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SUMMARY

The critical minerals and elements are natural substances that are essential to
modern life but have insecure supply. This lack of a secure supply clashes with
the increasing importance of these elements, especially given their use in technol-
ogies needed to reduce global CO2 emissions andmitigate against anthropogenic
climate change. In this contribution we review the by-product nature of the crit-
ical minerals and elements and the inherant uncertainties in reported critical min-
eral and element annual production as well as the relationships between these
commodities and main-product metals and associated concentrates. We explore
the geological and geographical barriers to critical mineral and element supplies,
as well as how the lack of available data and the uncertainties in the data that are
available hinder our ability to estimate global resources with confidence.

INTRODUCTION

Critical minerals and elements are natural substances that provide essential properties to a technology or prod-

uct, are not easily substituted, are generally not recycled or are recycled at low levels, and are subject to supply-

chain risk as a result of a variety of factors (e.g., Graedel et al., 2014). They are vital to green energy and low- and

zero-CO2 technologies, such as wind turbines, solar panels, electric vehicles, and storage batteries, as well as

being used in numerous defense applications (NRC, 2008; Graedel, et al., 2012). Although the classification

of critical minerals and elements vary from country (or group of countries such as the EU) to country, between

different sections of governments, and between different industries (e.g. Jowitt et al., 2018a), a common list of

minerals and elements is emerging. A hallmark for the definition of criticality is potential supply-chain risk (Hayes

andMcCullough, 2018). Two important factors that control supply security are the sources of critical mineral and

element and their abundance or distribution. Global production of a critical mineral or element is often limited

to a few countries. For example, �70% of global Pt production is from a single country, namely South Africa

(USGS, 2021). An additional source restriction is that many of the critical elements are by-products and have

both varying main-product metal companionality (e.g., Nassar et al., 2015) and restricted streams of recovery

(Jowitt et al., 2018b). One example of this is Co, which is primarily a by-product of Ni and Cu mining. This

has led to a situation where Ni and Cu mining is diverse but not all of these mines recover Co, a factor that

has lead to an increase in the supply-chain risk for this element (e.g., BGS, 2015; Nansai et al., 2017).

The terms main-product, co-product and by-product are strictly a function of mineral economics (e.g., Til-

ton, 1985). Ore deposits are mined for economic minerals, and those that form the primary source of

revenue for a given mining operation are termed main-products. Cases where an ore deposit contains

multiple economically significant elements that are only feasible to mine collectively involve the mining

of co-products. In comparison, by-products are incidental products generated during smelting, refining,

or other processing used to extract the main- or co-products, activities that typically occur outside of

the mining environment (often termed ‘‘outside the mine gate’’; Tilton, 1985). Metals such as these are pre-

sent at trace concentration levels in the ores of the host metals and are often considered as ‘‘impurities’’. In

some cases, these impurities are extracted from the final main-product for environmental reasons (e.g., Cd)

or, under favorable economic conditions, can be extracted at refineries for a profit (e.g., Nassar et al., 2015).

Regardless, these by-products are generally not calculated in resource and reserve estimates, not recorded

in mine production annual reports, and sometimes have unquantified smelter and refinery production. This

has led to a general lack of reliable assessments of global by-product resources (e.g., Candelise et al., 2012;

Fthenakis, 2015; Olivettie et al., 2015; Frenzel et al., 2017).
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In this contribution we focus on factors that hinder our current understanding of critical minerals and ele-

ments, specifically uncertainties in reported annual production, uncertainties over the origin of associated

main-product concentrates (here termed origin transparency), and uncertainties in the reported global

supply of selected elements, namely Cu, Ni, Zn, Mo, Co, Se, Te, Cd, and Re. We explore why we simply

do not know the amount of potentially producible critical elements as a result of the uncertainties related

to metal by-product recovery and discuss options for advancement in key knowledge gaps to improve our

ability to estimate global resources with confidence.

OVERVIEW OF CRITICAL MINERALS AND ELEMENTS

Some of the main drivers in the demand for critical minerals and elements include: (1) the push toward low-

emissions energy production along with energy storage and usage; (2) the increased use, complexity, and

prevalence of communication and entertainment technologies; and (3) security and defense applications.

Critical minerals and elements that are currently imperative to the production of wind turbines, photovol-

taic cells, nuclear reactors, electric cars, and batteries to achieve low-emissions energy production, storage

and usage include C (graphite), Co, Ga, In, Li, the platinum group elements (PGEs), the rare earth elements

(REEs), Sb, Sc, Se, Te, Th, and Zr, among others (Jowitt et al., 2018a). In addition, Ga, Ge, In, Nb, Sb, Te, and

Y are essential for the production of micro-capacitors, flat screen phosphors, and semiconductors, all of

which are necessary for the production of high-tech communications and entertainment devices (Jowitt

et al., 2018a). Finally, the production of nuclear radiation detectors, armor and weapons, and aerospace

super-alloys for defense and security purposes require the critical metals Be, Mo, Nb, Re, and W (Jowitt

et al., 2018a). This has led to all of these elements being generally considered critical, although different

countries and organizations may also add other minerals or elements to this list. This reflects the fact

that the definition of a substance’s criticality is viewpoint dependent (i.e., industry vs. country; Graedel

et al., 2014). For instance, the U.S. Department of the Interior on May 18, 2018 defined a list of 35 critical

minerals and elements (Fortier et al., 2018), with this qualifying statement:

‘‘This list of critical minerals, while ‘final,’ is not a permanent list, but will be dynamic and up-

dated periodically to reflect current data on supply, demand, and concentration of produc-

tion, as well as current policy priorities.’’

This variation is exemplified by the numerous reports that assess the criticality of materials and elements

from the subjective viewpoint of the reviewing organization (Figure 1). For instance, boron, coking coal,

natural rubber, phosphate rock, and phosphorus are classified as critical by the European Union (EU) but

not by the vast majority of other governments or organizations (Figure 1; see caption for references). In

comparison, the REE and some of the PGE (Pd, Pt, Rh and Ru) are and have been considered critical by

many countries since 2005, with Dy and Nd listed as critical in all of the 25 criticality reports summarized

in Figure 1.

The dynamic and variable nature of criticality can be examined using the base metal Zn (Figure 1). Japan

(Hatayama and Tahara, 2015) considers Zn to be a critical element whereas Australia initially considered Zn

to be critical (Skirrow et al., 2013) but subsequently removed Zn from their critical element list in 2020 (Aus-

trade, 2020). Further examination reveales that Japan considers Zn to be critical as a result of potential risks

in securing metal concentrates for their domestic smelters, whereas Willis and Chapman (2012) concluded

that Zn should be considered globally critical as a result of its association with the critical elements Ge and

In, which are principally sourced as by-products of Zn mining. These contrasts highlight the importance of

viewpoints when considering criticality and which elements or minerals should be considered critical. This

complexity in criticality assignments is outlined in Figure 1, highlighting the evolution of mineral and

element criticality and the differing positions governments have had on potential supply restrictions, the

impacts of these potential supply restrictions, economic importance, and environmental implications for

individual substances that are often considered critical. This is just one form of uncertainty associated

with determining resources and future supply of critical elements; actually classifying what substances

are critical, although as outlined below a gradual consensus seems to be emerging.

A comparison of the critical mineral and element lists for Australia (Austrade, 2020), the EU (EC, 2020), and

the United States (USDOI, 2018) illustrates a general agreement on the critical nature of some of these sub-

stances (Table 1). All three reports suggest that Sb, Be, Bi, Co, Ga, Ge, Hf, In, Li, Mg, natural graphite, Nb,

the PGE, the REE, Sc, Ta, Ti, W, and V should be considered critical. A significant factor defining criticality is
2 iScience 24, 102809, July 23, 2021



Figure 1. Frequency of the minerals and elements included in 25 different criticality assessment lists from 2005 to

2020 (updated from Sykes et al., 2016 and Hayes and McCullough 2018)

The figure is a compilation of critical metal lists from South Korea (n = 1; Bae, 2010), the United Nations (n = 1; Buchert

et al., 2009), Australia (n = 2; Skirrow et al., 2013; Austrade, 2020), the British Geological Survey (n = 3; BGS, 2012; Gunn,

2014; BGS, 2015), Japan (n = 4; NEDO, 2009; Hatayama and Tahara, 2015), the EU (n = 5; EC, 2010; EC, 2011; EC, 2014;

EC, 2017; EC, 2020), and the United States (n = 6; USNAS, 2008; Bauer et al., 2010; Bauer et al., 2011; USDOD, 2015;

Schulz et al., 2017; USDOI, 2018) along with three independent publications of critical metals and materials lists
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Figure 1. Continued

(Willis and Chapman, 2012; Sykes et al., 2016; Conca, 2019). The cell colors correspond to the source and date of

publication. For each metal/material the sources are organized in chronological order to highlight changes in

criticality over time for each organization.
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supply risks, which as mentioned above can be ascribed to a variety of geological, geographical, political,

and metallurgical considerations. However, economic rather than geological reasons mean that many of

the critical elements are by-products of the refining and smelting of the major industrial metals, the so-

called main products (Table 2). There are a number of implications that arise from the by-product nature

of the critical elements that directly impact our understanding and quantification of global critical element

resources. The most important of these can be split into two categories: (1) quantifying pre-mining re-

sources and (2) determining material flows of critical elements from ore to payable product.

Although some critical minerals and elements are considered to have security of supply issues that are

perhaps geographical or political rather than reflecting an actual lack of supply of the substance in ques-

tion, the one characteristic that links all of the critical minerals and elements together is a perceived risk of

demand (including domestic demand met by imports into a given country) exceeding supply. Determining

this demand-supply balance requires knowledge of demand (i.e. production) for a given substance, which

can be estimated by the examination of current industrial demand and how this has been affected by recent

trends, enabling predictions to be made. However, the supply (i.e. resources-reserves; e.g. Jowitt and

McNulty, 2021) side is problematic, primarily as a result of the by-product nature of the majority of these

elements (e.g. Nassar et al., 2015). The fact most of these substances may be extracted by a given mine

but at a level considered insignificant during resource-reserve reporting (e.g. <1% of contained metal

value) means that they are often not quantified in resource-reserve estimates nor in annual production tech-

nical reports (Jowitt and McNulty, 2021). This is compounded by the fact that these elements are produced

at smelters or refineries downstream of a mine, despite not being reported in the associated reserves or

resources for the mine in question. The majority of these downstream operations also process mineral con-

centrates from multiple mines, meaning the materials flows of these critical elements are very difficult to

track (e.g., Zimmermann, 2017; Nedelciu et al., 2020; McNulty and Jowitt, in review). This also presumes

that the smelter and/or refinery that is processing the concentrate is able to extract the critical elements

that are present within the concentrate at a reasonable recovery rate, or even at all. This is frequently

not the case, meaning that critical minerals and elements end up deporting to waste at various stages

of mining, beneficiation, mineral processing, smelting, and refining, rather than being produced for sale

(e.g. Werner et al., 2017a; Werner et al., 2017b). All of this means that critical mineral and element resources

and reserves are necessarily under-reported as a function of the nature of these elements and the by-prod-

uct relationship between these elements andmore economically important metals. These uncertainties are

associated with and are compounded by uncertainties in production statistics for by- and co-product

metals, as outlined in the following section.
GLOBAL PRODUCTION OF CRITICAL MINERALS AND ELEMENTS

Many of the critical minerals and elements are not currently economically feasible to mine on their own but

rather are by-products of the mining of main-products such as Cu, Ni and Zn (Table 2). Our analysis used

global production data for select main-product metals (Cu, Ni, Zn, and Mo) and their critical element by-

products (Co, Se, Te, Cd, Mo, and Re) to demonstrate two important mineral economic themes that have

implications for the future of critical element production. These are the uncertainties prevalent in annual

production data for these critical minerals and elements and the variations present in by-product annual

production rates that can be quantified using main and by- and co-product production ratios. The key re-

sources for this analysis are summarized in Table 3.
Uncertainties in annual production data

Worldwide historic metal production data are typically publicly sourced from the two entities that collate

publicly accessible global data, namely the U.S. Geological Survey (USGS) and the British Geological Sur-

vey (BGS). In addition, private firms collate commodity production data and generate market predictions

and reports, such as Wood Mackenzie Chemicals Co., whereas Mining Data Solutions provides limited

open access (full access with a paid membership) to collated mining, production and operation data

and industry reports for select mining operations. An important consideration when assessing trends in

annual production data is recognition of inherent uncertainty in the data and unclear sourcing of the
4 iScience 24, 102809, July 23, 2021



Table 1. Critical metals/materials according to the European Union, United States, and Australia

1 ilmentite; 2 metal sponge; 3 rutile; 4 undifferentiated platinum group elements (PGE); *USGS (2021); ^Austrade (2020); +calculated by dividing Austrade (2020)

market value by USGS (2020) production

Critical metals/materials that all three organization agree on are shown in BOLD ITALICS.

Critical metals in RED are discussed in more detail in this contribution.

EU = list of critical metals and 2020 global production data from EC, 2020.

USA = list of critical metals from US DOI (2018) and 2020 global production data from USGS (2020).

AUS = list of critical metals and 2020 global production data from Austrade (2020).

Natural rubber 2020 price data from Tiseo, (2021a).

Natural rubber 2019 production data from Tiseo, (2021b).

Uranium 2019 production data source from the World Nuclear Association (2020).
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Uranium 2019 average spot price data from (Cameco, 2021).

Rhodium 2019 production data source NRCAN (2021b).

Iridium 2018 production data from Garside (2021a).

Ruthenium 2018 production data source Garside (2021b).

Coking (metallurgical-grade) coal 2019 average price data from NRCAN (2021a).

Coking (metallurgical = grade) coal 2019 production data from MINING.com (2020).
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information being presented, with this being a particular problem for by-products. We demonstrate this

concept in Figure 2, which presents the annual production of Cu, Ni, Zn, andMo along with their associated

critical element by-product production—Se, Te, Mo, Co, Cd, and Re from 1970 through 2018 (Table S1).

Main product vs by-product metal production

The annual global production of Cu, Ni, Zn and Mo has increased between 1970 and 2018 with both the

USGS and BGS reporting similar annual production trends (Figure 2A). The most notable exception to

this is Mo production before 1977 (Figure 2A). Over this period the BGS reports an average Mo production

rate of �140,000 t/year, which is some 60,000 t/year greater than the 82,000 t/year of reported production

outlined by the USGS. Of these metals Cu, Ni, and Zn are primarily produced as main- or co-products from

base metal sulfide ores (e.g., Nassar et al., 2015). In comparison, Mo is produced as both a main-product

from porphyry Mo deposits (e.g., Climax and Henderson mines, USA; Freeport-McMoRan, 2019) and as a

co- or by-product from porphyry Cu-Mo deposits (e.g., Bingham Canyon mine, USA; e.g., Nexhip et al.,

2015). This split is demonstrated by the fact that some 46% of global Mo production is a co- or by-product

of Cu mining (Nassar et al., 2015). This has implications for the supply of the critical element Re as 100% of

its global production is as a by-product of Mo (Nassar et al., 2015; USGS, 2021) and presents a supply sit-

uation where a critical element is a by-product of a by-product.

The general consistency of global production data for Cu, Ni, Zn, andMo from the USGS and BGS data sets

is poor when considering some of the critical element by-products and comparing these data tomain prod-

ucts (Figure 2B). This is illustrated by annual Co production, with yearly differences in reported worldwide

production that peak at �60,000 t/year for a maximum percentage difference of 42.9% [here defined as D

% = ((max�min)/max)*100] in 2011. In addition, several other years of Co production have discrepancies of

<20,000 t/year (1972–1975 with D% values between 49.7 and 58.6%; 2008–2018 with D% between 15.3 and

42.9%). In comparison, USGS and BGS worldwide Re production estimates differ by >5 t/year (D% between

0.8 and 9.6%), with the exception of annual production estimates for 2006 and 2007, which differed by 10 t/

year (D% between 18.1 and 18.5%). Of the by-product elements presented in Figure 2B, reported Cd pro-

duction has been the most consistent between the compiled USGS and BGS statistics. From 1970 to 2018

worldwide by-product Cd production ranged from 15,200 t/year to 26,000 t/year, with the greatest differ-

ence in 2003 of 6,787 t/year (D% of 26.9%) and the lowest difference in 1983 of 2 t/year (D% of 0.01%; Fig-

ure 2B). Finally, Re and Se production data demonstrate that the periods of reported production data are

not always uniform between the surveys, providing another form of uncertainty relating to the supply of

critical elements (Figure 2B).
Table 2. By-product metals derived from the production of major industrial metals (modified from Graedel et al.,

2014).

BOLD - selected major industrial metals.

Italics - metals that may also be derived from their own ores.

Critical metals in RED are discussed in more detail in this contribution.

Abbreviations: PGE, platinum-group elements; REE, rare earth elements.
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Table 3. Key resources table for the data analysis presented in this paper

Resource Source Identifier

Global & country copper, nickel, zinc,

molybdenum, rhenium, cobalt, selenium,

tellurium, and cadmium annual

production values from 1970 - 2018.

BGS World mineral

statistics data (2021)

https://www2.bgs.ac.uk/mineralsuk/

statistics/wms.cfc?method =

searchWMS

Global & country copper, nickel, zinc,

molybdenum, rhenium, cobalt, selenium,

tellurium and cadmium annual production

values compiled from Bureau of minesminerals

Yearbook reports for 1970–1993.

Bureau of Mines Minerals

Yearbook (1970–1993)

https://www.usgs.gov/centers/nmic/

bureau-mines-minerals-yearbook-

1932-1993

Global & country copper, nickel, zinc,

molybdenum, rhenium, cobalt, selenium,

tellurium and cadmium annual production

values compiled from USGSminerals yearbook

- metals and Mineral’s reports for 1994–2018.

USGS, Minerals

Yearbook (2021)

https://www.usgs.gov/centers/nmic/

minerals-yearbook-metals-and-

minerals
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A comparison of the annual country-by-country production for Se and Te in 2018 further highlights another

lack of transparency and/or uniformity in by-product production reporting (Figure 3; Table S2). The USGS

reports smaller amounts of worldwide Se production (39% or 1,077 t/year) and Te (11% or 54 t/year)

compared to the BGS (Figure 3). This is in part because US domestic production of Se and Te is proprietary

information and is withheld fromUSGS reporting (USGS, 2020). It is also important to note that this variation

between reported annual production values from the USGS and BGS does not mean that one survey is right

or wrong, but rather serves to highlight the inherent uncertainty in these data that must be considered

when discussing material and element criticality and supply. Tellurium typifies this, where the BGS esti-

mates indicate steady, annual growth in Te production since 2010 (Figure 2B), which can be taken as a pos-

itive sign for the security of supply of this critical element. However, the USGS data for the same period of

time suggests that Te production nearly quadrupled after 2015 (Figure 2B). This apparent difference in

annual production can be explained by the fact that Chinese Te production was not reported by the

USGS until after 2015 (McNulty and Jowitt, in review), leading to a likely underestimate in global Te produc-

tion using pre-2015 USGS data. This also means that any assessments of supply risks or criticality using

these data may over-estimate the criticality or potential under-supply of this element, adding uncertainty
Figure 2. Comparison of annual main-product production and by-product metal production between 1970 and

2018 based on USGS and BGS publicly available data (Burea of Mines, 1993; USGS, 2021; Table S1)

(A) Main product metal production values for Cu, Zn, Ni, and Mo. Note the general agreement in the worldwide annual

metal production reported by the USGS and BGS for the main product metals.

(B) By-product metal production values for Co, Cd Se, Te, and Re. These data illustrate that some by-products have

greater uncertainty than others.
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Figure 3. Breakdown of select by-product metal production by country for the year 2018 (data from BGS, 2021;

USGS, 2020; Table S2)

Total Se global production in 2018 was between 2,755 and 3,832 tonnes and worldwide Te production was between 470

and 524 tonnes. In general, for the same reported country, the BGS reports higher annual production values than the

USGS. In addition, there is variability in the reported countries by each survey. In the case of Se, the BGS reports an

additional 300 tonnes from countries not reported by the USGS, while the USGS reports an additional 25 tonnes of Te

from countries not reported by the BGS. Also of importance, the USGS withholds the annual production of domestic Se

and Te, hence the discrepancy between the two surveys.
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to any modeling of supply and demand. It is also possible for the opposite to occur, where overestimates of

production for whatever reason lead to an underestimate of criticality and supply risk and hence a lack of

forward planning relating to securing supplies of the critical material or element in question. All of this high-

lights the uncertainty in one of the more robust areas of knowledge of the critical minerals and elements –

how much we actually produce.
By-product and main product metal production ratios

Although there can be uncertainty in the annual production values for by-products there is still significance

in assessing changes in these values over time. Here, we use an approach based on ratios of by-product to

main-product annual production, herein referred to as metal production ratios (Figure 4). These ratios

essentially provide insights into our ability to produce by-product metals although the underlying causal

levers that affect these ratios are diverse. In particular, the by-product minerals and elements often do

not conform to traditional supply and demand mineral economics and as a result can display price volatility

(e.g., Slade, 1991; Humphreys, 2011; Redlinger and Eggert, 2016). This reflects the fact that although recov-

ering a mineral or element as a by-product has the advantage that the majority of the cost associated with

mining and processing is supported by the extraction of the main-product, the added value can be variable

due to fluctuations in the by-product market price. As a result by-product recovery circuits may be

‘‘switched’’ on or off, or by-products could be stockpiled; all in an effort to take full economic advantage

of favorable market prices (e.g., Scoullous et al., 2001).

The visible trends in the metal production ratios compiled during this study highlight periods of apparent

increase, decrease or stability of the production of select co- and by-product elements over time, demon-

strating the dynamic and often volatile nature of the supply of these critical minerals and elements. In gen-

eral, increasing metal production ratios indicate an increase in production of that critical element per unit

of main-product metal production. In comparison, decreasing metal production ratios suggest the oppo-

site has occurred, with stable ratio values with limited change from year-to-year suggesting only limited

change in by-product recovery relative to main-product production. Interestingly, this trend of ‘‘stability’’

is only sporadically observed over relatively short periods of time (�5 years of production) for all of the el-

ements considered in this study (Figure 4). Instead, metal production ratios are variable, primarily as a result

of the iteration of several possible causal levers such as geology (opening or closure of mines), mineral eco-

nomics (supply vs demand), geopolitical (government stockpiling or initiation of tariffs), and technology

(new recovery methods). Although the quantification of these levers is beyond the scope of this paper,
8 iScience 24, 102809, July 23, 2021



Figure 4. Annual metal production ratios between 1970 and 2018 (Table S1) for select by-product critical

elements based on data compiled from the BGS (2021) and from the Burea of Mines (1993) and the USGS (2021)

The estimated percentage of companionality for appropriate co- and by-products have been applied to the calculated

metal production ratios and noted by an asterisk (*). 100% of Cd is recovered as a by-product of Z; 90% of Se, 46%Mo, and

35% Co are recovered as a by-product of Cu; 71% of Re production is recovered as a by-product Cu-Mo; and 50% of Co

production is recovered from Ni by-products (Nassar et al., 2015). These companionality percentages have undoubtedly

changed over time, however historical data is unavailable and as result these percentages have been assumed to be static

in the metal production calculations.
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here we empirically present and discuss some of these factors as they pertain to select examples of varia-

tions in by-product metal ratios over time.

The most pronounced example of by-product growth relative to main product annual production is that of

Co (Figure 4). Approximately 50% and 35% of the global supply of Co is a by-product of Ni and Cu mining,

respectively (Nassar et al., 2015 supplemental data), with some main-product Co production in Morocco

and artisanal mines in the Democratic Republic of the Congo (DRC; e.g. USGS, 2020). Data from the

USGS suggest that since the early 1990s annual Co production has been increasing relative to its main-

metal products of Cu and Ni (i.e., increasing Co production ratios), with a notable exception between

2011 and 2013 when the Co production ratio decreased (Figure 4). In comparison, BGS Co metal produc-

tion ratio data from 1970 to 2018 define a U-shaped pattern (Figure 4) where annual Cu and Ni production

remained at similar levels between 1972 and 1975 (7.02–7.24 Mt Cu; 0.63–0.75 Mt Ni), whereas Co produc-

tion nearly doubled, resulting in a significant increase in the Co production ratio (Figure 4). This was fol-

lowed by a period of decreased Co production back to pre-1972 production levels before Co production

ratios increased from 2000 to 2010, similar to the trend observed in the USGS data. The variation in the

USGS and BGS data sets again illustrate the uncertainties in critical metal and mineral production data,

hampering efforts in examining whether themining industry is improving their production capacity of these

vital commodities or whether more of these commodities are being lost to waste.
iScience 24, 102809, July 23, 2021 9
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Although there are differences in the data from the USGS and BGS the potential causes behind the changes

in the Co production ratio outlined above are still worth discussing. Some of the trends in the data are

linked to specific events. For example, from 2011 to 2013, the Co:Ni production ratio decreased as a result

of an increase of global Ni production from new Ni-laterite mines in Indonesia and the Philippines. How-

ever during this period of increased Ni production, there was not an increase in Co production from these

two countries. Instead, Indonesia and the Philippines reported increases Co production after 2013, yielding

an associated increase in the Ni:Co ratio (Figure 4). This delay in Co production from Indonesia and the

Philippines from new Ni-laterite mines could be the result of geology, where initial production of ores

from these were not amenable to Co recovery or mine stockpiling or these new laterite mines encountered

initial issues with processing and Co recovery; the latter is common with the development of new laterite

mines (e.g., Mudd and Jowitt, 2014; Mudd et al., 2018). However, even given these probable causes the

fluctuations in the average annual Co metal price do not directly correspond with Co:Ni production ratio

trends between 2011 and 2014, with annual average prices of $36,100, $30,500, $27,900, and $30,600 per

tonne Co, respectively (data from Jowitt et al., 2020). This again indicates the lack of relationship between

supply and demand balance and prices for these by- and co-product metals where Co recovery increased

(hence increased supply) irrespective of variations in price. This also reflects the long lead-in time for mining

and mineral processing infrastructure and developments, a factor in critical mineral and element produc-

tion that is compounded by the uncertainties outlined in this paper. In other words, it is hard for mining

companies to justify significant expenditure relating to critical mineral or element production if the price

of the resulting mineral or element is likely to be volatile.

Not all metal production ratios have increased over timeor show the same variations as theCometal production

ratios outlined above.One example of this is the trend for the Cd:Zn ratio, where both BGS andUSGSdata sug-

gest that Cd recovery has decreased relative to the recovery of Zn since 1970 to 2011 (Figure 4) before increasing

after 2011 (for the USGS) and 2012 (for the BGS), suggesting an improvement in Cd recovery. This apparent

improvement is perhaps as a result of environmental regulation, which means that Cd needs to be separated

from other metals and disposed of in a different manner to other waste as a result of its toxicity. Current

worldwide Cd consumption is primarily attributed to NiCd battery manufacturing, as well as its use in alloys,

anticorrosive coatings, pigments, polyvinyl chloride stabilizers, radiation-detecting imaging equipment, and

in semiconductors for CdTe solar panels (USGS, 2021). The slight increase in the Cd:Zn ratio post-2011 is coin-

cident with annual increase in Te production (Figure 2B), likely a result of thin-filmCdTe PVmanufacturing. How-

ever, the future demand for Cd remains uncertain as its primary use is in the production of NiCdbatteries, which

are being phased out as a result of the negative environmental impact of Cd, with replacements by lithium-ion

and nickel-metal hydride batteries (USGS, 2021) leading to a decrease in sales of NiCd batteries at a rate of 6%

per year between 2002 and 2012 (Zhao et al., 2021). This may lead to a situation, where Cd could be stockpiled

by smelters and refiners without a market for this metal, creating issues over safe storage and disposal rather

than any issues over the security of supply of this metal. This is obviously a cost to smelters and refiners but

is likely to be significantly less economically damaging than the severe environmental issues potentially caused

by the release of Cd to the environment.

The majority of Cd is produced as a by-product of Zn refining (e.g., Scoullous et al., 2001) with a smaller, un-

quantified amount annually recovered from the recycling of end-of-life NiCd batteries (USGS, 2021).

Sphalerite is the principal Zn-bearing sulfide ore from which Zn is recovered and the process of smelting

sphalerite ore to recover Zn involves a purification step that extracts, among other elements, Cd (e.g., Lo-

kanc et al., 2015). This process essentially provides Zn smelters/refineries with two options a) refine saleable

Cd or b) stockpile Cd in an ‘‘intermediate’’ form such as Cd sludge or sponge (e.g., Scoullous et al., 2001) for

subsequent refining and potential sale or (if prices remain low) potentially for environmentally safe

disposal. This potential for smelters and/or refineries to stockpile intermediate products makes it difficult

to reconcile the underlying causal levers of variations in Cd:Zn metal production ratios. This means that any

decrease in the ratio could be a function of geology, i.e. sphalerite ore processed in the past naturally had

higher Cd concentrations than the present day ore; or the ratio is artificial and is a result of stockpiling in-

termediate Cd products in response to mineral economic drivers, or a combination of multiple factors

including others outside of these two variables. The current short-term apparent improvement in Cd recov-

ery could be the result of sold stockpiled Cd intermediates or added Cd supply from recycling end-of-life

NiCd batteries to meet elevated demand for CdTe solar PV production, although this remains uncertain.

Equally, the fact that NiCd batteries are being phased out (Zhao et al., 2021) barring specialty uses for these

batteries means that this recycling source and demand for Cd is likely to further diminish over time.
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Historic variations in the metal production ratio for the by-product elements Se, Re, and Te provide further

insights into the numerous changes involved in the production of critical elements over time (Figure 4).

Approximately, 90% of the global supply of Se is sourced as a by-product of Cu mining (Nassar et al.,

2015) with minor production as a by-product of Ni (USGS, 2020). The relatively unchanged Se production

ratio suggests that the Se recovery has not changed relative to the annual production of Cu (Figure 4). How-

ever, other methods for refining Cu, such as solvent extraction and electrowinning (SXEW), do not recover

Se (Stillings, 2017). Although the Se:Cu production ratio suggests that the rate of Se recovery has not

changed much over time, the reliance on Se by-product recovery from Cu anode slimes generated in elec-

trolytic production suggests this may be concerning for the future security of the supply of Se.

Rhenium exemplifies a critical element that is a by-product of another by-product with the majority of

global Re produced as a by-product of Mo production predominantly associated with porphyry-type de-

posits (e.g., Millensifer et al., 2014; John and Taylor, 2016). Molybdenum, from which Re is a by-product,

can originate as a main-product from porphyry Mo deposits (e.g., Climax mine; Freeport-McMoRan,

2019) or as a co-product derived from porphyry Cu-Mo deposits (Kennecott mine; Rio Tinto, 2021) as

mentioned above. However, primary deposits such as the Climax and Henderson mines in the United

States have Re-in-molybdenite concentrations <<100 ppm, which is insufficient to justify recovery efforts

compared to the <150 ppmRe concentrations in co- or by-product molybdenite fromporphyry Cu deposits

(Millensifer et al., 2014). As a result, 71% of global Re is produced from co- and by-product Mo (�46% of

global Mo production) produced from main-product Cu mining (Nassar et al., 2015).

Historic Re production ratios define an inverted U-shape with increasing Re production ratios from the

1970s to 1990, relatively unchanged Re production ratios from 1990 to the early 2000s, and decreasing

Re production ratios post-2005 (Figure 4). This inverted U-shape trend suggests that between 1973 and

1990 Re recovery increased, remained steady between 1990 and 2005, and then decreased relative to

co- and by-product Mo production after 2005. It is difficult to ascertain the geological and/or technological

factors behind Re production before the early 1990s. This is partly because free trade in Re was extremely

limited until the breakup of the Soviet Union (Naumov, 2007; Millensifer et al., 2014). The major producers

of mined Re worldwide are Chile (Molymet Corp), Poland (KGHM), Kazakhstan (Jeskazgan and Yuzhpolime-

tall), China (Jiangxi Copper), and the USA (Rio Tinto) (Naumov, 2007; Millensifer et al., 2014; Wang and

Wang, 2018) with �1% of annual Re production sourced from recycling of Pt-Re catalysts (e.g., Millensifer

et al., 2014). It is unclear what the recent decrease in Re:Mo ratio represents, but it could be the result of a

change in Re concentrations in Mo-Cu concentrates sourced from porphyry Cu deposits as suggested by

the increase Mo:Cu production ratio over the same period of time (Figure 4). The extraction of Re from por-

phyry Cu-Mo deposits involves the separation of Re-bearing molybdenite from Cu (e.g., chalcopyrite and

bornite) by froth flotation (e.g., Anderson et al., 2013). This suggests that a possible reason for the recent

decrease in Re:Mo ratio could be the increased use of SXEW hydrometallurgical techniques to generate Cu

concentrates via the heap leaching of lower-grade Cu ores, potentially leaving any Mo and Re within the

pads rather than mobilizing these metals into solution. This is similar to the behavior of Te within Cu

ores processed using SXEW, where Te is not mobilized during the leaching of the Cu ores but instead re-

mains trapped in the heap leach pad (e.g., Goldfarb et al., 2017).

Examining the data for Te yields a Te:Cu production ratio with a broad U-shaped pattern from 1970 to 2018

(Figure 4). The majority of global refined Te is again a by-product of Cu mining (i.e., Cu anode slimes; e.g.,

Goldfarb et al., 2017) as well as an unknown amount from residues generated and recovered in China from

Pb, Ni, PGE, and Zn smelting activities (USGS, 2020). In addition, between 40 and 50 t/year of refined Te are

produced as a co-product from the Kankberg Au-Ag-Te mine in Sweden (Voigt et al., 2019). The increase in

the Te production ratio since 2010 is likely the result of the addition of non-Cu related Te production rather

than the improvement of Te recovery from Cu anode slimes (McNulty and Jowitt, in review). Similarly, the

elevated Te production ratios in the 1970s (e.g., Colbert, 1980; BGS website) were likely the result of refined

Te from the Emperor gold mine in Fiji (e.g., Fornadel et al., 2019).

The above variations in metal production ratios illustrate the numerous factors and inherent uncertainties

involved in understanding the nature of historic and current global by-product metal resources and pro-

duction. These fundamentally include the abundance of by-products in the main-product metal concen-

trates prior to refining and the capacity for by-product recovery at the refinery operation. The fact that

by-products tend to represent >1% of the recoverable metal value from main- or co-product metal
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concentrates means that mining operations tend to not invest time and resources into quantifying the

amount of by-product metals contained in main-product ores or optimize the concentration of these by-

product metals during mineral processing (e.g. Jowitt and McNulty, 2021). As a result, these main product

metal concentrates may not be shipped to refineries with the appropriate by-product recovery circuits and

the potential value adds from these by-products, which are often classified as critical elements, is lost. This

highlights the need for new research in materials flows within the mining value chain to fully comprehend

and quantify the controls on the supply of critical elements that are primarily sourced as by-products of

main-product metal mining and refining. Equally important is the fact that criticality assessments often

include some of the data outlined above without considering their inherent uncertainties or how these

data change over time. A clear case in point is the variation in annual production values for Te (Figure 2B).

This could potentially mean that focused investment and research based on these criticality assessments is

essentially targeting the wrongmetals; if we do not know howmuch we produce and where this production

is occurring, then how can we assess the security of supply of these elements?
GLOBAL RESOURCES OF CRITICAL MINERALS AND ELEMENTS

The production and supply-related uncertainties in the critical minerals and elements space is further com-

pounded by a lack of high quality information on the resources and reserves of theseminerals and elements

(e.g., Weng et al., 2013; Frenzel et al., 2016; Frenzel et al., 2017; Mudd et al., 2017; Werner et al., 2017a;

Werner et al., 2017b; Jowitt et al., 2018a). These data are often used to predict challenges and the security

of future metal supply, and without these it is nearly impossible to accurately predict future trends in the

supply of these crucial commodities. One of the major challenges in the realm of understanding global crit-

ical mineral and element resources and production potential is that very few critical element resources are

well quantified. There are exceptions; for example Pt, Pd, and Co, although this reflects the fact that these

metals are often produced as main- or co-products (Nassar et al., 2015; Mudd et al., 2018) as a result of the

fact these are high value precious metals (Table 1). These high prices (and larger demand) for Pd and Pt

mean that these critical elements are generally co-products as they add significant value to the mining op-

erations they originate from, and as a result are estimated in resources and reserves modeling. Cobalt is

considered a minor metal although it is produced in larger amounts than most critical minerals and ele-

ments (Table 1; Mudd et al., 2013). These factors are reflected in the size of the Pd, Pt, and Co mining sec-

tors, which in 2019 were $11.27, $5.85, and $1.58 billion USD, respectively (Table 1; references therein).

However, the economic importance of these metals still does not guarantee that they will be reported in

resource and reserve estimates for individual deposits and/or mines that produce (or have the potential

to produce) these metals (e.g. Mudd et al., 2013). The situation is exacerbated for the majority of the critical

minerals and elements that have considerably smaller markets (Table 1).

All of this means that mineral economics factors have a crucial role in the lack of reporting of critical mineral

and element resources and reserves as the financial cost in generating resource and reserve estimates is

very high (e.g., Jowitt and McNulty, 2021). This means that not all metals that can be recovered and sold

from a given mineral deposit will be quantified in reserve and resource reporting, a situation that is com-

pounded by the fact that reserve and resource reporting regulations would typically preclude the reporting

of commodities that generate <1% of the revenue expected from a given mine (e.g. Jowitt and McNulty,

2021). This, in turn, means that resource and reserve estimates for critical minerals and elements reflect the

economic importance of the metal in question to a given deposit rather than their criticality or even the fact

that they will be produced by a mine (or by a downstream smelter or refinery). This leads to a situation

where, for example, the vast majority of Te- and Se-producing mines do not report resources or reserves

for these elements. This is despite the fact that they could (andmay actually) produce significant amounts of

Te and Se although whether these elements are produced or not depends on the approaches used during

metal extraction. This is a common case for themajority of the critical elements produced as by-products as

discussed above.

The uncertainties and knowledge gaps outlined above have generated a situation where proxies for unre-

ported critical mineral and element resources are needed to assess the global resources (and hence likely

future supply) of these minerals and elements. One example of this is the critical metal In, where the

geological relationship of global In production from Zn (95%) and Cu (5%) refining (Schwarz-Schampera,

2014; Werner et al., 2107a-b) combined with available In, Pb-Zn, and Cu resource data (Mudd et al.,

2013, 2017) have been used to estimate a global In resource of some 356,000 tonnes contained in 1,512min-

eral deposits (Werner et al., 2017b). In this case, the proxy approach provides the only estimate of global In
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resources, with the USGS in 2021 stating ‘‘quantitative estimates of reserves are not available’’ (USGS,

2021), noting that the way the USGS defines reserves differs from that used by the majority of the mining

industry. Resource data provide a more robust guide to long term metal and mineral supply than can be

estimated using reserves (e.g. Jowitt et al., 2020) and in some cases are the only data that may be available

(e.g. Jowitt et al., 2018a). As such, further development of these proxies is certainly warranted, including the

incorporation of fundamental geological knowledge such as the deportment of individual critical minerals

or elements within different mineral deposit types. This key knowledge not only informs on the grades of

these minerals or elements expected within certain mineral deposit types and the relationship between the

concentrations of these minerals and elements with more widely quantified main products, hence allowing

robust proxies to be determined, but also provides information on how extractable these minerals and el-

ements are. For example, if a given critical element of interest is present in a deposit but is associated with

or is hosted by a mineral that is considered gangue or waste, then it is unlikely that this element may be

produced without significantly changing mineral processing approaches, a costly step that may not be

justified. Without this information it is difficult to quantify the uncertainties involved in proxy calculations,

potentially leading to significant over- or under-estimation of critical mineral or element resources. How-

ever, obtaining these data may also be beneficial for individual mines and could lead to economic benefits

for a givenmine, as is apparently the case for Te extraction at BinghamCanyon (Rio Tinto to build new tellu-

rium plant at Kennecott mine, 2021).

A significant proportion of the uncertainties outlined above also reflect the lack of fundamental under-

standing of the ‘‘life cycle’’ of critical elements from mining through processing to final product. On the

macro-scale, mining is often geographically decoupled from refining in that a country’s annual mined pro-

duction for a metal does not always equal its refined metal production (e.g., Nansai et al., 2014; Brink et al.,

2020). This decoupling can be quantified for main metals, (e.g., Cu and Ni), as well as for some of the minor

metals (e.g., Co) that have publicly available data. An analysis of 2016 BGS mined and refined production

data for Cu, Ni, Co, and Te demonstrates the global-scale of this decoupling (Figure 5; Table S3). There are

very few examples where theminedmetal production equaled the refinedmetal production. These include

Cyprus for Cu; Sweden for Te; Myanmar, Colombia, Madagascar, and Poland for Ni; and Morocco, South

Africa, and Zimbabwe for Co (Figure 5), all of which are relatively small producers compared to the major

centers for the mining and refined production of Cu, Te, Ni, and Co. Figure 5 shows that mined metal con-

centrates are shipped all over the world for refining and demonstrates that the origins of the refined metal

are not easily tracked. The paucity of primary metal concentrate origin data has a trickle-down effect for our

understanding of supply risks and opportunities and for the quantification of critical element and mineral

resources. For example, China is the world-leading producer of refined Te. However, it remains unclear

how much of this Te is derived from domestic (i.e., Chinese) Cu metal concentrates versus how much is

derived from concentrates supplied from other countries. This global-scale uncertainty reflects uncer-

tainties surrounding individual mines, smelters, and refineries. For example, the United States has three

electrolytic copper refineries, only one of which, the ASARCOAmarillo plant in Texas, is actively recovering

by-product PGE, Se, and Te from Cu concentrates that originate from the Mission Cu-Mo, Silver Bell Cu,

and Ray Cu-Ag porphyry mines in Arizona and third party concentrates, as well as scrap copper metal

(ASARCO Amarillo Refinery, 2021). Although the ASARCO Amarillo plant refined �50 t of Te and �150 t

of Se in 2018 (BGS, 2021), GrupoMexico (the owner of ASARCO) only reports mineral reserves of Cu and

Mo for the Mission mine, Cu and Ag for the Ray mine and Cu for the Silver Bell mine (GrupoMexico,

2018). As a result, the mine origin and quantity of these by-products cannot be reconciled and therefore

predictions on the future supply of Te and Se from these mines are very difficult. The uncertainties within

these examples of the global- and country-scale dynamics of primary metal concentrate material flows

highlight three significant barriers in understanding and quantifying critical element and raw material sup-

ply: (1) geological—not all ore deposits contain by-product critical elements; (2) geographical variability in

mineralizedmaterial—ore deposits are not uniformly disrupted across the globe; and (3) geographical vari-

ability in processing facilities—smelters and refineries are located in both mining and non-mining coun-

tries. In short, these uncertainties reflect the fact that many countries refine third-party ores and concen-

trates that could essentially have come from anywhere in the world (Figure 5).

This, in turn, leads to challenges in estimating global critical mineral and element resources that are pro-

duced as by-products. The USGS estimates Se global resources based on identified Cu deposits and

average Se content and states that data on Te resources were not available in 2020 (USGS, 2021) with

the exception of Boliden’s Kankberg Au-Ag-Te deposit in Sweden (Voigt et al., 2019). In addition to the
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Figure 5. Global analysis of mined and refined main-product Cu (A) and Ni (C) production and their associated critical element by-products Te (B)

and Co (D), respectively (data compiled from the BGS, 2021; Table S3)

The graphs show net metal production where country-wide mined production (in terms of contained metal) is subtracted from country-wide refined

production of the samemetal; countries with negative values refinemore than theymine, and vice versa. The lack of mining countries for the Te data shown in

B reflects the difficulties involved in both assessing global mined production of this element (barring Sweden, where a single mine, Kankberg, produces all

the refined Te) and the flows of this element through smelters to refineries where the metal is produced. Countries in green, bold text are those that mined

metal equal to their refined metal output. [Country abbreviations: ALB = Albania; ARG = Argentina; ARM = Armenia; AUS = Australia; AUT = Austria; AZE =

Azerbaijan; BEL = Belgium; BGR = Bulgaria; BOL = Bolivia; BRA = Brazil; BWA = Botswana; CAN = Canada; CHL = Chile; CHN = China; DRC = Democratic

Republic of Congo; COL = Colombia; CUB = Cuba; CYP = Cyprus; DEU = Germany; DOM = Dominican Republic; ECU = Ecuador; EGY = Egypt; ERI =

Eritrea; ESP = Spain; FIN = Finland; FRA = France; GEO=Georgia; GBR = United Kingdom; GRE =Greece; GTM=Guatemala; IDN = Indonesia; IND = India;

IRN = Ran; ITA = Italy; JPN = Japan; KAZ = Kazakhstan; KGZ = Kyrgyzstan; KOR = Republic of Korea; KOS = Kosovo; LAO = Laos; MAR = Morocco; MDG =

Madagascar; MEX = Mexico; MKD = North Macedonia; MMR = Myanmar; MNG = Mongolia; MRT = Mauritania; NAM = Namibia; NCL = New Caledonia;

NOR = Norway; OMN = Oman; PAK = Pakistan; PER = Peru; PHL = Philippines; PNG = Papua New Guinea; POL = Poland; PRT = Portugal; ROU = Romania;

RuS = Russia; SAU = Saudi Arabia; SRB = Serbia; SVK = Slovakia; SWE = Seden; TJK = Tajikistan; TUR = Turkey; TZA = Tanzania; UKR = Ukraine; USA = Untied

States of America; UZB = Uzbekistan; VNM = Vietnam; ZAF = South Africa; ZMB = Zambia; ZWE = Zimbabwe]
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lack of mineral resource data for these critical elements, for reasons outlined above, it is also very difficult to

estimate resources based on current production because smelting/refining operations often process a

mixture of Cu concentrates (e.g., McNulty and Jowitt, in review). One case in point is US domestic Se

and Te production. If we assume that Se and Te are equally recovered from Cu concentrates produced

only by the Mission, Ray and Silver Bell mines, we can estimate the potential Se and Te resources for the

United States based on the anticipated life of mine for each operation. The Mission, Silver Bell, and Ray

mines have 12, 13, and 23 year mine lives, respectively (Mining Data Solutions, 2020). Therefore, assuming
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that the 2018 Se and Te production values of 150 t/year and 50 t/year, respectively (BGS, 2021), remain un-

changed than the United States has �2,400 t Se and �800 t Te of potential resources remaining in these

current operations. This contrasts with 2021 USGS Mineral Year Book Report, which estimated domestic

reserves of 10,000 t Se and 3,500 t Te (USGS, 2021).

This epitomizes the challenge of estimating global critical element resources when there are limited or no

data for mineral resources, productions and/or refining of the saleable critical element. In addition to a lack

of data, the mining industry is also dynamic. For example, as briefly mentioned above, Rio Tinto’s Bingham

Canyon Cu-Au-Mo-Ag porphyry mine in Utah is scheduled to begin production of Te in the fourth quarter

of 2021. This will involve the addition of a 20 t/year by-product recovery circuit to its Kennecott smelter,

which unlike the ASARCO Amarillo plant only refines Cu concentrate from the Bingham Canyon mine

(Rio Tinto to build new tellurium plant at Kennecott mine, 2021), demonstrating the potential economic

and critical element production benefits of knowing the deportment of critical elements within the concen-

trate being smelted or refined. Assuming a $70 USD/kg Te price, the $2.9 million USD capital cost could be

paid off in just over two-years of production. Not only will the new Te production expand US annual pro-

duction by�25% and global Te production by�4% but this new development will also provide an example

of the economic and social benefit of recovering this critical element. This also demonstrates that these

benefits can only be achieved by understanding the mineralization present within a mineral deposit and

the abundances of the critical elements contained therein.
DISCUSSION

The critical minerals comprise numerous raw materials and elements that are deemed essential but have

perceived supply-chain risk (Figure 1). These potential supply-chain risks could result in disturbances and bot-

tlenecks of raw materials that may lead to volatility in commodity pricing and produce a negative effect on sus-

tainable economic development. Factors that need tobe consideredwhen assessing potential supply-chain risk

of a given raw material include geological and economical finiteness for resources, as well as technological,

geopolitical, regulatory and social risk factors (Erdmann and Graedel, 2011; Klinglmair et al., 2014; Schneider

et al., 2014; Drielsma et al., 2016; Helbig et al., 2016; Jasi�nski et al., 2018; He et al., 2021). All of these factors

have their challenges in practice as well as their own inherent uncertainties that need to be considered when

completing a mineral criticality assessment (e.g., Glöser et al., 2015; Helbig et al., 2016).

As presented in this paper, many of the critical minerals and elements are by-products of main- and co-

product mining and refining (Table 2). Currently, the mining and mineral exploration industry lacks report-

ing protocols for these by-products because they tend to represent >1% of the metal/mineral value in a

deposit (e.g. Jowitt and McNulty, 2021). As a result, accurately quantifying minimum estimates of global

mineral resources for these by-products is impossible because there is a paucity of available and/or consis-

tently collected data. One solution to this problem is developing by-product proxies based on geological

criteria (i.e. Indium; Werner et al., 2017b). However, while this approach is an excellent first step, perhaps a

better and longer term solution is to develop a separate reporting standard for by-product metals so that

these elements are no longer ignored based on their perceived limited economic value (Jowitt and

McNulty, 2021).

In addition to the lack of resource data there are also challenges and uncertainties in the annual reported

production values for these critical by-products as well as their deposit/mine origins. This is demonstrated

by the discrepancies in the reported annual by-product metal production by the USGS and BGS investi-

gated in this study, which can vary by more than 50% (Figure 2B). The uncertainty in reported annual pro-

duction values is compounded by a lack of transparency in the source and quantity of metal concentrates

processed at smelters and refineries. This particular challenge is exemplified by worldwide Te production.

Over�90% of global Te production is a by-product of refining Cu concentrates however of the seven coun-

tries that produced Te in 2018 none of the operations refined Cu concentrate from a single origin (McNulty

and Jowitt, 2021 in review). The combination of different Cu concentrates makes it impossible to reconcile

the origin of the by-product metal from a given smelter or refinery. Without knowing the origin of the Cu

concentrate or the amount of Te in the concentrate, it is impossible to accurately estimate Te global re-

sources based on historic production. This lack of transparency is not unique to Te and is a function of

mineral economics not geological abundances. This then leads to the most significant knowledge gap

in critical mineral and element accounting, how can we classify something as critical if we don’t know

how much we have?
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Furthermore, the limited economic value for some critical elements has resulted in a lack of research in under-

standing the mineral deportment of these elements and the underreporting of these raw materials in mineral

deposits. In some cases, without these quantified inputs for by-products that are often classified as critical, pro-

duction cannot bemaximized at the mine, smelter, or refinery levels. In addition, without the communication of

this important orebody knowledge, when it happens to be collected, critical element supply will inherently be

over or under estimated. As a result, these non-renewable natural resources are reporting to waste rather than a

saleable product and industry and government alike are making ill-informed decisions.

These discussed uncertainties could be removed by a combination of research and policy change. Funda-

mental and applied research in mineral deportment of the critical minerals and elements is needed to, at a

minimum, establish new proxies to estimate the abundance of important elements that are not routinely

analyzed and, more preferably, develop new tools that industry can apply to efficiently and accurately

assess mineral deportment throughout the mineral exploration andmining value chain (e.g., Nuss and Eck-

elman, 2014; Frenzel et al., 2017). New research in extracting critical elements from tailings piles, for

example, is providing a path forward in this research space (e.g., Drif et al., 2018; Parbhakar-Fox et al.,

2018; Guanira et al., 2020), but there is also mineral resource and economic opportunity for proactive min-

eral deportment research done prior to and/or during mining activities (e.g., Frenzel et al., 2019). This will

not only provide the world with the critical raw materials for a sustainable future but also allow mining op-

erations to extract the most value from their ores. Finally, there is a need to update the resource reporting

protocol and encourage industry to report mineral resource estimates for by-products (Jowitt et al., 2013;

Nedelciu et al., 2020). While these mineral resource estimates will have greater uncertainty compared to

code compliant mineral resource and ore reserve estimates, it will fulfill a significant void in supply data

that is required to estimate global critical mineral and element resources with confidence.
CONCLUSIONS

Critical minerals and elements are crucial to modern life, advanced technology, low- and zero-CO2 power

generation and transport, and the defense sector. These minerals and elements are considered because

they are subject to supply risk as a function of variety of different factors, leading policymakers, researchers,

and industry to consider a variety of approaches to reduce this supply risk. However, the knowledge base

that funding, investment and policy decisions surrounding this criticality is deficient in a number of key

areas. This study highlights some of these that (among other factors) reflect the systemic lack of resource

reporting and fundamental knowledge of the critical elements. One of the most significant knowledge

gaps forms the focus of this paper, namely there is significant unrealized potential for critical element pro-

duction as a function of a lack of knowledge of the deportment and processing behavior of these elements.

Simply put, we do not know how much of these elements are present within known mineral resources and

ore reserves nor accurately and precisely how much of these elements we already produce. This leads back

into criticality assessments; how can we consider something critical without knowing how much we have

already identified and how much we produce (and from where)? All of this highlights the need for further

research and policy developments to reduce the uncertainties that surround the critical elements to ensure

secure global supplies of the critical raw materials needed for a sustainable future as well as ensuring we

make the most of mineral resources that are naturally finite. This also requires a change in resource report-

ing practices that ensure that themining industry considers by-product metals in their resource and reserve

reporting. Global reporting codes do not currently allow the outlining of resources of metals and minerals

without significant economic value even though a given company may have the data required to outline

these resources. Clearer reporting of exactly these data would require policy changes but would also

enable not only a more accurate understanding of the global resources of these vital commodities but

also allow their tracking through the mining chain and into eventual end-products. All of the changes out-

lined above will provide the knowledge base for ensuring a more secure supply of these vital commodities,

the vast majority of which will most likely be subject to increasing demand driven by efforts to mitigate

anthropogenic climate change and CO2 emissions.
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