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Abstract

Bovine mastitis is a common disease occurring in dairy farms and can be caused by more

than 150 species of pathogenic bacteria. One of the most common causative organisms is

Streptococcus agalactiae, which is also potentially harmful to humans and aquatic animals.

At present, research on S. agalactiae in China is mostly concentrated in the northern region,

with limited research in the southeastern and southwestern regions. In this study, a total of

313 clinical mastitis samples from large-scale dairy farms in five regions of Sichuan were

collected for isolation of S. agalactiae. The epidemiological distribution of S. agalactiae was

inferred by serotyping isolates with multiplex polymerase chain reaction. Susceptibility test-

ing and drug resistance genes were detected to guide the clinical use of antibiotics. Viru-

lence genes were also detected to deduce the pathogenicity of S. agalactiae in Sichuan

Province. One hundred and five strains of S. agalactiae (33.6%) were isolated according to

phenotypic features, biochemical characteristics, and 16S rRNA sequencing. Serotype mul-

tiplex polymerase chain reaction analysis showed that all isolates were of type Ia. The iso-

lates were up to 100% sensitive to aminoglycosides (kanamycin, gentamicin, neomycin,

and tobramycin), and the resistance rate to β-lactams (penicillin, amoxicillin, ceftazidime,

and piperacillin) was up to 98.1%. The TEM gene (β-lactam-resistant) was detected in all

isolates, which was in accordance with a drug-resistant phenotype. Analysis of virulence

genes showed that all isolates harbored the cfb, cylE, fbsA, fbsB, hylB, and α-enolase

genes and none harbored bac or lmb. These data could aid in the prevention and control of

mastitis and improve our understanding of epidemiological trends in dairy cows infected

with S. agalactiae in Sichuan Province.
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Introduction

Streptococcus agalactiae, also known as a group B Streptococcus, is a pathogen with high infec-

tivity. The bacterium invades the mammary glands of dairy cows via the skin and teat and

causes mastitis [1]. Mastitis caused by S. agalactiae is generally a chronic disease with few

acute outbreaks and no significant clinical symptoms but reduces the milk yield and has severe

economic consequences for dairy farms [2, 3]. The financial impact of mastitis includes the

costs of treatment, milk that must be discarded, increased workload, reduced milk production,

and culling and replacement [4]. Many types of Streptococcus cause bovine mastitis, the most

important of which is S. agalactiae [5, 6]. S. agalactiae was under great control in northern

Europe between the 1960s and 20th century but became a re-emerging pathogen of dairy cattle

and recognized as an emerging pathogen in human adults worldwide [7–10]. S. agalactiae was

the causative organism in approximately 20%–40% of cases of bovine mastitis in China [11].

Moreover, S. agalactiae is known to cause serious infections in humans, including infant sep-

sis, endocarditis, meningitis, and pneumonia in newborns, the elderly, and pregnant women

[12–17]. It can also infect aquatic animals [18, 19].

In cows, the main route of entry for S. agalactiae is via the teat, but infection can also occur via

the oral–fecal route and directly or indirectly trigger mastitis [1, 20]. The pathogenicity of a bacte-

rium depends on multiple virulence factors, which in the case of S. agalactiae include strong

adsorption and anti-phagocytosis and immune evasion mechanisms [21]. A variety of surface

proteins and endotoxins, including hemolysins and the Christie–Atkins–Munch–Peterson factor,

can increase the ability of S. agalactiae to invade and colonize its host. Furthermore, certain path-

ogenic factors, including fibrinogen binding (fbs A/B) proteins, adhesion (lmb) proteins, and eno-

lase proteins, can damage tissues in the host and cause destruction in the immune system. These

virulence factors promote survival and spread of bacteria and seriously compromise the health of

both animals and humans [22, 23]. One of the important virulence factors in S. agalactiae is cap-

sular polysaccharide, which has characteristic antigenicity features and differential properties that

are useful for serotyping. The studies reported so far have shown that S. agalactiae can be divided

into 10 types (Ia, Ib, II–IX) according to the structure of its capsular polysaccharide [24].

Bovine mastitis is a major problem in the dairy industry, costing billions of dollars every

year throughout the world, including in China, and S. agalactiae is one of the most important

causative pathogens. At present, antibiotics are the first-line treatment for bovine mastitis.

However, with the growing issue of antibiotic resistance and emergence of resistant organisms,

antibiotics are becoming ineffective. Moreover, there is the problem of antibiotic residues,

which are a danger to public health [25, 26]. Researchers have found an association between

antibiotic resistance in S. agalactiae and resistance genes within the organism, which can

transfer with migration of drug-resistant bacteria to originally drug-susceptible bacteria,

which then also become drug-resistant [27]. The increase in drug-resistant strains has led to

further increases in the use of antibiotics, which will not only lead to environmental pollution

but also threaten human health. Therefore, the purpose of this study was to provide basic data

for prevention and control of bovine mastitis by investigating S. agalactiae infection in dairy

cows in Sichuan Province, determining drug resistance and carriage of resistance genes in iso-

lated strains, and describing the distribution of virulence genes in isolates.

Materials and methods

Animal welfare statement

This study was carried out in strict accordance with the recommendations in the guide for the

care and use of laboratory animals and approved by the Committee on Experimental Animal
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Management of the Sichuan Agricultural University. All farm owners in this study verbally

agreed with the collection of milk samples.

Collection of milk samples and isolation of bacteria

Visible inflammation of the mammary glands and milk degeneration can be used to for com-

prehensive diagnosis of clinical-type mastitis [28]. A total of 313 milk samples were collected

from cows with clinical mastitis from dairy farms in several regions of Sichuan Province

between 2017 and 2019, specific sampling times, sampling rates and geographic locations are

detailed in Table 1 and Fig 1. During the course of the study, we maintained cooperative rela-

tionships with six dairy farms in several region of Sichuan, China. When the cattle showed

clinical symptoms, the dairy farmers would notify us to come collect samples and perform

pathogen detection. To this end, we had prepared aseptic centrifuge tubes to collect quarter-

level milk; these were placed in a foam box filled with ice bags and transported to the labora-

tory. All samples were obtained aseptically and sent to the laboratory within 12 hours, where

they were inoculated on basic culture medium of Columbia agar containing 5% defibrinated

sheep blood at 37˚C for 18–24 h.

Biochemical characterization

A single clone of each isolated strain was stained, and the suspected positive Streptococcus spp.

(purple, spherical, and chain like) was tested with catalase and the Christie–Atkins–Munch–

Peterson (CAMP) assay [25]. The existence of bubbles indicates catalase positivity after treat-

ing bacteria with 3% hydrogen peroxide [29]. The CAMP test was assessed with Staphylococcus
aureus, CAMP positivity was indicated by significant hemolysis between the vertical but not

the intersecting two bacteria after incubation for 18–24 h at 37˚C. After Gram staining and

biochemical testing, the isolates that were Gram positive, catalase-negative, and CAMP-posi-

tive were confirmed with 16S rRNA polymerase chain reaction (PCR).

Genomic DNA extraction and 16S rRNA sequence analysis

Genomic DNA was extracted from bacteria cultured (incubated in brain heart infusion broth

at 37˚C overnight) using a bacterial DNA extraction kit (TIANamp Bacteria DNA Kit,

Table 1. Geographic distribution of samples collected in this study.

Region Name of dairy farm Isolates, n

2017 Sep–Dec 2018 Mar–Jun 2018 Sep–Dec 2019 Mar–Jun Total

Qionglai Yangbaa - 7 20 20 47

Yushub - 28 18 7 53

Anyue Ninggangc 25 33 35 14 107

Mianyang Songyad 10 15 12 9 46

Qingbaijiang Qingbaijiange - 6 5 20 31

Hongya Hongyaf - 6 8 15 29

Total 35 95 98 85 313

a and b, belong to Youran Dairy Co., Ltd.

c, belongs to Ninggang Dairy Co., Ltd.

d, belongs to Sichuan Xuebao Dairy Group Co., Ltd.

e, belongs to Sichuan New Hope West China Animal Husbandry Co., Ltd.

f, belongs to Modern Farming Co., Ltd.

https://doi.org/10.1371/journal.pone.0268262.t001

PLOS ONE Antibiotic resistance in Streptococcus agalactiae

PLOS ONE | https://doi.org/10.1371/journal.pone.0268262 May 6, 2022 3 / 13

https://doi.org/10.1371/journal.pone.0268262.t001
https://doi.org/10.1371/journal.pone.0268262


TIANGEN BIOTECH (BEIJING) CO., LTD) according to the manufacturer’s instructions.

The extracted DNA was stored at -20˚C for future use.

DNA samples were determined with partial 16S rRNA sequencing, whereby forward (5’-
AGAGTTTGATCCTGGCTCAG -3’) and reverse (5’- GGTTACCTTGTTACGACTT -3’)

primers were used to amplify a product of approximately 1500 bp [30]. The amplified products

were sent to Tsingke Biotechnology Co., Ltd. (Beijing, China) for Sanger sequencing, and the

sequences were compared against those in the nucleotide database at the National Center for

Biotechnology Information.

Fig 1. Geographical location of sampling. A, map of China, the colored plate represents Sichuan Province; B, map of

Sichuan Province, red star represents Hongya farm, orange star represents Yangba farm, green star represents Yushu

farm, blue star represents Qingbaijiang farm, purple star represents Songya farm, and black star represents Ninggang

farm, percentages identical to the symbol color indicate the sample collection rate in that dairy farm. All original maps

were download from d-maps.com.

https://doi.org/10.1371/journal.pone.0268262.g001
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Serotyping

Multiplex PCR was used for detection of serotypes using the method described by Imperi et al.

[31] All primers were used at a concentration of 250 nM except for primers cpsI-Ia-6-7-F and

cpsI-7-9-F, for which the concentration was 400 nM. The reaction mixture (25 μL) was ampli-

fied with an initial denaturation step at 95˚C for 5 min, followed by 15 cycles of denaturation

at 95˚C for 1 min, annealing at 54˚C for 1 min, and extension at 72˚C for 2 min, followed by

25 cycles of denaturation at 95˚C for 1 min, annealing at 56˚C for 1 min, and extension at

72˚C for 2 min, with a final extension at 72˚C for 10 min.

Analysis of antimicrobial susceptibility

All S. agalactiae isolates were tested for susceptibility to 10 antimicrobial agents that were fre-

quently used in local dairy farms, including piperacillin (100 μg), ceftriaxone (30 μg), penicillin

(10 U), amoxicillin (20 μg), ceftazidime (30 μg), kanamycin (30 μg), gentamicin (10 μg), neo-

mycin (30 μg), streptomycin (10 μg), and tobramycin (10 μg) using the disc diffusion method

on Mueller-Hinton agar plates. The cultures were incubated overnight at 37˚C, and the results

were interpreted in accordance with the recommendations of the Clinical and Laboratory

Standards Institute (formerly the National Committee for Clinical Laboratory Standards

2020).

Detection of resistance and virulence genes

All S. agalactiae isolates were screened for the presence of the following resistance genes: TEM,

IMP, DHA, and OXA (β-lactam resistance genes) and aph(3’)Ia, ant(3’)I, aac(6’)Ib, and aac(3’)
Ib (aminoglycoside resistance genes). PCR was performed using specific primers, the amplifi-

cation conditions for which are shown in Table 2. A total of 20 μL of reaction mixture was pre-

pared with 10 μL of 2×Taq Master Mix (Beijing Solarbio Science & Technology Co., Ltd), 1 μL

of template DNA, 0.5 μL of each primer (10 μM), and 8 μL of distilled water. Initial denatur-

ation at 94˚C for 3 min was followed by 34 cycles of amplification at 94˚C for 20 s, annealing

at specific temperatures (Table 2) for 20 s, extension at 72˚C for 45 s, and a final extension step

at 72˚C for 5 min. The amplified PCR products were visualized on 1% agarose gel using a gel

documentation system (GeneGenius Bio Imaging System; Syngene, Bangalore, India).

The virulence genes screened were based on those found in humans and were as follows:

bac (C-β protein), cfb (CAMP factor), cylE (β-hemolysins/cytolysin), fbsA (the fibrinogen-

binding protein FbsA), fbsB (the fibrinogen-binding protein FbsB), hylB (hyaluronate lyase),

α-enolase, and lmb (laminin-binding protein) [19]. The content of the reaction mixture and

the amplification program were the same as those described above for the detection of resis-

tance genes.

Results

Isolation and identification of S. agalactiae
After Gram staining, biochemical analysis, and 16S sequencing analysis, 105 bacterial isolates

in 313 milk samples were identified to be S. agalactiae, with an isolation rate of 33.6%.

Serotyping of S. agalactiae
Multiplex PCR detection was performed to differentiate the 10 capsular serotypes of S. agalac-
tiae (Ia, Ib, II–IX). Two bands of 688 bp and 272 bp appeared in all 105 isolated strains, includ-

ing that all 105 isolated S. agalactiae serotypes were of type Ia.
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Antimicrobial susceptibility

The strains were judged to be susceptible, intermediate, or resistant to the different antibiotics

according to the regulations of the executive standard of antimicrobial susceptibility testing issued

by the Clinical and Laboratory Standards Institute. Drug susceptibility testing of the isolates

showed that up to 100% of isolates were susceptible to aminoglycosides (kanamycin, gentamicin,

neomycin, and tobramycin) and that 70.5% were susceptible to streptomycin. All 105 isolates

were resistant to the β-lactam agents (penicillin, amoxicillin, ceftazidime, and ceftriaxone), with a

resistance rate of up to 98.1%. The resistance rate for piperacillin was 29.5% (Fig 2; the original

data are shown in S1 Table, and the breakpoints for each antibiotic are shown in S2 Table).

Prevalence of antimicrobial resistance and virulence genes

PCR analysis was used to determine the drug resistance and virulence gene profiles of the S.

agalactiae isolates. The frequencies of these genes in the 105 isolates are shown in S3 Table.

Table 2. Primers of resistance and virulence genes.

Gene Sequence (5’ to 3’) Annealing temperature (˚C) Amplicon size (bp) Reference

Resistance gene

TEM F: CATTTCCGTGTCGCCCTTAT
R: GACCGAGTTGCTCTTGCC

55 259 [32]

OXA F: AGCAGCGCCAGTGCATCA
R: ATTCGACCCCAAGTTTCC

58 587 [32]

IMP F: CGGCCTCAGGAGACGGCTTT
R: AACCAGTTTTGCCTTACCAT

56 405 [33]

DHA F: AACTTTCACAGGTGTGCTGGGT
R: CCGTACGCATACTGGCTTAGC

58 708 [34]

aph(3’)Ia F: TGACTGGGCACAACAGACAA
R: CGGCGATACCGTAAAGCAC

58 677 [35]

ant(3’)I F: TGATTTGCTGGTTACGGTGAC
R: CGCTATGTTCTCTTGCTTTTG

56 284 [36]

aac(6’)Ib F: ATGACCTTGCCATGCTCCTATGA
R: CGAATGCCTGGCGTGTTT

58 486 [37]

aac(3’)Ib F: ACCCTACGAGGAGACTCTGAATG
R: CCAAGCATCGGCATCTCATA

55 384 [37]

Virulence gene

bac F: AAGGCTATGAGTGAGAGCTTGGAG
R: CTGCTCTGGTGTTTTAGGAACTTG

55 604 [38]

cfb F: AAGCGTGTATTCCAGATTTCC
R: AGACTTCATTGCGTGCCAAC

56 317 [39]

cylE F: CATTGCGTAGTCACCTCCC
R: GGGTTTCCACAGTTGCTTGA

56 380 [40]

fbsA F: GAACCTTCTTGTCACACTTG
R: TTGATCCTAGCACTCCCA

58 556 [40]

fbsB F: GCGCAAACTTCTGTCCAA
R: CCGATACGATTGTCCAAATG

58 417 [40]

hylB F: CACCAATCCCCACTCTACTA
R: TGTGTCAAACCATCTATCAG

56 444 [41]

α-enolase F: ATGTCAATTATTACTGATGTTTACGC
R: CTATTTTTTTAAGTTGTAGAATGATT

55 1038 [42]

lmb F: CCGTCTGTAAATGATGTGGC
R: GAAATACCCGAGATACCAAG

55 473 [41]

F, forward; R, reverse

https://doi.org/10.1371/journal.pone.0268262.t002
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Eight resistance genes for β-lactams (TEM, IMP, DHA, OXA) and aminoglycosides (aph(3’)Ia,

ant(3’)I, aac(6’)Ib, aac(3’)Ib) were examined in 105 S. agalactiae isolates. Only TEM genes for

β-lactams were detected in the isolated strains; the detection rate was up to 98%, and other

resistance genes were not detected.

Eight virulence genes, namely lmb, cylE, α-enolase, fbsA, fbsB, cfb, hylB, and bac, were tar-

geted for detection. The results showed 100% detection of cfb, cylE, fbsA, fbsB, hylB, and α-eno-
lase for all 105 S. agalactiae isolates; the bac and lmb genes were not detected in these isolates.

Discussion

Bovine mastitis has a complex etiology and can be caused by a variety of pathogenic microor-

ganisms, including bacteria, viruses, and fungi. However, many studies have shown that bacte-

ria are still the main causative pathogens for bovine mastitis and that S. agalactiae is one of the

most important [43, 44]. In this study, 313 milk samples from dairy cows with clinical mastitis

were collected from several areas in Sichuan Province. A total of 105 strains of S. agalactiae
were isolated from these samples, for an isolation rate of 33.6%. Our microbiological data are

comparable with those reported by Zeryehun et al. (21.2%) in Ethiopia [45]. However, our iso-

lation rates were significantly higher than those reported by Chehabi et al. (4.3%) in Denmark

and Tomazi et al. (5.9%) in Brazil [46, 47].

The isolation rate for S. agalactiae in clinical mastitis samples varies from region to region

according to the local climate and breeding environment. Even in the same country, diverse

prevalence rate can be found across regions. In our study, all 105 strains were of capsular type

Ia. In a study by Wang et al., serotype II of S. agalactiae was the most prevalent in dairy cows

in Jiangsu, China, whereas the capsular serotypes isolated from neonates and pregnant women

by Rogers et al. were mainly of type III and those in our study in dairy cows were of type Ia; we

consider that although serotype II was found to be more prevalent in Jiangsu, China, serotype

Ia is the most common type in cattle [10, 20, 48–52]. These inconsistent findings may reflect

geographic and host differences in these isolates. The collected data on the distribution of

Fig 2. Antibiotic susceptibility profiles of 105 isolates. The first five drugs on the x-axis are aminoglycosides and the

last five are β-lactams.

https://doi.org/10.1371/journal.pone.0268262.g002
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serotypes in different geographical regions should serve as a basis for the development of vac-

cine proposals [53, 54]. Our findings were based on S. agalactiae isolates from milk samples

collected in Sichuan Province and may reflect the infection status of dairy cows with mastitis

throughout southwest China; however, our data cannot be considered representative of all

Chinese provinces. This is a weakness of the present study. However, along with the wide

study of bovine mastitis in northern China, our study could supplement and perfect the pano-

rama of pathogens causing clinical mastitis in China dairy herds, although the samples were

not geographically evenly distributed across the country. At the nationwide level, the S. agalac-
tiae isolation rate is significantly higher in the south than in the north, indicating that preven-

tion and control of this bacterium remains challenging in the southern regions.

Although vaccines against the common pathogens that cause bovine mastitis are available

for prevention and control purposes, systemic or intramammary antibiotic therapy continues

to be the mainstay of treatment for clinical mastitis [55]. Penicillin was used as the first choice

for prevention and therapy of group B streptococcal (GBS); however, increased resistance of

GBS to penicillin has been periodically reported since 1994 [56–59]. Streptococci have been

shown to be highly resistant to enrofloxacin, erythromycin, lincomycin, and penicillin [60]. In

this study, we performed susceptibility testing for 10 antibiotic agents (including β-lactams

and aminoglycosides) commonly used to treat clinical mastitis in dairy cows located in Sich-

uan Province, and found that the resistance rate in 105 isolates was up to 98.1% for β-lactams

(penicillin, amoxicillin, ceftriaxone, and ceftazidime) while all isolates possessed high sensitiv-

ity to aminoglycosides (kanamycin, gentamicin, neomycin, and tobramycin). These findings

are consistent with those of a study performed in Ukraine by Elias et al., who isolated S. agalac-
tiae that possessed high resistance to β-lactam antibiotics, and those of a study in North China

by Tian et al., who isolated streptococci with a resistance rate of 100% to penicillin and average

sensitivity to aminoglycosides (92.86%) [61, 62]. These susceptibility results correspond to the

clinical use of antibiotics in China. However, in a study performed in Slovakia, 23 S. agalactiae
strains showed resistance rates of 8.7% and 30.4% to oxacillin and streptomycin, respectively,

but were highly susceptible to penicillin and ceftiofur [63]. Furthermore, all streptococci in

Denmark were found to be susceptible to penicillin [46]. All isolates were resistant to amino-

glycosides while sensitive to β-lactam antibiotics and rifampicin in the Emilia Romagna region

(Northern Italy) [64]. The inconsistency between these reports and our present findings may

reflect differences in the types of antibiotics used in clinical practice across regions. The main

antibiotics used to treat bovine mastitis in China are the β-lactams, although aminoglycosides

may be used in the future to treat mastitis caused by Streptococcus spp.

PCR detection of resistance genes identified the TEM gene for β-lactams in all isolates; how-

ever, no other drug resistance genes were detected. In a study by Lu et al., the detection rate for

genes conferring resistance to β-lactams was 100% in 10 strains of S. agalactiae resistant to penicil-

lin [65]. Meanwhile, Yang et al. reported the detection rates for four aminoglycoside resistance

genes [aph (3’)-Ia, ant (3’)-I, aac (3’)-Ib and aac (6’)-Ib] to be 0.0%, 75.0%, 0.0%, and 31.3%,

respectively; overall, these values were consistent with the results of our study [66]. The combina-

tion of the data regarding the resistance genes and phenotypes indicates high resistance of S. aga-
lactiae to β-lactams, but sensitivity to aminoglycosides, in Sichuan. Therefore, aminoglycosides

may become the preferred agents for treatment of dairy cows with clinical mastitis in the future.

In this study, PCR showed that the cfb, cylE, fbsA, fbsB, hylB, and enolase virulence genes were

present in all isolates, whereas the bac and lmb genes were not; the detection rates were the same

with those reported for isolates in Argentina [67]. These virulence factors provide essential assis-

tance for allowing pathogenic bacteria to invade the host and to be directly involved in the inva-

sion process [68]. Notably, cylE is a pore-forming toxin involved in tissue damage and systemic

dissemination of bacteria [69]. Previous studies have reported the presence of this gene in 78% of
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Polish strains and in 100% of Chinese strains [70, 71]. FbsA and fbsB were mainly present in type

Ia and type III GBS, both major capsular types that could induce mastitis [5]. Moreover, FbsA and

fbsB were prove to be closely associated with the adhesion of virulence factors [72]. HylB is

regarded a dominant virulence factor in S. agalactiae, and the presence of hylB could enhance vir-

ulence when there is S. agalactiae mammary-gland invasion [73]. Cfb was widely detected in S.

agalactiae; the CAMP factor produced by gene cfb could enhance the dissolution of sheep eryth-

rocytes by S. aureus, leading to a CAMP-positive phenomenon as we found in this study [74].

Earlier molecular reports showed that in contrast to human isolates, most bovine isolates lack sur-

face protein-encoding genes, including lmb, in line with our findings [75].

Our results could lay the foundation for mastitis prevention and control, selection of anti-

microbial agents, and research regarding the mechanisms of bacterial infection in dairy cows

in Sichuan Province. Our data suggest that aminoglycosides could be used to treat clinical

mastitis caused by S. agalactiae in Sichuan Province. As a temporary measure, aminoglyco-

sides could be useful in terms of clinical treatment and reduction of economic loss. However,

S. agalactiae may eventually develop resistance to these antimicrobial agents and even transfer

this ability to other bacteria with initial sensitivity. Therefore, use of aminoglycosides cannot

be considered a long-term solution, and it is necessary to continue the search for alternative

agents, such as vaccines and phage therapy. Moreover, the virulence factors detected in this

study could provide basic data for vaccine preparation in southern regions, given reduced use

of antibiotics and lesser efficiency of the GBS vaccines that have been produced.

Statistical analysis

The data are presented as counts and percents. The image of the susceptibility assay was gener-

ated with GraphPad Prism version 7 (GraphPad Software, San Diego, CA).
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3. Cobo-Ángel C, Jaramillo-Jaramillo AS, Lasso-Rojas LM, Aguilar-Marin SB, Sanchez J, Rodriguez-

Lecompte JC, et al. Streptococcus agalactiae is not always an obligate intramammary pathogen: Molec-

ular epidemiology of GBS from milk, feces and environment in Colombian dairy herds. PloS one. 2018;

13(12):e0208990–e. https://doi.org/10.1371/journal.pone.0208990 PMID: 30532177

4. el Garch F, Youala M, Simjee S, Moyaert H, Klee R, Truszkowska B, et al. Antimicrobial Susceptibility of

Nine Udder Pathogens Recovered from Bovine Clinical Mastitis Milk in Europe 2015–2016: VetPath

results. Vet Microbiol. 2020; 245:108644. https://doi.org/10.1016/j.vetmic.2020.108644 PMID: 32456822
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