, the

Hutterites live on communal farms (called colonies). Their three

main meals are prepared and eaten in a colony dining room, using

traditional recipes that have been relatively stable over time and

between colonies. The main source of variation in their diet is the

seasonal availability of fresh produce, which is primarily grown on

the colonies. Specifically, during the summer and autumn months

a variety of fresh fruits and vegetables are grown, consumed, and

prepared for consumption throughout the year. During the winter

months, produce consumption primary consists of the fruits and

vegetables that were preserved, canned, or frozen during the

summer months.

In this study, we examined the temporal stability of the human

gut microbiome in the Hutterites during both summer and winter

months of one year. The study design, as well as the characteristics

of Hutterite lifestyle, gives us a unique opportunity to study the gut

microbiome over time in a natural population with minimal

environmental and genetic variation, in order to assess how

seasonal differences in diet shape the gut microbiome.

Results

In order to characterize temporal variation in the gut

microbiome of the Hutterites, we sampled stool from the same

60 individuals in the winter and summer months of one year. The

individuals included in the study had not taken antibiotics for 6

months prior to either sampling period. From each sample, we

amplified the V4 hypervariable region of the 16S rRNA gene and

sequenced the sample using a HiSeq 2000 (see methods). We used

two separate DNA extractions from each stool sample as technical

replicates.

We were able to characterize both common and rare taxa in

each sample by using 2 million sequence reads per technical

replicate (4 million reads per sample; see Figure S1 and Table S1).

We observed low technical variability associated with the

extraction and library preparation protocols (Figure 1), and thus

combined reads across replicates for all subsequent analyses.

Assessing the temporal stability of the microbiome
To examine the similarity of the microbiome composition across

individuals and within individuals over time, we examined

pairwise Spearman correlation of abundance of all taxa identified

at each taxonomic level (Figure 1). Our data indicate that the

microbiome composition varies more across individuals (genus

level mean r2 = 0.795) than within individuals over time (genus

level mean r2 = 0.876). We did not find higher variation in the

microbiome of individuals residing in different households

compared with individuals sharing the same household even

considering relatedness (Figure S2). This observation indicates

that, regardless of household, Hutterites share much of their

environment.

We observed a clear seasonal effect on microbiome composi-

tion. The data cluster by season through principal components

analysis (PCA), especially at the lower taxonomic ranks, albeit with

a great deal of overlap (Figure 2 and Figure S3). The consistent

shift in the summer and winter clusters across the first principal

component (for nearly all samples; Figure 2f) demonstrates that

there are consistent composition differences across the two seasons,

rather than stochastic variation in abundances of particular taxa

over time. It is important to note that individuals were sampled on

six separate colonies and the seasonal trends are consistent across

colonies.

Significance of the clustering was examined in two ways

(Figure 2g). First, the averages of all-pairwise Euclidean distances

along the PC1/PC2 plane were compared between all pairs of

samples within season to all pairs of samples between seasons. The

distance between pairs of data points along the plane of the first

two principle components within season is significantly shorter

than between seasons (t-test P,0.001), indicating that samples

cluster by season. Second, we performed a nearest neighbor test as

described by da Silva et. al [32] and found that the three nearest

neighbors to any given point along the PC1/PC2 plane are

significantly more likely to be from the same season (P,0.001).

To robustly identify particular bacteria that are differentially

abundant across seasons, we performed several tests for differential

abundance. Two versions of a metastats test are reported: one

incorporates a paired t-test and the second uses a paired Wilcoxon

rank sum test [33]. In addition, due to concerns regarding

randomly subsampling reads in microbiome studies, two versions

Seasonal Variation in Gut Microbiome Composition
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of metagenomeSeq differential abundance tests are reported: one

uses subsampled reads and the other uses all of the reads

sequenced per sample and includes a parameter to account for

library size [34].

The altered metastats test (incorporating a paired t-test) for each

taxon at all ranks resulted in the smallest number of tests in which

the null was rejected (Tables S2, S3, S4, S5; Figure S4). At a 5%

false discover rate (FDR), we observed consistent, significant

abundance differences between seasons across all levels of the

taxonomy examined (phylum: 10/25, class: 15/35, order: 32/67,

family: 45/144, genus: 94/316; Table S2) and among common

and rare bacteria alike (Figure 3a). For example, we found

abundance differences between seasons in some of the most rare

bacterial phyla, such as Chloroflexi and Gemmatimonadetes, as

well as some of the most common bacterial phyla, such as

Bacteroidetes, Firmicutes, and Actinobacteria (Figure 3b).

Following previous work [12,30,35], we also examined whether

enterotypes can be distinguished in our data. We do not find

strong evidence for enterotypes in either season in this population,

either when seasons are analyzed together (silhouette score ,0.5,

indicating low support for the best number of clusters; [36]), or

separately, where we observe different numbers of clusters

depending on season (winter k = 3, summer k = 4, both associated

with silhouette scores ,0.5; see methods and Figure S5).

Diversity varies by season and age, but not by sex
We examined the diversity of the gut microbiome within season.

We observed significantly higher diversity during the winter

sampling period than the summer (paired t-test using Shannon

diversity metric (H), P = 0.001; Figure 4a). Diversity was not

significantly different between sexes in either season (P win-

ter = 0.45 and P summer = 0.38; Figure 4b). There was a slight

inverse trend of gut microbiome diversity with age in the winter

(r2 = 0.1267, P,0.006) but no discernable relationship in summer

(r2 = 0.01653, P = 0.33; Figure 4c). In addition, we examined each

of these comparisons using richness and evenness, and observed

similar trends (Figure S6).

Produce consumption varies by season
In order to formally assess variation in the Hutterite diet

between seasons, we asked the donors who provided stool samples

to complete daily food questionnaires during 7 consecutive days in

each season. We were able to collect completed questionnaires

from 31 and 28 individuals in the winter and summer, respectively.

These questionnaires were modeled based on semi-quantitative

Food Frequency Questionnaires [37], altered to ask more general

trends (for example, we asked ‘‘how many times did you eat fresh

fruit today?’’ rather than which fruit was eaten; Table S6). In

addition, we combined specific questions into broad categories of

food (for example, produce, dairy, carbohydrates, etc.) to identify

seasonal trends.

Based on these food questionnaires, Hutterite diets differ

between seasons primarily with respect to the amount of produce

consumed (Table S6). Specifically, we observed seasonal differ-

ences in several individual produce categories, including fresh

vegetables (adjusted P,0.0002), frozen or canned vegetables

(adjusted P,0.0003), corn (adjusted P,0.02), and frozen or

canned fruit (adjusted P,0.02). Considering broader categories,

our data indicate a marked seasonal difference in the consumption

of fresh produce (fresh fruit and fresh vegetables combined,

Figure 1. Correlation of microbiome composition between replicates, individuals, and over time. Boxplots of pairwise Spearman
correlation (y-axis) of bacterial abundance is shown for data at each taxonomic level (x-axis) across different classification levels. ‘Replicates’ refer to
technical replicates derived from separate DNA extractions and library preparations from the same sample.
doi:10.1371/journal.pone.0090731.g001

Seasonal Variation in Gut Microbiome Composition

PLOS ONE | www.plosone.org 3 March 2014 | Volume 9 | Issue 3 | e90731



Figure 2. Consistent temporal shifts observed in microbiome composition. Principal components analysis (PCA) of data obtained from
samples collected in the summer (red triangle) and winter (blue circle), at the phylum (A), class (B), order (C), family (D), and genus (E) level across
samples. F) Individual shifts in microbiome composition along PC1 (y-axis). Data from the same individual across seasons is connected by a line (gray
lines represent individuals showing seasonal trend, black lines highlight individuals showing the opposite trend). G) The average pairwise distance
along the PC1/PC2 plane is shorter where points are from the same season than points between seasons (t-test P = 3.38610278), supporting seasonal
clustering along the first two principle components.
doi:10.1371/journal.pone.0090731.g002

Figure 3. Phylum level taxa abundances differ by season. A) Abundance (y-axis) of the 25 bacterial phyla that were detected (only the most
common bacteria are indicated in the legend) by individual (x-axis). Individual’s order along the x-axis is identical in both panels. Phyla that are
significantly differentially abundant between seasons (FDR ,0.05) are indicated by an asterisk. B) Examples of three common phyla whose
abundances (y-axis) are significantly different across seasons (x-axis): Firmicutes (q-value,0.002), Bacteroidetes (q-value,0.002), and Actinobacteria
(q-value,0.002).
doi:10.1371/journal.pone.0090731.g003
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adjusted P,0.0002), the consumption of frozen or canned fruits

and vegetables (adjusted P,0.0002), and in the amount of produce

eaten in general (adjusted P,0.02, Figures 5 and Table S6 and

Figure S7).

Discussion

We characterized the gut microbiome of individuals from a

unique population, the Hutterites, whose communal lifestyle

minimizes environmental variation across individuals (compared

to other sampling schemes in humans). The microbiome of the

same individuals was examined during summer and winter

months, when the Hutterite diets differ primarily with respect to

the proportion of fresh produce they consume. Our goal was to

assess the temporal stability of the microbiome and the role that

dietary perturbations play in shaping the composition of the

microbiota. Similar to other recent studies, we observed a high

degree of temporal stability in members of the microbiome within

an individual over time [38]. However, there are significant shifts

in bacterial abundance and diversity between seasons in this

population.

Seasonal shift in diet as a likely explanation
Many physical environmental factors (which we did not

document) potentially differed by season in this population,

including the amount of sun exposure, temperature, humidity,

and the relative amount of time spent outdoors. It is likely that

many of these seemingly unrelated factors influence the human gut

microbiome in ways that are not yet understood. For instance,

seasonal differences in day length have been shown to influence

the composition of the gut microbiome in rodents [39]. In

addition, it has been well documented that there is seasonal

variation in pathogen exposure and immune response for various

well known pathogens, therefore, some variation across seasons is

to be expected [40]. That being said, we observed large-scale

temporal differences in the microbiome in this population that

span multiple phylotypes of bacteria and were consistent across

many geographically isolated sites.

Although the environmental factors listed above potentially

influence the gut microbiome to some extent, a more likely

explanation for the large scale differences we observe could be due

to diet. Differences in diet potentially alter the microbiome by

exposing individuals to different microbes [41] or by changing the

gut nutrient content, thereby providing a better niche for certain

bacteria. In addition, nutrition itself is known to modulate an

immune response [42], which potentially influences microbiome

Figure 4. Diversity between seasons, sexes, and age. A) A significant difference (paired t-test P,0.002) in Shannon diversity (H9, y-axis),
between season (x-axis). B) H9 between sexes is not significantly different in either winter (t-test P = 0.46) or summer (P = 0.38). C) Diversity
significantly decreases with age based on the data collected from winter samples (r2 = 0.1267, P,0.006), but not based on the data collected from the
summer samples (r2 = 0.01653, P = 0.33).
doi:10.1371/journal.pone.0090731.g004

Figure 5. Produce consumption varies by season. In summer,
when fruits and vegetables are grown in colony gardens, consumption
of fresh produce is higher than in winter. Conversely, when fresh
produce is not as available, a higher proportion of canned or frozen
fruits and vegetables are eaten. Bars indicate standard error measure-
ments. *** P,0.001 (t-test, adjusted for multiple tests using Benjamin
Hochberg correction). See Table S6 for a list of all tests performed.
doi:10.1371/journal.pone.0090731.g005
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composition. Although many of our observations are consistent

with diet influencing the microbiome in these individuals, further

testing must be done to prove causality.

Consistent with the notion that diet drives seasonal differences

in the microbiome, we observed higher relative abundance of the

phylum Bacteroidetes, one of the most common and prevalent

groups of gut bacteria, during the summer compared to the winter

months (mean summer abundance = 30.3%, mean winter abun-

dance = 11.2%, q-value,0.002). The Bacteroidetes clade is known

to contain specialists in degrading high molecular weight organic

material, such as plant cell walls and complex carbohydrates, and

their genomes are known to contain large numbers of CAZymes,

or carbohydrate-active enzymes [43,44]. The increase in the

relative abundance of this phylum in the summer is consistent with

our observation that the individual diet of the Hutterites included

a greater consumption of fruits and vegetables in summer

compared to winter (adjusted P,0.2). Indeed, metagenomic

prediction from 16S using PICRUSt [45] reveals a significant

increase in KO enzymes that are categorized under the ‘‘Glycan

Biosynthesis and Degradation’’ pathways in summer as compared

to winter (P = 1.0861026, paired Wilcoxon rank sum test, Figure

S8, Table S7). The increased intake in plant matter potentially

gives Bacteroidetes a nutritional advantage and allows this clade to

bloom during the summer months.

This inference is also consistent with other previous observa-

tions. For example, a study that compared the gut microbiomes of

children from Italy and Burkino Faso reported a higher level of

Bacteroidetes in the African children than the Italians, perhaps

due to the high levels of complex starches in the African diet [22].

In addition, the observation of a decrease in the ratio of

Bacteroidetes to Firmicutes in lean compared to obese individuals

[7,46,47] may be at least partially due to differences in diet. This

has previously been indicated by a study in a mouse model of

obesity [48]. Specifically, Bacteroidetes abundance was reduced

when animals were placed on a high fat diet, regardless of their

genetic susceptibility to obesity.

We also found that Actinobacteria abundance increased in the

winter compared to the summer months (mean winter abun-

dance = 3.84%, mean summer abundance = 0.10%, q-val-

ue,0.002). Previously, Wu et al. observed a positive correlation

of Actinobacteria abundance with the amount of fat consumed

and a negative correlation with the amount of fiber consumed.

These results are consistent with the observed seasonal variation in

produce consumption (increased produce consumption in summer

implies a high amount of fiber consumed in this season). These

observations provide further support to the notion that dietary

differences are potentially responsible for the shift in microbiome

composition we observed between seasons. We also found

significant seasonal shifts in the abundance of quite a few other

types of bacteria (for example, phyla Chloroflexi, Gemmatimona-

detes, TM7, etc.). Little is known about many of these bacteria and

further research should be done to assess their roles in the gut

microbiome and the possible connection to variation in diet. In

addition, studies of causality will be essential to prove whether diet

is truly responsible for the temporal composition difference we

observe.

We note that the seasonal shift in diversity in our data did not

match our (perhaps naı̈ve) intuition. We observed decreased gut

microbiome diversity in summer compared to winter, though the

diet is more varied in summer (with the availability of fresh

produce). Our working hypothesis to explain this unexpected

result is that certain types of bacteria flourish and outcompete

other bacteria when complex starches are available as a nutritional

substrate, for instance members of the Bacteroidetes clade. As a

result, overall microbiome diversity may be lowered, as many taxa

would have lower abundance in summer compared to winter.

However, further testing will be needed to provide support to this

theory.

Comparisons to other populations
Comparisons between 16S rRNA studies can be challenging,

especially for the gut microbiome, because the high technical

variation between studies can potentially mask significant biolog-

ical differences [49]. With that caveat in mind, we compared the

Hutterites to a study that examined the gut microbiome of

American, Amerindian, and Malawi individuals using the same

sequencing protocol by Yatsunenko et al. [2] and reclassified and

analyzed their sequences through our bioinformatics pipeline to

reduce technical variability. Perhaps unsurprisingly, we observed

smaller scale differences in composition between our winter and

summer samples than the shifts previously observed between the

gut microbiome of Americans and the Malawians/Amerindians

(see methods, Figure S9). Indeed, even if diet is the sole driver of

variation across populations in Yatsunenko et. al. it is reasonable

to assume that the dietary differences in the Hutterites between

seasons are likely much more nuanced (availability of fresh

produce differed by season, but otherwise recipes are shared

between seasons) compared to the dietary differences across the

three populations.

Contrary to the Yatsunenko et. al. study [2] performed across

three populations, we did not observe an increase in microbiome

diversity with age. We found a slight decrease in diversity with age

in the winter samples and no relationship during the summer

months. The reasons for the apparent discrepancy between our

observations and those of Yatsunenko et. al. are unclear (Figure

S9). One possibility is that this trend is highly affected by life style

and hence differs by populations.

Finally, we failed to find evidence for enterotypes in the gut

microbiome of the Hutterites. We found little support for

clustering of the data in either season, and we observed a variable

number of clusters depending on whether the data from the two

seasons were analyzed together or separately. Moreover, the

weakly supported clusters we did observe were not distinguished

by the same types of bacteria that were previously used to define

the different enterotypes (Bacteroides, Prevotella, and Ruminococcus).

Conclusions

In this study, we demonstrated that there is a large degree of

temporal stability in the composition of the gut microbiome of an

individual. We also found significant, population-wide shifts in the

microbiome between seasons across multiple independent settle-

ments of our population, which are potentially driven by seasonal

dietary differences in the Hutterites. Our results also indicate that

population-wide samples taken at one time-point for a study might

not capture the entire variation that exists in that population over

time.

Materials and Methods

Ethics Statement
The protocol was approved by the University of Chicago IRB

(protocol 10-416-B). Written informed consent was obtained from

all adult participants and the parents of minors. In addition,

written assent was obtained from minor participants.

Seasonal Variation in Gut Microbiome Composition
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Sample collection
Participants (. age 16) provided fecal specimens during winter

(January/February 2011) and summer (July 2011) months.

Sampling was done across 5 different Hutterite colonies, located

in South Dakota within 15–20 miles of each other. We collected

samples from a total of 124 individuals in winter and 103 in

summer. We excluded any individuals from analysis that had

taken antibiotics within 6 months prior to sampling, which left 94

individuals in the winter and 92 in the summer (the ‘‘full’’ set). Of

the full set of individuals, 60 (40 females and 20 males) provided

fecal samples in both seasons. The results of the main paper focus

on these 60 individuals; however, for several analyses we present

results that consider data from the ‘‘full’’ set of individuals (Figures

S3 and S6). The patterns we observe are consistent regardless of

the set of individuals used.

Dietary surveys (Table S6) were collected during August 2012

and February 2013, approximately 1 year after the collection of

the initial data. Because of this, we analyzed dietary data on a

population level to identify seasonal trends and did not relate to

the correlation between microbiome composition and diet at the

individual level. Of the full set, 41 individuals responded in the

winter and 45 individuals responded in the summer. Of the 60

individuals sampled in both seasons, 31 individuals responded in

winter and 28 in the summer (24 individuals provided complete

questionnaires in both seasons).

Sample DNA extraction and library preparation
Stool was immediately frozen at 2206C after collection,

shipped on dry ice, and stored at 2806C permanently. Two

aliquots of 0.25 g frozen stool were used for DNA extraction per

individual per time point, using the Omega Bio-Tek E.Z.N.A

Stool DNA Kit (revisions March 2010, Omega Bio-Tek, GA,

USA), following provided instructions (Figure S10). DNA concen-

tration and purity were assessed using the Nanodrop 1000

spectrophotometer (Thermo Scientific, IL, USA), and purity was

highly similar between the two seasons. The 16S rRNA gene V4

region was amplified and sequenced using the protocol published

by Caporaso et al [50] with the following adjustments: 3650 ng

starting template reactions per sample were combined after

amplification and samples were quality controlled at the end of

library preparation using the Agilent Bioanalyzer DNA 1000 kit

(Agilent Technologies, CA, USA).

Sequencing and classification
Samples were multiplexed 50–80 indices per lane across four

flow cells and sequenced using an Illumina HiSeq2000 (CA, USA).

Samples were randomized by season and replicate across two flow

cells and the remaining two flow cells contained samples from one

season each. The 12-cycle index was sequenced first, followed by

102 cycles using the Read 1 sequencing primer. Data were pre-

processed using CASAVA 1.8.1 (flow cell 1) and CASAVA 1.7.0

(flow cells 2–4). Reads were quality controlled following the

procedure by Caporaso et al. [50] with the following alterations: 1.

The beginning of each read was truncated at the point where it

incurred two adjacent low-quality base calls within the first 13 base

pairs and 2. Low quality was considered Q20 or below. To reduce

variability in the depth of sequencing between samples, each

technical replicate was subsampled to a maximum of 2 million

reads. Reads were classified using mothur’s classify.seqs() function

using the taxonomy and methods described in Mizrahi-Man et al.

[51]. Classified reads were filtered by confidence score that

ensured a maximum 5% false classification rate at each taxonomic

level as determined previously (phylum = 65, class = 80, or-

der = 60, family = 80, genus = 90) [51]. A table of counts for each

taxonomic level was generated per replicate and was standardized

for the total number of reads sequenced per replicate. See

supplemental materials for summaries of reads per sample and

rates of classification (Table S1). All sequencing data are currently

being submitted to dbGaP.

Data analysis
Spearman rank correlation was calculated using cor in R [52].

Replicate data were combined for all following analyses. Principle

components analysis (PCA) was done using prcomp in R [52] after

quantile normalizing each individual to a vector of the mean

abundances of each taxa using the preprocessCore library from

bioconductor [53] and log10 transforming the data. Clustering

significance was assessed using two methods. First, we considered

the difference in Euclidean distances along PC1 and PC2 between

pairs of data points from the same season or between seasons. In

addition, a nearest neighbor test was performed as described by de

Silva et. al, using k = 3 nearest neighbors [32]. Abundance

differences between seasons were tested using four procedures: 1.

using a modified metastats procedure (a paired t-test was used

rather than a t-test to account for study design) with 5000

permutations [33], 2. a modified metastats procedure (a paired

Wilcoxon rank sum test used rather than a t-test) with 5000

permutations, 3. metagenomeSeq differential abundance tests

using subsampled reads [34], and 4. metagenomeSeq differential

abundance tests using all reads per sample. A false discovery rate

of 5% was applied to correct for multiple tests [54]. Diversity

metrics were calculated using the vegan package in R [55] and

significance assessed via paired t-tests (for seasonal comparisons)

and t-tests (for sex comparisons).

The Hutterites are a founder population with some degree of

relatedness between all individuals in the population. Moreover,

families and partners that reside in the same household are used in

these analyses. We do not correct for relatedness in these analyses

for two reasons. First, relatedness remains constant between

seasons and therefore should not be a confounding variable for

any cross-seasonal test with a paired design. Second, we examined

pairwise Spearman correlation of bacterial abundance across all

taxonomic levels among individuals living separately and living

together (who are married, parent-offspring, or siblings) and did

not find evidence for higher correlation of data from the

individuals who cohabitate or are related (Figure S2).

Questionnaire analysis
Seasonal differences in the consumption of 61 food categories

were assessed (using a t-test) by averaging the quantities reported

over 7 days for each individual. In addition, we combined

categories (example: ‘‘produce’’, ‘‘carbohydrates’’, ‘‘dairy’’, etc) to

examine broad food groups. P-values were adjusted using the

Benjamin Hochberg method to account for multiple tests.

Enterotype analysis
Enterotype analysis was done using the standardized genus

counts for all of the samples (replicates combined) as performed by

Wu et al. [12]. Definitive enterotypes were not apparent, given

that silhouette scores were low (,0.5) and cluster boundaries were

not consistent when samples were processed separately by season

and when both seasons were processed simultaneously.

Yatsunenko et al. data comparison
V4 16S rRNA data from Yatsunenko et al. [2], which were

generated using the same library preparation and sequencing
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protocol used in this paper, were downloaded from MG-RAST

(http://metagenomics.anl.gov/) on 12/14/2012. Fasta files were

run through our bioinformatics pipeline described in the data

analysis section above to ensure consistent data processing

between both sample sources.

Metagenome prediction using PICRUSt
Closed reference OTU picking was performed using the

subsampled reads against a Green Genes reference taxonomy

(ftp://greengenes.microbio.me/greengenes_release/gg_13_5/

gg_13_5_otus.tar.gz, downloaded 12/18/13) using the pick_clo-

sed_reference_otus.py script in QIIME [56]. 16S copy number

was normalized using the normalize_by_copy_number.py script,

metagenome functions were predicted using the predict_metagen-

omes.py, and data summarized into KEGG pathways using the

categorize_by_function.py script, all included in PICRUSt [45].

Statistical comparisons were made using a paired Wilcoxon rank

sum test and multiple tests were controlled using q-values.

Supporting Information

Figure S1 Rarefaction curves at each taxonomic level.
Rarefaction curves demonstrate that by sampling up to 2 million

reads per replicate we detect most common and rare taxa, across

the 5 taxonomic levels classified (generated using the R package

vegan v2.0–3). In addition, evidence that winter has higher

richness is clear in these plots, as in general the winter samples

have a higher number of detected taxa than summer.

(EPS)

Figure S2 Distributions of pairwise correlations by
household. A) Across all taxonomic levels examined, individuals

living in the same household are not significantly more similar to

each other (pairwise Spearman correlation) than individuals living

in different households. B) Related individuals are not significantly

more correlated in terms of microbiome composition than

individuals residing in different households. Key: ‘‘separate’’ refers

to unrelated individuals living in separate households, ‘‘siblings’’

refers to siblings living within the same household, ‘‘parent/child’’

are parent/child relationships of individuals who live in the same

household, ‘‘married’’ are unrelated individuals who are married

and live within the same household.

(EPS)

Figure S3 ‘‘Full’’ dataset principle components analy-
sis. Principle components analysis (PCA) of all individuals

collected in either season who were not on antibiotics 6 months

prior to sampling (winter (blue) n = 94, summer (red) n = 92).

Similar clustering by season is observed as with the n = 60

individuals that were sampled in both seasons (see Figure 2).

(EPS)

Figure S4 Comparisons of differential abundance meth-
ods. Each plot shows along the x-axis a q-value cutoff and along

the y-axis the number of bacterial taxa that were called significant

at that cutoff. For each plot the number of bacteria that were

called differentially abundant in both tests is indicated by the

darkest gray color, the number of bacteria that were not called

differentially abundant by both tests are in the lightest gray color,

and the bacteria that were called significant in one test but not the

other are indicated by the medium shades of gray. In general, the

metagenomeSeq analyses yielded more differentially abundant

taxa than the metastats tests. A) Comparing metagenomeSeq

analysis on subsampled sequences to metagenomeSeq analysis on

all reads. B) Comparing metastats with a paired t-test to metastats

with a paired Wilcoxon rank sum test. C) Comparing metastats

with a paired t-test to metagenomeSeq analysis on subsampled

reads. D) Comparing metastats with a paired t-test to metagen-

omeSeq analysis on all reads. E) Comparing metastats with a

paired Wilcoxon rank sum test to metagenomeSeq analysis using

subsampled reads. F) Comparing metastats with a paired

Wilcoxon rank sum test to metagenomeSeq analysis using all

reads.

(EPS)

Figure S5 Enterotype analysis across all 120 samples. A)

Enterotype analysis using data from winter samples. B) Enterotype

analysis using data from summer samples. C) Enterotype analysis

using data from both winter and summer samples. For each A), B),

and C), Left) average silhouette width for the best number of

estimated clusters (3 or 4) is low; namely, there is little support for

the three clusters as determined by k-means clustering. Right)

Principle components analysis of Jensen-Shannon distance of

genus level measurements, colored by enterotype assignment for

each individual. Depending on how data are analyzed (whether

seasons are analyzed separately or together), a different number of

clusters are detected. D) The relative abundance of the dominant

bacteria driving each enterotype classification in the Hutterite

samples when both seasons are analyzed together. E) The three

bacteria said to drive enterotypes in the orginal paper by

Argumungam et al. do not distinguish enterotypes in the

Hutterites. Gradients of both Bacteroides (gray) and Prevotella

(yellow) are observed in summer (F) and winter (G).

(EPS)

Figure S6 Diversity between seasons, sexes, and age. A)

A significant difference in Shannon diversity (H - left), richness (S -

middle), and evenness (J - right) is observed between seasons (x-

axis). B) H (left), S (middle), and J (right) between sexes is not

significantly different in either winter or summer. C) Diversity

decreases with age based on the data collected from winter

samples (H (left): r2 = 0.116, P,0.01; S (middle): r2 = 20.0003,

P = 0.33; J (right): r2 = 0.1068, P,0.01), but not based on the data

collected from the summer samples (H (left): r2 = 20.0004,

P = 0.33; S (middle): r2 = 20.007, P = 0.45; J (right): r2 = 0.003,

P = 0.28). * = P,0.05, ** = P,0.01, *** = P,0.001, and

**** = P,0.0001.

(EPS)

Figure S7 Produce consumption varies by season. In

summer, when fruits and vegetables are grown in colony gardens,

consumption of fresh produce is higher than in winter across the

‘‘full’’ dataset (t-test across seasons). Bars indicate standard error

measurements. **** = P,0.0001, adjusted for multiple tests using

Benjamin Hochberg correction.

(EPS)

Figure S8 Abundance of predicted Glycan Biosynthesis
and Metabolism enzymes varies by season. In summer,

abundance of predicted metagenome enzymes categorized as part

of the Glycan Biosynthesis and Metabolism KEGG pathway are

significantly more abundant than in winter (paired Wilcoxon rank

sum test P = 1.0861026).

(EPS)

Figure S9 Comparison of data from the Hutterites with
American, Amerindian, and Malawi gut microbiomes. A)

Principle components analysis (PCA) of the four populations

(Hutterites colored by season of sampling). The distribution of the

USA, Amerindian, and Malawi samples are similar to the original

Yatsunenko paper (USA clustering separately from Amerindian

and Malawi individuals). The Hutterites cluster separately from

the other populations, however, given that different labs processed
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these samples it is unclear whether this separation is due to

technical or biological sources of variation. The spread of the

summer and winter Hutterite samples is smaller than the between

population spread, demonstrating that the seasonal change in diet

in the Hutterites is either smaller than diet or other influences on

the microbiome in the Yatsunenko et al. populations. B) Diversity

metrics (richness, Shannon diversity, and evenness) between

populations. C) Diversity metrics (richness, Shannon diversity,

and evenness) by age for each population. The Hutterites appear

to have opposite trends for Shannon diversity and evenness as the

Yatsunenko populations.

(EPS)

Figure S10 Experimental design. A total of n = 92 individ-

uals in summer and n = 94 individuals in winter were sampled who

did not take antibiotics six months prior to sampling. A total of

n = 60 individuals were sampled in both seasons. DNA was

extracted and libraries prepared in duplicate for each sample.

Multiplexed libraries were sequenced across multiple flow cells,

and sequences were processed using the bioinformatic pipeline

described (see methods).

(EPS)

Table S1 Sequencing summary by technical replicate
and individual. Sequenced: total reads from all lanes sequenced

per sample. Pass_QC: number of reads that are maintained after

the read QC procedure (see methods). Subsampled: number of

reads after randomly subsampling to a maximum 2 million reads

per technical replicate (maximum 4 million reads per individual

per season). Classified at level: indicates the number reads that

were successfully classified at each taxonomic level ensuring no

more than a 5% false classification rate.

(XLS)

Table S2 Paired metastats results (paired t-test). This

table contains raw P values for each taxa tested (by paired-

metastats test, see methods), q-value, and average winter and

summer abundances of each taxa tested.

(XLSX)

Table S3 Paired metastats results (paired Wilcoxon
rank sum test). This table contains raw P values for each taxa

tested (by paired-metastats test, see methods), q-value, and average

winter and summer abundances of each taxa tested.

(XLSX)

Table S4 Subsampled metagenomeSeq results. This

table contains for each taxa: the intercept, coefficient, and

normalization factors from metagenomeSeq as well as the raw

p-value, adjusted p-value, and q-value. Tests were run on the same

subsampled reads (2 million per technical replicate) as the

metastats tests.

(XLSX)

Table S5 MetagenomeSeq results (all reads). This table

contains for each taxa: the intercept, coefficient, and normaliza-

tion factors from metagenomeSeq as well as the raw p-value,

adjusted p-value, and q-value. Tests were run using all reads

generated and including library size as a covariate in metagen-

omeSeq.

(XLSX)

Table S6 Dietary questionnaire results. This table con-

tains raw P values (t-test), average winter and summer daily

servings, and Benjamin Hochberg adjusted P value for each food

category (or groups of categories) tested for both surveys that

overlapped the n = 60 individuals that were sampled in both

seasons (surveys collected winter n = 31, summer n = 28) and the

‘‘full’’ dataset (surveys collected winter n = 41, summer = 45).

Individuals were asked to specify how many times they ate each of

61 individual food categories (full question). These categories were

combined into broad categories as indicated (subcategories) for

certain comparisons.

(XLSX)

Table S7 Differential abundance results of predicted
metagenome KEGG categories. This table contains raw P

values (from paired Wilcoxon rank sum test), the mean winter and

summer abundances, and q-values for each predicted KEGG

pathway category tested.

(XLSX)
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